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1 Opening items

1.1 Module introduction
Suppose that we are interested in the behaviour of a mass m, free to bob up and down along the y-axis on the end
of a spring of force constant k, and also subject to a damping (or resistive) force the magnitude of which is
proportional to the speed of the mass, as well as to an externally imposed periodic force in the y-direction given
by Fy = F01sin1(Ω0t) where F0 is a positive constant. (Fy is commonly abbreviated to F to avoid unnecessary
confusion with the subscripts.) The equation of motion of the mass is obtained by applying Newton’s second
law. If y is the displacement of the mass from equilibrium, then we have

m
d2 y

dt2
= −ky − b

dy

dx
+ F0 sin (Ωt) (1)
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All the forces acting on the mass have been added together on the right-hand side of Equation 1,

m
d2 y

dt2
= −ky − b

dy

dx
+ F0 sin (Ωt) (Eqn 1)

and are as follows:

−ky (the restoring force exerted by the spring);

−b
dy

dt
, where b is a positive constant (the damping force);

F01sin1(Ω0t) (the periodic applied force).

Equation 1 is an example of a second-order linear differential equation. It belongs to a category of linear
differential equations known as linear equations with constant coefficients, where the dependent variable and its
derivatives are multiplied by constants (not by functions of the independent variable).
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The most general second-order equation of this sort can be written as

a
d2 y

dt2
+ b

dy

dt
+ cy = f (t ) (2)

where a, b, c are constants and a ≠ 0; it is equations of this type that will be discussed in this module.

The simplest of this type of equation is one for which b and c are zero, so that the equation becomes

a
d2 y

dt2
= f (t ) (3)

This can be solved by direct integration, as will be explained in Subsection 2.1. Another relatively simple case
arises when we have zero on the right-hand side of Equation 2, instead of a function of t, so that

a
d2 y

dt2
+ b

dy

dt
+ cy = 0 , where a, b, c are constants and a ≠ 0 (4)

Equations of this type (known as linear homogenous equations) have innumerable applications in physics; they
arise, for example, in the discussion of simple harmonic motion and the analysis of a.c. circuits. ☞ Much of this
module (Subsections 2.2 to 2.5) is therefore devoted to finding solutions to various forms of Equation 4.



FLAP M6.3 Solving second-order differential equations
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

Subsection 2.6 tells you how to solve some equations of the type

a
d2 y

dt2
+ b

dy

dt
+ cy = f (t ) (Eqn 2)

for some different forms of f1(t).

The method explained there will then be used in Subsection 2.7 to find the general solution of equations of the
type

m
d2 y

dt2
= −ky − b

dy

dx
+ F0 sin (Ωt) (Eqn 1)

Study comment Having read the introduction you may feel that you are already familiar with the material covered by this
module and that you do not need to study it. If so, try the Fast track questions given in Subsection 1.2.  If not, proceed
directly to Ready to study? in Subsection 1.3.
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1.2 Fast track questions

Study comment Can you answer the following Fast track questions?. If you answer the questions successfully you need
only glance through the module before looking at the Module summary (Subsection 3.1) and the Achievements  listed in
Subsection 3.2. If you are sure that you can meet each of these achievements, try the Exit test in Subsection 3.3. If you have
difficulty with only one or two of the questions you should follow the guidance given in the answers and read the relevant
parts of the module. However, if you have difficulty with more than two of the Exit questions you are strongly advised to
study the whole module.
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Question F1

The angular displacement θ of the bob of a simple pendulum satisfies the equation of motion

a
d

dt
b

d

dt
c

2

2
0

θ θ θ+ + =

(a) Find the general solution of this equation if a = 0.11kg, b = 0.21kg1s−1 and c = 1.01kg1s−2.
(b) Find the particular solution if the bob is hit when in its rest position θ = 0 such that it is given an angular

speed
d

dt
t

θ = =−0 3 01. rad s at 

(c) Sketch this solution as a function of t.

Question F2

Find the general solution to the equation

d2 x

dt2
+ 5

dx

dt
+ 6 x = 2 t 2

3☞
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Study comment Having seen the Fast track questions  you may feel that it would be wiser to follow the normal route
through the module and to proceed directly to Ready to study? in Subsection 1.3.

Alternatively, you may still be sufficiently comfortable with the material covered by the module to proceed directly to the
Closing items.
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1.3 Ready to study?

Study comment In order to study this module you will need to be familiar with the following terms: degree
(of a polynomial), exponential function, general solution, initial condition, linear differential equation and
particular solution. You will also need to be familiar with various trigonometric identities (although we will repeat them
here); to be able to solve first-order differential equations by direct integration (which requires a fair knowledge of
integration methods); to know how to check a proposed solution to a differential equation by substitution (which requires
good differentiation skills); and to be able to use initial conditions to obtain a particular solution from a general solution.
To appreciate the physical significance of some of the equations appearing in this module, you should know how to use
Newton’s second law to write down a differential equation describing the motion of an object if you are given information
about the forces acting on it. Some familiarity with simple harmonic motion  (SHM) would be particularly useful.
If you are uncertain about any of these terms, you can review them now by reference to the Glossary, which will also
indicate where in FLAP they are developed. The following Ready to study questions will allow you to establish whether you
need to review some of these topics before embarking on this module.
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Question R1

Find the general solution to the differential equation
dy

dx
= x

1 + x2

Question R2

If y = 4ex/2 cos12x, calculate dy/dx and d12y/dx2.
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Question R3

Show by substitution that y = 1
4 (2x − 3) + Ae−x, where A is an arbitrary constant, is a solution to

d2 y

dx2
+ 3

dy

dx
+ 2 y = x

Is it a general solution?

Question R4

In answering this question, you should make use only of trigonometric identities, you should not use your

calculator. ☞

(a) If cos1θ = 1/3, what is the value of sin1θ, given 0 < θ < π/2 ?
(b) If cos1θ = 1/3 and sin1φ = −1/2, what is the value of cos1(θ + φ), given 0 < θ < π/2, π < φ < 3π/2?
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Question R5

In each of the two following expressions for y, use the given initial conditions to calculate values for the
arbitrary constants A and B.

(a) y = (At + B)e−21t; where y = 1 and dy/dt = 3 at t = 0.

(b) y = A1cos12x + B1sin12x; where y = 4 and dy/dx = −2 at x = 0.

Question R6

An object of mass m is free to move along a line; its displacement from the origin is denoted by x. It is acted on
by three forces: a restoring force, the magnitude of which is proportional to the magnitude of x; a resistive
(or damping) force, the magnitude of which is proportional to the cube of the object’s speed; and a constant
force of magnitude F0 acting in the negative x-direction. Use Newton’s second law to write down the second-
order differential equation that x must satisfy.
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2 Methods of solution for various second-order differential equations

Notation3Very often in the problems that arise in physics the independent variable is time, and so, when
discussing a general type of differential equation, the independent variable is denoted by t and the dependent
variable by y. However, in some of the examples, drawn from specific problems in physics, we will use the
notation for the variables that is appropriate to the situation. Bear in mind that the quantity being differentiated
will always be the dependent variable.
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2.1 Classifying second-order differential equations
There is such a wide variety of second-order differential equations that it is useful to divide them into various
categories, and in this subsection we will introduce some terminology that arises when we do so. You are
probably already familiar with the distinction between linear and non-linear differential equations. The most
general linear second-order differential equation is of the form

a(t )
d2 y

dt2
+ b(t )

dy

dt
+ c(t )y = f (t )

where a(t), b(t), c(t) and f1(t) are functions of t.

