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1 Opening items

1.1 Module introduction
Classical physics, in the shape of Newtonian mechanics and Maxwell’s electromagnetism, reached its
culmination at around the turn of the 19th century. The theory seemed complete, except for a little tidying up,
but cracks were about to open up and cause the downfall of the whole structure. The unfolding of these events
was dramatic and rapid. In the space of 30 years, classical physics was replaced by quantum physics as the
fundamental theory of the world, with classical physics surviving only as a special case1—1admittedly, adequate
for most everyday situations. This module traces part of the story of those hectic years; other modules begin the
story and others carry it further. Here we pick up after the demonstration of particle-like behaviour of
electromagnetic radiation and the publication of the de Broglie hypothesis, that matter should show wave-like
behaviour. The resolution of this wave and particle dual behaviour for both matter and electromagnetic radiation
is the door to quantum mechanics or wave mechanics and this story begins with the idea of a wavefunction and
how this can be used.

Section 2 reviews some some basic quantum ideas, including de Broglie waves and Heisenberg uncertainty
principle. Section 3 introduces the concept of a wavefunction and relates this to the probability distribution
associated with the position of a particle.
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The wavefunction of a free particle is then modelled, first as a complex travelling wave and then as a wave
packet. The total energy, the momentum and the kinetic energy of the particle are then related to the angular
wavenumber and angular frequency of the associated travelling wave. The discussion of the wave packet
representation includes the significance of the phenomenon of dispersion and the relationship between the phase
and group speeds of the packet.

Section 4 concerns the wavefunction of a particle which is confined in one dimension. The idea of a one-
dimensional box is introduced, along with the stationary state wavefunctions and discrete energy levels relevant
to such a system. Again, the development is guided closely by classical models of confined waves.
The superposition of stationary states is briefly considered, as is the significance of transitions between
stationary states.

Section 5 extends the discussion to the case of a particle which is confined in two or three dimensions,
introducing the idea of degeneracy.

The overall strategy of the module is to develop quantum wave models by analogy with the classical wave
models, rather than to adopt a wave equation approach from first principles. A more rigorous mathematical
treatment of these topics1—1using the Schrödinger equation1—1is included elsewhere in FLAP.

Study comment Having read the introduction you may feel that you are already familiar with the material covered by this
module and that you do not need to study it. If so, try the Fast track questions given in Subsection 1.2.  If not, proceed
directly to Ready to study? in Subsection 1.3.
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1.2 Fast track questions

Study comment Can you answer the following Fast track questions?. If you answer the questions successfully you need
only glance through the module before looking at the Module summary (Subsection 6.1) and the Achievements  listed in
Subsection 6.2. If you are sure that you can meet each of these achievements, try the Exit test in Subsection 6.3. If you have
difficulty with only one or two of the questions you should follow the guidance given in the answers and read the relevant
parts of the module. However, if you have difficulty with more than two of the Exit questions you are strongly advised to
study the whole module.

Question F1

A particle state is represented by a wave packet which extends over a distance ∆x = 5.0 × 10−141m. 
What is the uncertainty in the x-component of the particle’s momentum ∆px? (Take h = 6.6 × 100−341J1s.)

Question F2

A particle is confined in one dimension between x  = 0 and x = 5 × 10−141m, by rigid impenetrable walls.
Give an expression for the wavefunctions corresponding to the standing waves between the walls.
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Question F3

What is the energy of the ground state of the particle in the previous question, if the mass of the particle is
9.1 × 10−311kg?

Is this energy level degenerate?

Study comment

Having seen the Fast track questions  you may feel that it would be wiser to follow the normal route through the module and
to proceed directly to Ready to study? in Subsection 1.3.

Alternatively, you may still be sufficiently comfortable with the material covered by the module to proceed directly to the
Closing items.
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1.3 Ready to study?

Study comment In order to study this module you will need to be familiar with the following terms: de Broglie hypothesis,
de Broglie wave, de Broglie wavelength, electron, energy, hydrogen atom (including the Bohr model), momentum, photon,
Planck’s constant and quanta. You will need to be familiar with the basic characteristics of waves and wave packets,
including; amplitude, frequency, wavelength, propagation speed, phase speed and group speed; and with wave phenomena
such as diffraction, interference, and superposition; and to know the difference between a travelling wave and a
standing wave. You also should be familiar with the differentiation and integration of simple functions of x, including
exponentials and trigonometric functions. If you are uncertain about any of these terms then you can review them now by
referring to the Glossary, which will also indicate where in FLAP they are developed. The following Ready to study
questions will allow you to establish whether you need to review some of the topics before embarking on this module.
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Question R1

A wave travelling along the x-axis consists of a moving disturbance that varies with time and position, which
may be represented by a function of two variables y(x, t). The ‘shape’ of the wave at any particular time t = T is
described by its wave profile at that time, y(x, T), which depends on the single variable x since T is a given
constant in this case. The profile may be thought of as an instantaneous snapshot of the wave at the given time.