However, in many of the second-order linear equations that you will encounter in your study of physics the
dependent variable and its derivatives appear multiplied only by constants rather than functions of t.
Such an equation  is known as a linear differential equation with constant coefficients and has the form

a
d2 y

dt2
+ b

dy

dt
+ cy = f (t ) (5) ☞
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Equation 5

a
d2 y

dt2
+ b

dy

dt
+ cy = f (t ) (Eqn 5)

is easiest to solve when its right-hand side is zero, i.e. when

a
d2 y

dt2
+ b

dy

dt
+ cy = 0 (6)

As you see, all the terms in Equation 6 contain the dependent variable y or a derivative of y; for that reason, an
equation of this form is called a linear homogeneous differential equation. We will discuss equations of this
sort in Subsections 2.3, 2.4 and 2.5. If f1(t) in Equation 5 is not zero, then the equation is called a
linear inhomogeneous differential equation (as there is now a term in the equation which does not involve the
dependent variable y). Equation 6 is relatively easy to solve, whereas the ease with which we are able to solve
Equation 5 is crucially dependent on the form of the function f1(t).
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Question T1

State whether the following differential equations are linear with constant coefficients and, if so, whether they
are homogeneous or inhomogeneous:

(a) 
d2 y

dx2
= x − 3y

3

(b) x
d2 y

dx2
+ 2

dy

dx
+ y = 0

3

(c) 
d2 x

dt2
− 5

dx

dt
= 6 x

3❏

We will first dispose of the easiest of all second-order differential equations1—1those that may be solved by
direct integration. This is the subject of the next subsection.
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2.2 Equations of the form d2y/dt2 = f(t); direct integration

You should already know how to solve a first-order differential equation ☞ of the form

dy

dt
= f (t ) (7)

where the derivative of the dependent variable is equal to a function of the independent variable. This equation
may be integrated directly, to give

y = f (t ) dt∫ (8)

The indefinite integral will involve one arbitrary constant of integration, this indicates that Equation 8 gives us
the general solution to Equation 7.
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It is just as straightforward to solve a second-order differential equation of the form

d2 y

dt2
= f (t ) (9)

where the second derivative of the dependent variable is equal to a function of the independent variable.
Here, we simply integrate directly twice. Recalling that d12y/dt2 is the derivative of dy/dt, we see that if we
integrate both sides of Equation 9, we obtain

dy

dt
= f (t ) dt = F(t ) + A∫  (10)

where F(t) is an indefinite integral ☞ of f1(t) (i.e. F(t) is a function such that F1′(t) = dF(t)/dt = f1(t)), and A is a
constant of integration. If we integrate Equation 10 again we obtain:

y = F(t ) + A( )∫ dt = G(t ) + At + B (11)

where G(t) is an indefinite integral of F(t), and B is another constant of integration. We see that Equation 11
contains two arbitrary constants, A and B; this indicates that it is the general solution to Equation 9.
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Equations which can be directly integrated often arise when considering objects that are moving along a line.
For instance, an object moving along the x-axis, with position coordinate x and acceleration ax(t), a known
function of time, satisfies the equation

d x

dt
a tx

2

2
= ( ) (12) ☞

The following example illustrates this.
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Example 1 A car is travelling in the x-direction along a straight road. At time t = 0, it starts to accelerate, and
for the next 81s, its acceleration ax(t) is given by ax(t) = a + bt. If a = 2.001m1s−2, b = 0.501m1s−3 and the car’s
velocity is 5.001m1s−1 at  t = 0, how far does the car travel during the 81s period?

Solution We must first solve the differential equation

d x

dt
a bt

2

2
= + ☞

where x = x(t) is the position of the car and we take the origin to be the position of the car at t = 0, so that x = 0
at t = 0. Integrating once gives us

dx

dt
= (a + bt)∫ dt = at + b

t2

2






+ A = at + b

2
t2 + A

where A is an arbitrary constant. On substituting dx/dt = 5.001m1s−1 at t = 0 into this equation, we find
A = 51m1s−1.
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Integrating dx/dt to find x gives us

x at
b

t A dt
at bt

At B= + +





⌠
⌡

= + +
2 2 6

2
2 3

where B is an arbitrary constant. If we substitute x = 0 at t = 0, we find B = 0.

So x
t t

t= + +− − −( . ) ( . ) ( . )0 50
6

2 00
2

5 003
3

2
2

1m s m s m s

Therefore at t = 81s, we find that the car has travelled 146.61m.3❏
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Sometimes, instead of being given information directly about the acceleration of the object, you may be given
the force Fx(t) acting on it as a function of time. However, since Fx(t) = max(t), where m is the mass of the
object, it is very easy to write down a differential equation of the form given in Equation 12.

d x

dt
a tx

2

2
= ( ) (Eqn 12)

Such a differential equation, arising from an application of Newton’s second law, is often called an
equation of motion.

Try the following question, which illustrates another example.

Question T2

An object of mass 21kg, which is constrained to move along the x -axis, is subject to a force

Fx(t) = F01cos1(Ω1t),  ☞ acting along the x-axis (in the direction of increasing x), where F0 = 41N and Ω = 21s−1.

At time t = 0, the object’s displacement is +31m and its velocity is +11m1s−1. Find its displacement as a function
of time.3❏
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2.3 The equation for simple harmonic motion:
d2y/dt2 + w12y = 0

We will now make a start at finding solutions of Equation 6, ☞

a
d2 y

dt2
+ b

dy

dt
+ cy = 0 (Eqn 6)

In this subsection (and the next), we will look at the simplified case where b = 0, so that Equation 6 takes the
form

a
d2 y

dt2
+ cy = 0 (13)

In Equation 13, a ≠ 0 (so the equation is of second order) and c ≠ 0. (If c were zero, we could solve the equation
by direct integration.) Since a ≠ 0, we can divide both sides of the equation by a, and write h = c/a to give:

d2 y

dt2
+ hy = 0 (14)
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d2 y

dt2
+ hy = 0 (14)

You will see shortly that the form of solution of Equation 14 depends on whether the constant h is positive or
negative. We will consider these two possibilities separately, starting with the case of positive h.
(The case of negative h will be discussed in Subsection 2.4.) If h is positive, we can make it clear that this is so
by writingh = ω0

2, so that Equation 14 becomes:

d2 y

dt2
+ ω0

2 y = 0 (SHM equation) (15) ☞

Before discussing the solutions to Equation 15, we will emphasize the importance of this equation in physics.
It is the equation of motion of any object undergoing simple harmonic motion (SHM)1—1motion where the
force acting on the object is proportional to the object’s displacement from some point and acts in the opposite
direction to the displacement. For this reason, Equation 15 is often known as the SHM equation.
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You may already know that an object undergoing SHM executes oscillations and we will see shortly that the
period of the oscillations depends on the parameter ω0 which is known as the angular frequency in the context
of Equation 15.

d2 y

dt2
+ ω0

2 y = 0 (Eqn 15)

So it is important that whenever you encounter a case of SHM, you should be able to rewrite the differential
equation describing the physical situation in the form of Equation 15, and so find an expression for ω0 in terms
of the parameters appearing in the problem. The following question gives you practice in this.
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L

C

Figure 13See Question T3(a).

m
O

θ

l

Figure 23See Question T3(b).

Question T3
Rewrite each of the following equations
in the form of Equation 15,

d2 y

dt2
+ ω0

2 y = 0 (Eqn 15)

and so find an expression for ω0:

(a) L
d2 I

dt2
+ I

C
= 03

This equation describes the way in which
the current I varies with time in a circuit
containing an inductor L and a charged
capacitor C, as shown in Figure 1.

(b) ml
d2θ
dt2

= − mgθ3

This equation describes the motion of a simple pendulum1—1a mass m suspended from a fixed point by a string
of length l, as shown in Figure 2.3❏
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It is not too difficult to guess the general solution of Equation 15.

d2 y

dt2
+ ω0

2 y = 0 (Eqn 15)

Any solution of this equation must be a function such that when we differentiate it twice, we recover the
function itself, multiplied by −ω102. This should remind you of a cosine or a sine function. In fact, both cos1(ω10t)
and sin1(ω0t) have precisely this property, as does any function of the form B1cos1(ω0t) + C1sin1(ω0t), where B and
C are arbitrary constants.

✦ Show that y = B1cos1(ω0t) + C1sin1(ω0t) is a solution to Equation 15.

You have now shown that

the first form of the solution to the SHM equation (Equation 15)  is:

y(t) = B1cos1(ω10t) + C1sin1(ω100t) (16)

Since it contains two arbitrary constants B and C, it is the general solution.
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Question T4

Write down the general solution of the following equations:

(a) 
d y

dx

2

2
 + 25y = 03(b) 9

2

2

d Q

dx
 = −14Q3❏

It is easy to see from Equation 16

y(t) = B1cos1(ω10t) + C1sin1(ω100t) (Eqn 16)

that y(t) is a periodic function of t1—1that is, a function that ‘repeats itself’ each time t increases by a fixed
amount, known as the period of the function. ☞  As you know, the value of a sine or cosine function is
unchanged if the argument of the function is increased by 2π, or an integer multiple of 2π. Thus y has the same
value if t increases by an amount T = 2π/ω0.