(a) At t = 0, the wave profile of a particular wave is given by y = A1sin1(kx), where k is a constant called the
angular wavenumber of the wave. Write down the amplitude and wavelength of the wave.

(b) If the wave in part (a) has a frequency f, write down the general relationship between the wavelength, the
frequency and the speed of the wave. If the angular frequency of the wave is ω = 2π0f, write down the
corresponding relationship between angular wavenumber, angular frequency and speed.

Question R2

At a particular time the transverse displacements due to two waves, acting at a common point, are y1 = 51sin1(2x)
and y2 = 21sin1(2x). Use the principle of superposition to obtain the combined effect of the two waves at this time.
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Question R3

What is the de Broglie wavelength associated with a particle with momentum magnitude 5.0 × 100−211kg1m1s−1?
[Take Planck’s constant, h, to have the value 6.6 × 100−341J1s]

Question R4

Write down and evaluate the definite integral of the function f1(x) = x3 between the limits x = 3 and x = 4.

Question R5

Give an expression for the indefinite integral sin(2x) dx∫ .
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2 A review of basic quantum physics

2.1 Particle-like behaviour of electromagnetic radiation

Max Planck’s ☞ interpretation (1900) of the distribution of light emitted by an idealized hot body, the so-called

black-body spectrum, provided the first evidence that the interactions of radiation with matter were quantized.
If a body is heated to a high temperature it emits light over a wide continuous range of wavelengths. When the
spectrum of this radiation is examined and the relative brightness of the emission from unit area of the surface is
plotted as a function of wavelength, it is found that the wavelength for peak emission and the total radiated
power are determined mainly by the temperature of the body, not by its material. In the case of an ideal emitter,
a so-called black body, the spectrum would be entirely determined by the temperature. An explanation for the
detailed shape of the black-body spectrum proved impossible using classical physics, which predicted that the
brightness should increase without limit at high frequencies. Planck was able to resolve this by assuming a
quantum model for the interaction of matter and radiation. In particular he assumed that the interaction involved
the emission and absorption of quanta, (which later become known as photons) with energy hf, where f is the
frequency of the radiation and h is Planck’s constant. The spectrum predicted on the basis of this assumption

was in excellent agreement with the observed spectrum of black-body radiation. ☞
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More direct evidence for photons was provided later through the photoelectric effect and the Compton effect.
In the photoelectric effect, electrons are produced by shining ultraviolet radiation on to a metal surface.
It is found that the maximum kinetic energy of the photoelectrons emitted from any particular surface depends
only on the frequency of the incident radiation and not on the intensity of the radiation. In addition, there is a
threshold frequency for a particular material and no photoelectrons are produced below this frequency, however
intense the radiation. Classical wave models of electromagnetic radiation could not explain this and it was left to
Einstein to interpret the observed behaviour in terms of a particle-like interaction between the radiation and the
electrons in the material. In this interaction energy is absorbed from individual photons of discrete energy E
given by:

photon energy E = h0f (1)

This result became known as the Planck–Einstein formula.
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Some 20 years later, a crucial series of experiments, involving the scattering of X-rays by different targets
showed that the scattered X-rays had a slightly longer wavelength (or a lower frequency) than the incident
radiation and also that the shift in wavelength depended on the scattering angle. These observations were
inexplicable using classical wave ideas. However, Arthur H. Compton (1892–1962) gave a quantum
interpretation of these results, which involved the photon having a momentum as well as the energy given by
Equation 1. (The collision between the X-ray photon and an essentially free electron in the material could then
be treated as a particle–particle collision, conserving energy and momentum in the usual way.) The required
expression for the photon momentum magnitude was:

photon momentum p = E0/c = h0/λ (2)