The quantity T = 
2

0

π
ω

 is therefore the period of the function given in Equation 16.
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The solution to Equation 15 in a different form

In order to see some other features of the dependence of y on t, it is helpful to write the general solution to
Equation 15

d2 y

dt2
+ ω0

2 y = 0 (Eqn 15)

in a different form. This is done by expressing the arbitrary constants B and C that appear in Equation 16

y(t) = B1cos1(ω10t) + C1sin1(ω100t) (Eqn 16)

in terms of two other arbitrary constants, A and φ, as follows: ☞

B = A1sin1φ (17a)

and C = A1cos1φ (17b) ☞
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With these expressions for B and C, Equation 16

y(t) = B1cos1(ω10t) + C1sin1(ω100t) (Eqn 16)

becomes

y = A1sin1φ 1cos1(ω0t) + A1cos1φ 1sin1(ω0t) = A[sin1φ 1cos1(ω0t) + cos1φ 1sin1(ω0t)] (18)

We may now use the trigonometric identity ☞

sin1(α + β1) = sin1α 1cos1β + cos1α 1sin1β

to rewrite the right-hand side of Equation 18 and make it look a lot neater.
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d2 y

dt2
+ ω0

2 y = 0 (Eqn 15)

Thus:

the second form of the solution to the SHM equation (Equation 15) is:

y(t) = A1sin1(ω0t + φ) (19)

Equation 19 shows us that, for any particular choice of the constants A  and φ, the graph of the solution to
Equation 15 always has the shape of a sine curve (though it may not pass through the origin). Such a curve is
called sinusoidal; an example is shown in Figure 3 (next page). We can also deduce from Equation 19 that,
since the maximum value attained by a sine function is 1, the maximum value of y is equal to the constant A;
therefore A is the amplitude of the oscillations. The other constant φ is known as the phase constant or
initial phase of the oscillations. Clearly the value of y at t = 0 depends on both A and φ since it is equal to
A1sin1φ . Thus, if we know the value of ω0, and we can discover the values of A and φ (so that we are dealing
with a particular solution of Equation 15) we can easily use Equation 19 to construct the graph of the solution.

☞
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−2

2

0 π 2π

π
12

−

y/m
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The example shown in Figure 3
corresponds to the values A  = 21m,
φ  = π/6 and ω0 = 21s−1 , so that
y = (21m)1sin1[(21s−1)t + π/6]. 

(Notice that y = 0 when t = − (π/12)1s,
and y = 11m when t = 0.)

Figure 33A sinusoidal curve with period
π1s−1, amplitude 21m and phase constant π/6.
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Converting from one form of the solution into the other

It is clearly important to be able to switch between the two forms of the solution to the SHM equation given in
Equations 16 and 19.

y(t) = B1cos1(ω10t) + C1sin1(ω100t) (Eqn 16)

y(t) = A1sin1(ω0t + φ) (Eqn 19)

From Equations 17a and b we can easily calculate B and C if we are given values for A and φ; but how do we
calculate A and φ from known values of B and C? To see how to do this, note that if

B = A1sin1φ  and C = A1cos1φ (Eqns 17a, b)

then

B2 + C12 = A2 (sin2φ +1cos12φ) = A2

so that

A2 = B2 + C12
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By convention, A is always taken to be positive, so we have the following two equations for A and φ, where
Equation 21 is obtained from Equations 17a and b

B = A1sin1φ  and C = A1cos1φ (Eqns 17a, b)

by dividing the expression for B by the expression for C.  ☞

Equations converting from the first form of the solution of the SHM equation into the second form:

A B C= +2 2 (positive square root) (20)

B

C

A

A
= =sin

cos
tan

φ
φ

φ i.e. φ = arctan1(B/C) but with 0 ≤ φ < 2π (21)

By convention, φ is always chosen to lie within the range 0 ≤ φ < 2π in this context. You may be wondering why
it cannot be chosen to lie within the range −π/2 ≤ φ < π/21—1the standard range for the inverse tan function1—1the
reason is that although the function tan1φ repeats itself as φ is increased by π, sin1φ and cos1φ do not. Thus the
range −π/2 ≤ φ < π/2 would not cover all possible values (both positive and negative) of the constants B and C.
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In fact, using Equation 17,

B = A1sin1φ  and C = A1cos1φ (Eqns 17a, b)

and our knowledge of the properties of sin1φ and cos1φ, we can lay down some rules for the range of values
within which φ  must lie, depending on whether B and C are positive or negative:

B ≥ 0  and C ≥ 0   ⇒   0 ≤ φ ≤ π 2 (22a) ☞

B ≥ 0  and C < 0   ⇒   π 2 < φ ≤ π (22b)

B < 0  and C < 0   ⇒   π < φ < 3π 2 (22c)

B < 0  and C ≥ 0   ⇒   3π 2 ≤ φ < 2π (22d)

You can now use Equations 17, 20, 21 and 22

A B C= +2 2 (positive square root) (Eqn 20)

B

C

A

A
= =sin

cos
tan

φ
φ

φ i.e. φ = arctan1(B/C) but with 0 ≤ φ < 2π (Eqn 21)

to answer the following questions:
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Question T5

Write the particular solution y = 61sin1(3t + π/3) in the form y = B1cos1(ω0t) + C1sin1(ω0t).3❏

Question T6

Write the two following particular solutions in the form y = A1sin1(ω0t + φ):

(a) y = 41cos1(2t) + 31sin1(2t)

(b) y = 51sin1(4t) − 121cos1(4t)3❏
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2.4 Equations of the form d2y/dt2 - l2y = 0
We will now return to the case of negative h in Equation 14.

d2 y

dt2
+ hy = 0 (Eqn 14)

If h is negative, we can make it clear that this is so by writing h = −λ2, where (by convention) λ > 0, so that
Equation 14 becomes

d2 y

dt2
− λ2 y = 0 (23) ☞

You may not have yet encountered any physical situations that could be described by an equation of this sort.
However, it does have important applications in quantum physics and elsewhere. So it is well worth your while
to learn how to solve this equation. Moreover, the solution is very easy to find.
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To solve Equation 23,

d2 y

dt2
− λ2 y = 0 (Eqn 23)

let us proceed using the same sort of informed guesswork that we used to solve Equation 15.

d2 y

dt2
+ ω0

2 y = 0 (Eqn 15)

In the case of Equation 15, we wanted to find a function such that its second derivative was equal to the function
itself multiplied by a negative constant. Looking at Equation 23, we see that this time we want a function
(or functions) the second derivative of which is equal to the function itself multiplied by a positive constant.
Exponential functions have the property that all their derivatives are proportional to the function itself.

So let us see if an exponential function, of the form

y = Bept (24)

where B is an arbitrary constant, is a solution of Equation 23.
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If we differentiate Equation 24 once,

y = Bept (Eqn 24)

we find dy/dt = pBe1pt = py.

When we differentiate again, we find

d2 y

dt2
= p

dy

dt
= p2 y

and on substituting this result into Equation 23,

d2 y

dt2
− λ2 y = 0 (Eqn 23)

we obtain

p2y − λ2y = 0

which is an identity ☞ provided that p2 = λ2.

Thus Equation 24 is a solution to Equation 23 provided p = +λ  or p = −λ.



FLAP M6.3 Solving second-order differential equations
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

It follows that any function of the form

y = Beλt (25a)

or y = Ce−λt (25b)

(We have replaced the arbitrary constant B in Equation 25a by the arbitrary constant C in Equation 25b.)

is a solution to Equation 23.

d2 y

dt2
− λ2 y = 0 (Eqn 23)

Neither of these equations can themselves be the general solution of Equation 23, as neither contains two
arbitrary constants. But perhaps their sum, which does contain two arbitrary constants, is the general solution.

✦ Show that y = Beλt + Ce−λt is a solution to Equation 23.
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d2 y

dt2
− λ2 y = 0 (Eqn 23)

So you have shown that:

The general solution of Equation 23 is

y(t) = Beλt + Ce−λt (26)

Since Equation 26 contains two arbitrary constants, it is the general solution. You may wonder what this solution
looks like graphically. If either B or C is zero, the curve is exponential. Otherwise, the solution given in
Equation 26 behaves like y = B 1exp1(λt) when t is large and positive (as then exp1(−λt) is very small), and like
y = C1exp1(−λt) when t is large and negative (as then exp1(λt) is very small). Figure 4 (next page) shows the four
general shapes of curve you can expect, depending on the different  signs of B and C.
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y

t0

y

t0

y

t0

y

t0

(a) (b) (c) (d)

B > 0, C > 0 B < 0, C < 0 B > 0, C < 0 B < 0, C > 0

Figure 43Solutions to Equation 23. General solution is y(t) = Beλt + Ce−λt (Equation 26)
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Question T7

Find the general solution of

d2 y

dx2
− 4 y = 0

and the particular solution if y = 6 and dy/dx = 0 at x = 0.3❏

We obtained the general solution given in Equation 26

y(t) = Beλt + Ce−λt  (Eqn 26)

by taking the sum of the two solutions given in Equation 25.

y = Beλt (25a) or y = Ce−λt (Eqn 25b)

In fact, it can be proved that, for any linear homogeneous equation (not necessarily one with constant
coefficients) the sum of two solutions (or more than two, if the equation is of higher order than the second) is
always also a solution. We will not give the proof here (although the last marginal note should provide a hint as
to how the proof might go), but you should bear this useful result in mind; we will make use of it in the next
subsection.
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2.5 The equation for damped harmonic motion:
a(d2y/dt2) + b(dy/dt) + cy = 0

In Subsection 2.3, we mentioned that an equation of the form

a
d2 y

dt2
+ cy = 03where c/a = h > 0

has many different applications in physics, describing, as it does, the behaviour of an object undergoing simple
harmonic motion. Its solutions are sinusoidal oscillations of constant amplitude. However, you know from
experience that the vibrations of an oscillating object always die away with time (pendulum clocks run down;
masses bobbing up and down on springs come to rest, and so on). This is due to the effect of resistive or
damping forces, which oppose the motion of the oscillating object. How can we modify the SHM equation
(Equation 15).

d2 y

dt2
+ ω0

2 y = 0 (Eqn 15)

to take account of these forces? Let us return to the example mentioned in Subsection 1.1, a mass m oscillating
up and down on a spring of force constant k.
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If the restoring force of the spring, −ky, is the only force acting on the mass, then, according to Newton’s second
law, its displacement y(t) must satisfy the equation

m
d2 y

dt2
= −ky

To incorporate the effects of a damping force, we must add a term on the right-hand side which always acts in a
direction opposite to the direction of the velocity of the mass (the bob). A simple way of doing this is to assume
that the damping force can be written in the form −b(dy/dt), where b is a positive constant, so that the equation
of motion of the mass becomes

m
d2 y

dt2
= −ky − b

dy

dt
☞

i.e. m
d2 y

dt2
+ b

dy

dt
+ ky = 0 (27)
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L

C
R

Figure 53A circuit containing an
inductance L, a resistor R and a
capacitor C, connected in series.

An equation of the form given in Equation 27

m
d2 y

dt2
+ b

dy

dt
+ ky = 0 (Eqn 27)

also arises in the theory of a.c. circuits.

The current I in the circuit shown in Figure 5, containing an inductance L,
a resistor R and a capacitor C, obeys the differential equation

L
d2 I

dt2
+ R

dI

dt
+ I

C
= 0 (28)
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To predict the behaviour of the mass on the spring, or the current in the circuit, you need to be able to solve
differential equations of the type

a
d2 y

dt2
+ b

dy

dt
+ cy = 03where a > 0, b > 0 and c > 0 (29) ☞

We need the ratio b/a to be positive if the coefficient of dy/dt is to represent a resistive force, opposing the
velocity of the object; and we need the ratio c/a to be positive so that if b is zero, we recover the SHM equation
(Equation 15).

d2 y

dt2
+ ω0

2 y = 0 (Eqn 15)

This condition is most simply achieved by restricting all three constants to positive values. (In fact, the solutions
we obtain to Equation 29 will apply equally well if any of a, b, or c is negative.)
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Let us now try to find solutions to Equation 29.

a
d2 y

dt2
+ b

dy

dt
+ cy = 03where a > 0, b > 0 and c > 0 (Eqn 29)

We know that if b = 0, then the solution is a sinusoidal function. However, we do not want a purely sinusoidal
solution if b > 0 (we want y to tend to zero as t becomes large and positive, due to the damping); moreover, if
you try a solution of the form y = sin1(1pt) or cos1(1pt) in Equation 29, you will quickly find that it does not work
(unless b = 0, of course). But perhaps an exponential function would work, just as it did for Equation 23?

d2 y

dt2
− λ2 y = 0 (Eqn 23)

We have nothing to lose by trying it, so let us substitute

y = Bept (30)

into Equation 29.
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The first derivative of y is equal to py, and the second derivative is equal to p2y; so we find, on substitution,

ap2y + bpy + cy = 0

which is an identity provided that p satisfies the equation

ap2 + bp + c = 0 (auxilliary equation) (31)

This quadratic equation in p is known as the auxiliary equation of Equation 29.

a
d2 y

dt2
+ b

dy

dt
+ cy = 03where a > 0, b > 0 and c > 0 (Eqn 29)

As it is a quadratic, the roots of Equation 31 are given by ☞

p
b b ac

a
p

b b ac

a
1

2

2

24
2

4
2

= − + − = − − −
and (32)

This formula will give us two real values for p1 and p2 provided that b2 > 4ac. (We will deal with the cases
where b2 < 4ac or b2 = 4ac shortly; but for the moment, let us assume that the two roots are real.)



FLAP M6.3 Solving second-order differential equations
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

We have shown, therefore, that the trial solution, Equation 30,

y = Bept (Eqn 30)

will satisfy Equation 29

a
d2 y

dt2
+ b

dy

dt
+ cy = 03where a > 0, b > 0 and c > 0 (Eqn 29)

for any value of B provided that p is one of the two roots given in Equation 32.

p
b b ac

a
p

b b ac

a
1

2

2

24
2

4
2

= − + − = − − −
and (Eqn 32)
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Real roots of the auxiliary equation (heavy damping)

We can write the two solutions of Equation 29

a
d2 y

dt2
+ b

dy

dt
+ cy = 03where a > 0, b > 0 and c > 0 (Eqn 29)

we have just found as

y = B1exp1(1p1t)3and3y = C1exp1(1p2t)

As we mentioned at the end of Subsection 2.4, we can obtain the general solution to Equation 29 by adding these
two solutions together:

The general solution of Equation 29 in the case b2 > 4ac is

y(t) = B1exp1(1p1t) + C1exp 1(1p2t) (33)

where3 p
b b ac

a
1

2 4
2

= − + −
3and3 p

b b ac

a
2

2 4
2

= − − −
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or, written out in full,

y = B exp
−b + b2 − 4ac

2a
t







+ C exp
−b − b2 − 4ac

2a
t







(34)

There is no need to memorize this unpleasant-looking equation1—1but you should remember the method that we
used to derive it, and be able to apply it to a given differential equation, as in the following example.

Example 2 Find the general solution of the differential equation

d2 y

dt2
+ 5

dy

dt
+ 6 y = 0

Solution First write down the auxiliary equation,

p2 + 5p + 6 = 0

This equation has two real roots:

p = − 5
2 ± 1

2 25 − 24 = −2  or − 33☞

Thus the general solution is y = Be−2t + Ce−3t .3❏
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Question T8

Find the general solution of the differential equation

6
d2 y

dt2
+ 17

dy

dt
+ 12 y = 03❏
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t

y

0

Figure 63Heavily damped
motion.

You can see that if a, b and c are all positive quantities, the positive square root

b2 − 4ac  must be less than b, and therefore both roots of the auxiliary equation
are negative. Thus the solution to Equation 29

a
d2 y

dt2
+ b

dy

dt
+ cy = 03where a > 0, b > 0 and c > 0 (Eqn 29)

that is given in Equation 34

y = B exp
−b + b2 − 4ac

2a
t







+ C exp
−b − b2 − 4ac

2a
t







(Eqn 34)

is the sum of two decreasing exponentials, and as t becomes very large and positive, y tends to zero.
An example of this is shown in Figure 6.



FLAP M6.3 Solving second-order differential equations
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

t

y

0

Figure 63Heavily damped
motion.

Remember that in physical situations b gives an indication of the magnitude of the
damping force. If b  = 0 the motion is undamped and we have oscillations
corresponding to SHM (as in Equation 15),

d2 y

dt2
+ ω0

2 y = 0 (Eqn 15)

but if b is so large that b2 > 4ac, then there are no oscillations (as in Figure 6).
In such a case, the motion is said to be heavily damped. You can probably guess
what will happen if we choose a value for b somewhere between these two
extremes. Nonetheless, we will now analyse such problems systematically.
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Complex roots of the auxiliary equation (light damping)

We will now solve Equation 29

a
d2 y

dt2
+ b

dy

dt
+ cy = 03where a > 0, b > 0 and c > 0 (Eqn 29)

for the case b2 < 4ac. We will give two alternative treatments of this important case.