This scattering phenomenon later became known as the Compton effect.
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2.2 Wave-like behaviour of matter
The next stage in the evolution of quantum physics came when Louis de Broglie (1892–1987) suggested that
since the particles (i.e. photons) which make up electromagnetic radiation can exhibit wave-like behaviour,
perhaps the same is true of every other particle. This suggestion became known as the de Broglie hypothesis, and
the wave associated with a particle, the de Broglie wave, was expected to have its de Broglie wavelength set by
the magnitude of the momentum p of the particle, according to the expression:

de Broglie wavelength λdB = h0/p (3) ☞

The suggestion that particles of matter might exhibit wave-like behaviour implies that such particles might
exhibit diffraction and interference. If so, the closely spaced planes of atoms in a crystalline solid might be used
to diffract the de Broglie waves associated with an electron beam with particle energies of a few tens of electron
volts. Such an experiment was carried out in 1927 by C. H. Davisson and L. H. Germer and they obtained a
diffraction pattern in good agreement with de Broglie’s predicted wavelength. Subsequently, many other
experiments have demonstrated that all particles, irrespective of charge, mass, shape or composition, produce a
diffraction pattern which is consistent with the de Broglie hypothesis.
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λdB

infinitely long wave

position x

Figure 14The profile of a de Broglie wave of fixed

amplitude and wavelength λdB, corresponding to a particle
moving in the positive x-direction with momentum px. Note
that the figure shows a snapshot of the wave, which is actually
travelling in the positive x-direction.

Figure 1 shows an instantaneous snapshot of the de
Broglie wave for a particle with definite momentum
px travelling along the x-direction.

The precise nature of de Broglie waves and the exact
sense in which such waves are to be associated with
particles was left unclear by de Broglie. However,
subsequent work by others, notably Erwin
Schrödinger (1887–1961), Werner Heisenberg
(1901–1976) and Max Born (1882–1970), put de
Broglie’s ideas onto a firmer mathematical footing
and eventually brought about a complete revolution
in physical thinking. Part of that revolution forms the main theme of this module, and we will come to it later.

In the meantime, we will continue to use the term ‘de Broglie wave’ to describe the wave aspect of a particle,
and we will summarize later work by saying that the de Broglie wave of a particle determines the relative
likelihood of detecting the particle in any given region of space. In particular, continuing to use this somewhat
over-simplified language, we can say that the probability of finding a particle in any small region of space is
proportional to the square of the amplitude of the de Broglie wave in that region. In this sense the disturbance
that constitutes a de Broglie wave may be thought of as a disturbance in the probability of finding the associated
particle.
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A simple one-dimensional de Broglie wave of fixed amplitude and wavelength, extending to infinity along the
x-direction, corresponds to a particle whose momentum magnitude is perfectly known. Unfortunately, such a
wave is not localized in space; its amplitude is the same everywhere, and so it conveys no information at all
about the position of the particle. If we wish to produce a wave of finite extent, with some implied localization
of the particle, then we must construct a wave packet by superposing (adding) waves, and arrange for this
superposition to diminish sharply outside the expected range of particle positions ∆x. In discussing this process it
is convenient to use as the variable the angular wavenumber k rather than the wavelength λ1—1the two are
related by

angular wavenumber k = 2π/λ (4)

Question T1

At time t = 0, the instantaneous profiles of two de Broglie waves are ψ1(x) = A11cos1(k1x) and ψ2(x) = A21cos1(k2x).

☞ These expressions show that the two are in phase at x = 0. (a) Write down an expression for the profile of

their superposition at t = 0 and give its value at x = 0. (b) What are the values of x closest to zero for which ψ1(x)
and ψ2(x) are exactly out of phase (in anti-phase) at t = 0? Express this value of x in terms of the difference in

momentum of the corresponding particles. 4❏
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wave packet

x

Figure 24A wave packet constructed from a superposition of
de Broglie waves of different wavelength. Again, note that the
figure shows a snapshot of the wave, which is actually
travelling since it describes the motion of particles. Note that
although the figure shows an isolated wave packet the pattern
is actually repeated all along the x-axis.

Answer T1 illustrates the principle that a more
localized profile can be produced by superposing two
other profiles, corresponding to two different angular
wavenumbers, i.e. two different momenta, by using
ψ0(x) = [ψ1(x) + ψ2(x)] as a new wave profile.

Such a case is illustrated in Figure 2. The answer also
shows that a position of constructive interference is
separated from a position of destructive interference
by a distance ∆x which is determined by the angular
wavenumber difference ∆k. The two quantities ∆x
and ∆k being inversely related: ∆k ≈ ±1π/∆x.
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We can go further than this, and use more than two
waves in the superposition, as shown in Figure 3. This
figure shows an example of the construction of a finite
wave packet by the superposition of (in this case eight)
waves of suitably chosen amplitudes and wavelengths.
Although each contributing wave has a well defined
wavelength and associated momentum, the resultant
superposition does not.

Figure 34The localization of the wavefunction produced
when eight waves with different amplitudes and wavelengths
are added together using the principle of superposition.
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Figure 44A broad wave packet can be
constructed from the superposition of
waves with a narrow range of angular
wavenumbers. Conversely a narrow
wave packet requires a broad range
of angular wavenumbers for its
construction.