The first treatment depends on a result that comes from the study of complex numbers, and shows that the
solution in this case is merely an extension of the previous result.

The second treatment does not require as much knowledge of complex numbers, we will just give you the
solution of the differential equation and ask you to verify that what we say is correct.
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The first treatment requires the following result from the theory of complex numbers

eiθ = cos1θ + i1sin1θ (35)  ☞
If you are familiar with this result continue reading; if not go straight to Question T9.

If b2 < 4ac in Equation 29,

a
d2 y

dt2
+ b

dy

dt
+ cy = 03where a > 0, b > 0 and c > 0 (Eqn 29)

then the two roots of Equation 31

ap2 + bp + c = 0 (auxilliary equation) (Eqn 31)

are complex and can be written (using Equation 32)

p
b b ac

a
p

b b ac

a
1

2

2

24
2

4
2

= − + − = − − −
and (Eqn 32)

as p i p i1 2
2 2

= − + = − +γ ω γ ωand ☞

where γ = b/a3and3ω = 4ac − b2 /(2a)3 ☞
(Notice that, since b2 < 4ac, we can be sure that ω is a real quantity.)
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Thus, the general solution to Equation 29

a
d2 y

dt2
+ b

dy

dt
+ cy = 03where a > 0, b > 0 and c > 0 (Eqn 29)

when b2 < 4ac is similar to that given in Equation 33

y(t) = B1exp1(1p1t) + C1exp 1(1p2t) (Eqn 33)

and we may write it as

y = R exp − γ
2

+ iω



 t







+ S exp − γ
2

− iω



 t







= exp(− γ t 2) R exp(iω t)[ ] + S exp(−iω t)[ ] (36)

where R and S are arbitrary constants.
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It looks as though this solution will give complex values to y. However, since the case b2 < 4ac frequently arises
in physics problems, it must be possible to arrange Equation 36

y = R exp − γ
2

+ iω



 t







+ S exp − γ
2

− iω



 t







= exp(− γ t 2) R exp(iω t)[ ] + S exp(−iω t)[ ] (Eqn 36)

in a form which need not involve any complex quantities. We do this by employing Equation 35,

eiθ = cos1θ + i1sin1θ  (Eqn 35)

to write

exp1(iω1t) = cos1(ω1t) + i1sin1(ω1t)3and3exp1(−iω1t) = cos1(ω1t) −  i1sin1(ω1t)

if we substitute these results into Equation 36, we find

y = exp1(γ1t1/2)[(R + S)1cos1(ω1t) + i(R − S)1sin1(ω1t)]

We can now define new arbitrary constants B = R + S and C = i(R − S), and rewrite the solution as

y = exp1(−γ1t/2)[B1cos1(ω1t) + C1sin1(ω1t)]
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You may think that this rewriting has achieved nothing since C may be complex, so we have still not ensured
that the solution y(t) is a real quantity. However, at this point it is important to realize that the constants R and S
in Equation 36

y = R exp − γ
2

+ iω



 t







+ S exp − γ
2

− iω



 t







= exp(− γ t 2) R exp(iω t)[ ] + S exp(−iω t)[ ] (Eqn 36)

are quite arbitrary, they did not even have to be real. Equation 36 is a perfectly valid solution to Equation 29

a
d2 y

dt2
+ b

dy

dt
+ cy = 03where a > 0, b > 0 and c > 0 (Eqn 29)

even if R and S are complex. In fact, if R and S are complex conjugates, i.e. complex numbers of the form

R = a + ib3and3S = a − ib3where a and b are real constants

then B = R + S = 2a3will be real

and C = i(R − S) = i(2ib) = −2b3will be real

Moreover, the values of a and b are unrelated, so we are free to choose arbitrary values for the constants B and C
just as we were for R and S.
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a
d2 y

dt2
+ b

dy

dt
+ cy = 03where a > 0, b > 0 and c > 0 (Eqn 29)

Thus:

The general solution of Equation 29 in the case b2 < 4ac is

y(t) = exp1(−γ1t1/2)[(B1cos1(ω1t) + C1sin1(ω1t)] (37)

with γ = b/a (38a)

and ω  = 4ac − b2 /(2a) (38b)
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Question T9

Show by substitution that, for arbitrary constants B and C,

y(t) = exp1(−γ1t1/2)[B1cos1(ω1t) + C1sin1(ω1t)]

where

γ = b/a3and3ω = 4ac − b2 /(2a)

is a solution to Equation 29.

a
d2 y

dt2
+ b

dy

dt
+ cy = 03where a > 0, b > 0 and c > 0 (Eqn 29)

(Notice that ω is a real quantity if b2 < 4ac.)3❏
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The combination [B1cos1(ω1t) + C1sin1(ω1t)] appears in Equation 37,

y(t) = exp1(−γ1t1/2)[(B1cos1(ω1t) + C1sin1(ω1t)] (Eqn 37)

and it may be convenient to write this instead in the form A1sin1(ω
1

t + φ), as we did in Subsection 2.3, by putting

A B C= +2 2 (Eqn 20)

and φ = arctan1(B/C)3but with 0 ≤ φ < 2π (Eqn 21) ☞

This gives:

The alternative form of the solution of Equation 29 in the case b2 < 4ac

y(t) = A1exp1(−γ1t/2)1sin1(ω
1

t + φ) (39)

with γ = b/23and3ω = 4ac − b2 /(2a) (Eqn 38a and b)

From Equation 39 it is easy to determine the behaviour of the function y(t). Since b/a is positive, γ is also
positive1—1so y(t) is given by a sinusoidal function multiplied by an exponential function that decays as t
becomes large and positive.
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0

y

t

2π
ω

Figure 73Lightly damped oscillations.

Figure 7 shows the form of the solution in this case.
You can see that the effect of multiplying the
sinusoidal function by the exponential is to produce
oscillations with amplitudes that decrease with time.

This is just the sort of behaviour we expect of a
system where the resistive forces are not too
large1— 1remember that b2 must be less than 4ac
for the solution in Equation 39 to apply.

y(t) = A1exp1(−γ1t/2)1sin1(ω
1

t + φ) (Eqn 39)

In this case, the system is said to be lightly damped.
Note that the values of t for which y = 0 are still
equally spaced, with separation, ∆ t say, given by
ω
1

∆t = π, or ∆ t  = π/ω. Successive maxima and
minima are also equally spaced, by an interval in t
equal to 2π/ω (though they no longer occur exactly
half-way between the points where y = 0). 
For these reasons, we still speak of the quantity
2π/ω as the period of the oscillations.
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Equal roots of the auxiliary equation (critical damping)

Finally, we will consider the case where b2 = 4ac which (although it is somewhat artificial in that it rarely occurs
in practice) is of interest because it marks the transition from light to heavy damping. In this case, the auxiliary
Equation 31

ap2 + bp + c = 0 (auxilliary equation) (Eqn 31)

has only one root; from Equation 32,

p
b b ac

a
p

b b ac

a
1

2

2

24
2

4
2

= − + − = − − −
and (Eqn 32)

we see that p1 = p2 = −b/(2a). We deduce that y = B1exp1[−bt/(2a)] is a solution of the differential equation
Equation 29.

a
d2 y

dt2
+ b

dy

dt
+ cy = 03where a > 0, b > 0 and c > 0 (Eqn 29)
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However, it cannot be the general solution, since it only contains one arbitrary constant. The other solution that
we must add to it is not at all obvious, so we will just tell you the answer, and leave you to check it by
substitution.

a
d2 y

dt2
+ b

dy

dt
+ cy = 03where a > 0, b > 0 and c > 0 (Eqn 29)

It turns out

The general solution of Equation 29 in the case b2 = 4ac is

y(t) = (B + Ct)1exp1[−bt0/(2a)] (40)

Question T10

Show that Equation 40 is a general solution of Equation 29 in the case b2 = 4ac.3❏
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This has been a long and quite complicated subsection, which is perhaps misleading since in practice the
solution of Equation 29 is fairly straightforward, and just a matter of knowing how to deal with three cases.
Here then is a summary of the steps you need to follow in order to solve the equation of damped harmonic
motion:

a
d2 y

dt2
+ b

dy

dt
+ cy = 0 (Eqn 29)

Step 1 Evaluate the quantity b2 − 4ac.

Step 2

o If b2 > 4ac, find the roots p1 and p2 of the auxiliary equation, Equation 31.

ap2 + bp + c = 0 (auxilliary equation) (Eqn 31)

The general solution is then given by Equation 33.

y(t) = B1exp1(1p1t) + C1exp 1(1p2t) (Eqn 33)
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o If b2 < 4ac, find the quantities γ and ω, using Equation 38.

with γ = b/a (Eqn 38a)

and ω  = 4ac − b2 /(2a) (Eqn 38b)

The general solution is then given by Equation 37

y(t) = exp1(−γ1t1/2)[(B1cos1(ω1t) + C1sin1(ω1t)] (Eqn 37)

(and then use Equations 20 and 21

A B C= +2 2 (Eqn 20)

and φ = arctan1(B/C)3but with 0 ≤ φ < 2π (Eqn 21)

if you want the solution in the form of Equation 39).

y(t) = A1exp1(−γ1t/2)1sin1(ω
1

t + φ) (Eqn 39)

o If b2 = 4ac, the general solution is given by Equation 40.

y(t) = (B + Ct)1exp1[−bt0/(2a)] (Eqn 40)
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Now practise these steps by trying the following question. You must make sure that you have mastered the
techniques required in these exercises. You will not be able to make progress with the next section unless you
have done so.

Question T11

Find the general solution of each of the following differential equations:

(a) 
d2 x

dt2
+ 6

dx

dt
+ 10 x = 0 (c) 5

d2 y

dt2
+ 6

dy

dt
+ 2 y = 0

(b) 2
d2 y

dx2
+ 5

dy

dx
+ 3y = 0 (d) 

d2 y

dt2
+ 2

dy

dt
+ y = 0

3❏
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The method of comparing b2 with 4ac and then selecting the form of the solution will of course work even if
b = 0, that is, for the differential equations discussed in Subsections 2.3 and 2.4. Consider, for example,

d2 y

dt2 + ω0
2 y = 0 (Eqn 15) ☞

Here, b = 0, a = 1 and c = ω0
2. So b2 < 4ac, and Equation 38

γ = b/a (Eqn 38a)

ω  = 4ac − b2 /(2a) (Eqn 38b)

tells us that γ = 0, ω = ω0. Thus using Equation 37,

y(t) = exp1(−γ1t1/2)[(B1cos1(ω1t) + C1sin1(ω1t)] (Eqn 37)

we see that the general solution is y(t) = B 1cos1(ω0t) + C1sin1(ω0t), which is just what we found before, in
Equation 16.

y(t) = B1cos1(ω10t) + C1sin1(ω100t) (Eqn 16)
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2.6 Equations of the form a(d2y/dt2) + b(dy/dt) + cy = f(t)
We are now in a position to set about finding solutions to the general second-order linear inhomogeneous
equation with constant coefficients:

a
d2 y

dt2
+ b

dy

dt
+ cy = f (t ) (Eqn 5)

We will first of all show that if we can find any one particular solution to Equation 5, then we can always find
the general solution. We will then show a method that can sometimes be used to find particular solutions.
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Let us suppose that we have somehow managed to find a particular solution to Equation 5;

a
d2 y

dt2
+ b

dy

dt
+ cy = f (t ) (Eqn 5)

we will call it yp(t). We now assert that the general solution is obtained by taking the sum of yp(t) and the
general solution to the homogeneous equation which is obtained by setting f1(t) = 0 in Equation 5:

a
d2 y

dt2
+ b

dy

dt
+ cy = 0 (41)

In this context, the general solution to the homogeneous equation (Equation 14)

d2 y

dt2
+ hy = 0 (Eqn 14)

is called the complementary function; we will denote it by yc(t). Thus the claim here is that the general solution
to Equation 5 is

y(t) = yp(t) + yc(t) (42)
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This result is easy to prove. We simply substitute Equation 42

y(t) = yp(t) + yc(t) (Eqn 42)

into Equation 5.

a
d2 y

dt2
+ b

dy

dt
+ cy = f (t ) (Eqn 5)

The left-hand side becomes

a
d2

dt2
( yp + yc ) + b

d

dt
( yp + yc ) + c( yp + yc )

which is equal to

a
d2 yp

dt2
+ b

dyp

dt
+ cyp + a

d2 yc

dt2
+ b

dyc

dt
+ cyc (43)

but by assumption, yp is a solution to Equation 5; that is

a
d2 yp

dt2
+ b

dyp

dt
+ cyp = f (t )
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and yc is the general solution to Equation 41,

a
d2 y

dt2
+ b

dy

dt
+ cy = 0 (Eqn 41)

so that

a
d2 yc

dt2
+ b

dyc

dt
+ cyc = 0

So we see from Equation 43

a
d2 yp

dt2
+ b

dyp

dt
+ cyp + a

d2 yc

dt2
+ b

dyc

dt
+ cyc (Eqn 43)

that, with the substitution y = yp + yc, the left-hand side of Equation 5

a
d2 y

dt2
+ b

dy

dt
+ cy = f (t ) (Eqn 5)

is equal to f1(t) + 0, i.e. equal to f1(t). Thus Equation 42

y(t) = yp(t) + yc(t) (Eqn 42)

is a solution to Equation 5; it is the general solution since yc contains two arbitrary constants.
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You should read through the following example carefully because it typifies the method which we apply to all
such equations.

Example 3 Find the general solution to the differential equation

d y

dt
y t

2

2
4+ = (44) ☞

Given that y = t/4 is a particular solution.
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Solution To find the general solution, we must add the complementary function to the particular solution.
The complementary function is the general solution of the homogeneous equation that we obtain by setting the
right-hand side of Equation 44 to zero,

d y

dt
y t

2

2
4+ = (Eqn 44)

d2 y

dt2
+ 4 y = 0

This equation is of the form given in Equation 15,

d2 y

dt2
+ ω0

2 y = 0 (Eqn 15)

with ω0 = 2. Its general solution is given by Equation 16

y(t) = B1cos1(ω10t) + C1sin1(ω100t) (Eqn 16)

to be B1cos1(2t) + C1sin1(2t). So the general solution to Equation 44

is y = t/4 + B1cos1(2t) + C1sin1(2t).3❏ ☞
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Question T12
Find the general solution to the differential equation

d2 y

dt2
+ 3

dy

dt
− 4 y = 2e−3t

given that y = − e−3t

2
 is a particular solution.3❏
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Finding a particular solution

So we now know how to find a general solution to a linear inhomogeneous equation if we are given a particular
solution. But how can we find a particular solution? There are several methods for doing this, and we will
explain here only the simplest. It is sometimes known as the method of undetermined coefficients, but as you
will see, it consists of little more than intelligent guesswork. The idea is that, guided by the form of f1(t), we
should assume a particular form for yp(t) which contains some undetermined constants, and simply substitute
this into the differential equation.  If the form we have chosen is correct, we will be able to determine the
constants appearing in our trial solution from the requirement that we must obtain an identity on making the
substitution. If we have not chosen the correct form, then we will find that it is not a solution, and we must think
again! The method can best be explained by an example.
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Example 4 Find a particular solution to the differential equation

d2 y

dt2
+ 4

dy

dt
+ 5y = t + 2

Solution There is a function of the form Ht + K on the right-hand side of this equation. A function of this sort
(a polynomial) has the property that when it is differentiated any number of times, no new functions of t appear
in its derivatives1—indeed, the results are just constants (or zero). This suggests that the differential equation
might be satisfied by a function of this sort, with H and K suitably chosen. We may as well try it, anyway.
If we put y = Ht + K into the equation, we obtain

4H + 5(Ht + K) = t + 2

i.e. 5Ht + (4H + 5K) = t + 2

This equation must be an identity if y = Ht + K is a solution. Thus the coefficients of t on both sides must be the
same, as must the constant terms. This gives us two equations to be solved for H and K:

5H = 13and34H + 5K = 2

These are easily solved, to give H = 1/5, K = 6/25. So we have found a particular solution; it is
y = t/5 + 6/25.4❏
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If we were to try to generalize the reasoning in Example 4, it would go something like this. The particular
solution must be such that when we substitute it into the left-hand side of the equation, f1(t) is recovered.
If f1(t) is a function whose derivatives are all of the same form as f1(t) itself (such as a polynomial, an exponential
function or a sinusoidal function), we may be able to achieve this by trying as a particular solution a function
which is also of the form of f1(t), but contains some as yet unknown constants (the ‘undetermined coefficients’),
the values of which we will determine when we make the substitution. This leads to the following rules for
finding particular solutions, for certain forms of f1(t):
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Rules for finding particular solutions, for certain forms of f1(t):
1 If f1(t) is a polynomial of degree m: try a particular solution that is also a polynomial of degree m

yp(t) = Ht0m + Ktm−1 + … + N

but containing undetermined coefficients H, K … N

2 If f1(t) is an exponential, Cekt: try a particular solution that is also an exponential,

yp(t) = Hekt

where H is an undetermined coefficient. ☞
3 If f1(t) is a sinusoidal function, f1(t) = C1sin1(kt) + D1cos1(kt): try a particular solution that is also a sinusoidal

function

yp(t) = H1sin1(kt) + K1cos1(kt)

where H, K are undetermined coefficients.

You can now use Rules 1–3 to answer the following question.
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Question T13

Find a particular solution to each of the following equations

(a)
d2 y

dx2
+ 2

dy

dx
+ 3y = 2e− x

(b)
d y

dx

dy

dx
y x x

2

2
4 4 2 11+ + = −cos sin 3❏

The method of undetermined coefficients will work for some more complicated forms of f1(t), but we have said
enough here for you to be able to find particular solutions to many second-order inhomogeneous equations of
physical interest. (It is worth pointing out, though, that if f1(t) is given by a sum of two or more functions of the
sorts mentioned in Rules 1–3, then the particular solution is simply the sum of the particular solutions
corresponding to each of these functions.) At the end of the next subsection, in Question T14, you can put
together the methods you have learnt so far to find general solutions to inhomogeneous equations.
First, however, we will consider an example of great importance in physics.
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2.7 A worked example: damped driven harmonic motion

We are now in a position to solve Equation 1, introduced in Subsection 1.1 ☞;

m
d2 y

dt2
= −ky − b

dy

dx
+ F0 sin (Ωt) (Eqn 1)

rewritten slightly, it is

m
d2 y

dt2
+ b

dy

dt
+ ky = F0 sin (Ω t) (45) ☞

An equation of this sort applies whenever an oscillating object is subjected to a damping force −b
dy

dt






as well as an external driving force, F01sin1(Ω1t) with angular frequency Ω.  ☞
It is said to describe forced, damped oscillations or damped, driven oscillations.
In this subsection, we will find the general solution to Equation 45 for the case b2 < 4mk.
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The complementary function

We will first find the complementary function, i.e. the general solution to

m
d2 y

dt2
+ b

dy

dt
+ ky = 0

We will solve this using the steps listed at the end of Subsection 2.5. Since we have decided to consider the case
b2 < 4mk, the general solution is given by Equation 38,

with γ = b/23and3ω = 4ac − b2 /(2a) (Eqn 38a and b)

with

γ = b/m3and3ω = 4mk − b2 (2m)

So the complementary function is

y t bt m B t C tc exp[( ) ( )][ cos( ) sin ( )]= − +2 ω ω (46)
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A particular solution

We will now find a particular solution. We have a sinusoidal function on the right-hand side of Equation 45,

m
d2 y

dt2
+ b

dy

dt
+ ky = F0 sin (Ω t) (Eqn 45)

so, in accordance with Rule 3 at the end of Subsection 2.6, we will try a particular solution of the form

yp (t) = H cos(Ω t) + K sin (Ω t). ☞

On substituting this into Equation 45, we find

−mΩ2[H cos(Ωt) + K sin (Ωt)] + bΩ[−H (Ωt) + K cos(Ωt)] + k[H cos(Ωt) + K sin (Ωt)] = F0 sin (Ωt)
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which can be rewritten in the form

[(k − mΩ 2 )H + bΩK ]cos(Ω t) + [(k − mΩ 2 )K − bΩH]sin (Ω t) = F0 sin (Ω t)

If this is to be an identity, the coefficients of cos1(Ω1t) and sin1(Ω1t) on each side of the equation must be equal.

So we obtain two equations (for H and K)

(k − mΩ 2 )H + bΩK = 03and3(k − mΩ 2 )K − bΩH = F0

On solving these equations for H and K, we find (after some algebra! ☞ )

H = −(bΩ )F0

(k − mΩ 2 )2 + (bΩ )2
3and3K = (k − mΩ 2 )F0

(k − mΩ 2 )2 + (bΩ )2

Thus the particular solution is the rather complicated looking expression

yp (t) = −(bΩ )F0

(k − mΩ 2 )2 + (bΩ )2
cos(Ω t) + (k − mΩ 2 )F0

(k − mΩ 2 )2 + (bΩ )2
sin (Ω t) (47) ☞
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We can simplify this greatly if we use Equations 20 and 21

A B C= +2 2 (positive square root) (Eqn 20)

B

C

A

A
= =sin

cos
tan

φ
φ

φ i.e. φ = arctan1(B/C) but with 0 ≤ φ < 2π (Eqn 21)

to write yp in the form

yp(t) = A1sin1(Ω1t + φ)

Applying Equations 20 and 21, we find (after some more algebra)

A
F

k m b
=

− +
0

2 2 2( ) ( )Ω Ω
(48a) ☞

and φ = arctan
−bΩ

k − mΩ 2




 3but with 0 ≤ φ ≤ 2π (48b)
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The general solution

Thus the general solution of Equation 45,

m
d2 y

dt2
+ b

dy

dt
+ ky = F0 sin (Ω t) (Eqn 45)

given by the sum of the complementary function (Equation 46)

y t bt m B t C tc exp[( ) ( )][ cos( ) sin ( )]= − +2 ω ω (Eqn 46)

and the particular solution (Equation 47),

yp (t) = −(bΩ )F0

(k − mΩ 2 )2 + (bΩ )2
cos(Ω t) + (k − mΩ 2 )F0

(k − mΩ 2 )2 + (bΩ )2
sin (Ω t) (Eqn 47)
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is

y(t) = exp[−bt (2m)][Bcos(ω t) + C sin (ω t)] + Asin (Ωt + φ ) (49)

where ω = −4 22mk b m( )

and A and φ are given in Equations 48a and b.

A
F

k m b
=

− +
0

2 2 2( ) ( )Ω Ω
(Eqn 48a)

and φ = arctan
−bΩ

k − mΩ 2




 3but with 0 ≤ φ ≤ 2π (Eqn 48b)
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Interpretation

We can see from the form of the complementary function in Equation 46

y t bt m B t C tc exp[( ) ( )][ cos( ) sin ( )]= − +2 ω ω (Eqn 46)

(or Equation 49)

y(t) = exp[−bt (2m)][Bcos(ω t) + C sin (ω t)] + Asin (Ωt + φ ) (Eqn 49)

that, whatever the values of the arbitrary constants B and C, this part of the solution will eventually tend to zero
(because of the presence of the decaying exponential factor, exp1[−bt/(2m)]). All that remains after a long time,
therefore, is the particular solution, which represents the response of the oscillating mass to the applied force.
So it is this part of the solution which is of greatest interest to us. Equation 47

yp (t) = −(bΩ )F0

(k − mΩ 2 )2 + (bΩ )2
cos(Ω t) + (k − mΩ 2 )F0

(k − mΩ 2 )2 + (bΩ )2
sin (Ω t) (Eqn 47)

shows that it corresponds to sinusoidal oscillations, of the same angular frequency Ω as the applied force.
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However, there is a constant phase difference φ between the oscillations of the mass and oscillations of the
driving force. Mathematically, φ represents the amount by which the movement of the mass leads the force, but
physically it makes more sense to say that the motion lags behind the force by an amount 2π −  φ.
Notice (from Equations 48a and b)

A
F

k m b
=

− +
0

2 2 2( ) ( )Ω Ω
(Eqn 48a)

and φ = arctan
−bΩ

k − mΩ 2




 3but with 0 ≤ φ ≤ 2π (Eqn 48b)

that the amplitude A of the oscillations depends not only on F0, but also on Ω; in other words, applied forces of
different frequency may invoke oscillations of the mass of very different magnitude.
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Figure 83Graph of A as a function of Ω, in the case m = 0.21kg,

b = 1.01N1s1m−1,  k = 801N1m−1, F0 = 0.8 1N.

Figure 8 shows A  as a function of Ω,  for a
certain choice of the parameters m, k, b and F0.
You can see that it has a pronounced
maximum at a value of Ω close to the
natural angular frequency     ω0 = k m .

This large response for a particular value of
the angular frequency of the applied force is
the well-known phenomenon of resonance.

☞
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The above example involved some rather unpleasant algebra (because we wished to discuss a general case),
however, finding the general solution to a specific inhomogeneous equation is generally straightforward
enough1—1provided, of course, that f1(t) is one of the functions mentioned in Rules 1–3 at the end of Subsection
2.61—1the method is summarized here:

1 Find the complementary function, using the methods of Subsection 2.5

2 Find the particular solution, using one of Rules 1–3 in Subsection 2.6

3 Add the two together.

You can practise these steps by trying the following question.

Question T14

Find the general solution to the equation

d2 y

dt2
+ 6

dy

dt
+ 9 y = 1 + 3t3❏
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3 Closing items

3.1 Module summary
1 A linear differential equation with constant coefficients has the form:

a
d2 y

dt2
+ b

dy

dt
+ cy = f (t ) (Eqn 5)

If f1(t) in Equation 5 is set to zero it is a linear homogeneous differential equation. If f1(t) is not zero in
Equation 5 it is a linear inhomogeneous differential equation

2 Equations of the form

d2 y

dt2
 = f1(t) (Eqn 9)

can be solved by direct integration.
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3 The general solution of the SHM (simple harmonic motion) equation

d2 y

dt2
+ ω0

2 y = 0 (Eqn 15)

can be written either as

y(t) = B1cos1(ω0t) + C1sin1(ω0t) (Eqn 16)

or y(t) = A1sin1(ω0t + φ) (Eqn 19)

corresponding to sinusoidal oscillations of period 2π/ω0. The values A and φ are determined from values of
B and C (or vice versa) by Equations 17, 20 and 21.

B = A1sin1φ  and C = A1cos1φ (Eqns 17a, b)

A B C= +2 2 (positive square root) (Eqn 20)

B

C

A

A
= =sin

cos
tan

φ
φ

φ i.e. φ = arctan1(B/C) but with 0 ≤ φ < 2π (Eqn 21)
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4 The general solution of an equation of the form

d2 y

dt2
− λ2 y = 0 (Eqn 23)

is y(t) = Beλt + Ce−λt (Eqn 26)

5 The nature of the solution of the (damped harmonic motion) equation

a
d2 y

dt2
+ b

dy

dt
+ cy = 0 (Eqn 29)

depends upon the sign of b2 − 4ac.

The case where b2 > 4ac corresponds to heavy damping, as illustrated in Figure 6 
(with the solution given by Equation 33).

y(t) = B1exp1(1p1t) + C1exp 1(1p2t) (Eqn 33)

where3 p
b b ac

a
1

2 4
2

= − + −
3and3 p

b b ac

a
2

2 4
2

= − − −
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The case where b2 < 4ac corresponds to light damping, as illustrated in Figure 7 
(with the solution given by Equation 37, or alternatively Equation 39).

y(t) = exp1(−γ1t1/2)[(B1cos1(ω1t) + C1sin1(ω1t)] (Eqn 37)

y(t) = A1exp1(−γ1t/2)1sin1(ω
1

t + φ) (Eqn 39)

The case where b2 = 4ac corresponds to critical damping (with the solution given by Equation 40).

y(t) = (B + Ct)1exp1[−bt0/(2a)] (Eqn 40)
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6 To solve the (damped, driven harmonic motion) equation

a
d2 y

dt2
+ b

dy

dt
+ c = f (t )

we first obtain the complementary function by finding a general solution of the equation

a
d2 y

dt2
+ b

dy

dt
+ c = 0

The general solution of a
d2 y

dt2
+ b

dy

dt
+ c = f (t )  can then be found, if we know one particular solution,

by adding the complementary function to that particular solution.

Particular solutions can be found by the method of undetermined coefficients if f1(t) is a polynomial, an
exponential function, or a sinusoidal function.

In the case of a sinusoidal function f1(t), the amplitude of the solution (for large values of t) is dependent
upon the angular frequency of f. In some cases this amplitude may be very large for a particular choice of
the applied angular frequency, leading to the phenomenon of resonance.

Mike Tinker


Mike Tinker


Mike Tinker
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3.2 Achievements
Having completed this module, you should be able to:

A1 Define the terms that are emboldened and flagged in the margins of the module.

A2 Recognize linear differential equations with constant coefficients and distinguish between homogeneous and
inhomogeneous linear differential equations.

A3 Solve equations of the form 
d2 y

dt2
= f (t )  by direct integration.

A4 Recognize the SHM equation whenever it arises, identify the parameter ω that determines the period of
oscillations and solve the equation.

A5 Convert between a particular solution of the form y = Bcos(ω t) + C sin (ω t) and one of the form
y = Asin (ω t + φ )  and vice versa.
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A6 Solve an equation of the form 
d2 y

dt2
− λ2 y = 0 .

A7 Solve an equation of the form a
d2 y

dt2
+ b

dy

dt
+ cy = 0 , and describe the forms of the solution in the cases

b2 > 4ac,  b2 < 4ac  and  b2 = 4ac.

A8 Use the method of undetermined coefficients to find particular solutions of an equation of the form

a
d2 y

dt2
+ b

dy

dt
+ cy = f (t ) (Eqn 5)

in the cases where f1(t) is a polynomial, an exponential, or a sinusoidal function.

A9 Find the complementary function of an equation of the type given in Equation 5 and use it with the
particular solution to obtain the general solution.

Study comment  You may now wish to take the Exit test for this module which tests these Achievements.
If you prefer to study the module further before taking this test then return to the Module contents  to review some of the
topics.
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3.3 Exit test

Study comment Having completed this module, you should be able to answer the following questions, each of which tests
one or more of the Achievements.

Question E1

(A2 and A3)3The differential equation

d2 x

dt2
= ge−kt

where g is the magnitude of the acceleration due to gravity and k is a positive constant, may be used to model the
motion of a parachutist falling under gravity. The x-axis is chosen to be the downward vertical, with x = 0
when t = 0.

Is this equation linear, linear with constant coefficients, or homogeneous?

Find the particular solution if the parachutist starts from rest.
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Question E2

(A4)3If the Earth is represented by a sphere of uniform density, the gravitational force on a particle of mass m
inside the Earth at a distance r from the centre is of magnitude mgr/R, and is directed towards the centre of the
Earth, where R = 64001km is the (approximate) radius of the Earth and g is the magnitude of the acceleration due
to gravity at the Earth’s surface. If it were possible to pass a straight tube through the centre of the Earth, show
that a particle placed in the tube would execute simple harmonic motion, and find the period of the motion.
(Take g as 101m1s−2.)
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L

C

Figure 13See Question E3.

Question E3

(A4 and A5)3The current in the circuit shown in Figure 1 satisfies the
differential equation

L
d2 I

dt2
+ I

C
= 0

If L = 0.021mH, C = 3.2 × 100−10
1F, and if I = 2.51mA and

dI/dt = −3.75 × 104
1A s−1 at t = 0, find the particular solution for I, both in

the form Bcos(ω0t) + C sin (ω0t) , and in the form Asin (ω0t + φ ) .
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Question E4

(A2, A4 and A6)3In a certain medium, the z-component of the electric field, Ez, varies with x, the distance from
the boundary of the medium, according to the equation

d2Ez

dx2
+ Ω 2

c2
Ez − µ 2Ez = 0

where Ω, c and µ are positive constants.  ☞  Find the general solution to this equation in the three cases:

(a) Ω > µc, (b) Ω = µc, (c) Ω < µc.
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L

C
R

Figure 53A circuit containing an
inductance L, a resistor R and a
capacitor C, connected in series.

Question E5

(A7)3In the circuit shown in Figure 5, L has the value 0.021mH and C has
the value 3.2 × 10−10

1F. The current in the circuit satisfies Equation 28.

L
d2 I

dt2
+ R

dI

dt
+ I

C
= 0 (Eqn 28)

For what values of R will the current display lightly damped, oscillatory
behaviour?

Find the general solution to Equation 28 (a) if R = 3001Ω, (b) if R = 13001Ω,
(c) if R = 5001Ω.
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Question E6

(A8 and A9)3(a) Explain what is meant by the term complementary function.

(b) Find the general solution to the differential equation:

d2 y

dt2
+ ω0

2 y = A cos(Ω t)

where ω, A, Ω are constants and Ω12 ≠ ω0
2.

Study comment  This is the final Exit test question. When you have completed the Exit test go back to Subsection 1.2 and
try the Fast track questions if you have not already done so.

If you have completed both the Fast track questions and the Exit test, then you have finished the module and may leave it
here.
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