The basic features arising from the
mathematics are illustrated in Figure
4. It should be noted, in particular,
that in order to localize the wave
packet within a smaller and smaller
region of space, there must be
included in the superposition a
wider and wider range of values of
angular wavenumber for the
contributing waves.

The greater the spread of angular
wavenumbers ∆k, the narrower the
width ∆x, of the corresponding wave
packet.
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Figure 44A broad wave packet can be
constructed from the superposition of
waves with a narrow range of angular
wavenumbers. Conversely a narrow
wave packet requires a broad range
of angular wavenumbers for its
construction.

Fourier analysis quantifies this
relationship in the simple
expression:

∆x1∆k ≈ 1 (5)

Notice that Equation 5 is not given
as an equality since, as you will see
by looking at Figure 4, ∆x and ∆k
are only approximate measures of
spread and have not been defined
precisely. This relationship is very
important however, as it shows a
trend which is always satisfied,
irrespective of the shape of the wave
packet.
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In the context of a de Broglie wave packet, each of the superposed waves will have a different de Broglie
wavelength, and hence a different associated particle momentum (Equation 3).

de Broglie wavelength λdB = h0/p (Eqn 3)

A spread in angular wavenumber will therefore correspond to a spread in particle momentum. This implies that
the wave packet corresponding to a particle whose position is known to within ∆x must be composed of
de Broglie waves associated with particle momenta in the range

∆p = h

2π
∆k ≈ h

2π
1

∆x

This leads to the Heisenberg uncertainty principle:

Heisenberg uncertainty principle ∆x ∆px
h

2π
(6) ☞

where ∆px represents the irreducible uncertainty in the x-component of the momentum of a particle that is known
to be localized within ∆x.
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We have replaced the approximation sign in Equation 5

∆x1∆k ≈ 1 (Eqn 5)

by a ‘greater than or approximately equal to’ sign in Equation 6

Heisenberg uncertainty principle ∆x ∆px
h

2π
(Eqn 6)

to signify that in any experiment we can never obtain simultaneous information on position and momentum in a
given direction to a precision which is better than the fundamental limit set by the wave nature of matter.

Question T2

In each of the two cases below, measurements are made simultaneously of position x, and x-component of
momentum px. In each case the uncertainty ∆x, is given. Estimate the percentage uncertainty in the momentum
due to the Heisenberg uncertainty principle. Take Planck’s constant h, as 6.6 × 100−341J1s.
(a) A bullet of mass 0.101kg is travelling with a speed of 1.51km1s−1 and ∆x is 0.101mm.
(b) A proton of mass 1.7 × 100−271kg is travelling with a speed of 1.01km1s−1 for which ∆x is 1.0 × 10−101m.4❏
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We are now in a position to introduce the concept of a wavefunction and to begin the journey from the old
de Broglie world to the new world of quantum mechanics. Our first task is to organize our vocabulary. So far,
we have sometimes referred to electrons, protons, neutrons and other such entities rather loosely as ‘particles’.
On other occasions we have had to accept that they exhibit wave-like behaviour. Neither the word ‘particle’ nor
‘wave’ conveys the full picture of their behaviour, so we will describe each of them simply as a quantum,
indicating that they are neither waves nor particles but may exhibit features of either. ☞ This is a new technical
definition of the term. It is natural then to describe the study of the motion and the interaction of these quanta as
quantum mechanics. This new world of quantum mechanics is a good deal more mathematical than the old
world of de Broglie waves, but we will try to maintain the contact with de Broglie waves as long as we can.
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3 The wavefunction for a free particle
The principles of quantum mechanics were introduced in a series of papers by Heisenberg, Schrödinger, Born
and Pascual Jordan (1902–1980) in the years 1925–1926. Initially there were two quite distinct formulations of
quantum mechanics, but they were soon shown to be mathematically equivalent and Schrödinger’s version
(now known as wave mechanics) now provides the usual route of entry to the subject.

Central to Schrödinger’s approach is a mathematical quantity called the wavefunction. This quantity varies with
time and position, just like a wave, and replaces the more primitive (and ill-defined) concept of a de Broglie
wave. It is conventional to use the upper-case Greek letter Ψ (pronounced ‘psi’) to represent the wavefunction,
so in a one-dimensional problem where its value depends on position x and time t, the wavefunction is usually
written Ψ1(x, t). The precise form of the wavefunction in any given situation is determined by solving a
(complicated) equation known as the time-dependent Schrödinger equation. Learning how to formulate this
equation to represent a given physical situation is an important skill, as is learning how to solve it, but we will
not be concerned with either of those issues in this module. Instead, we will concentrate on the significance and
physical interpretation of the wavefunctions that satisfy it.
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In the conventional interpretation of quantum mechanics the wavefunction provides the most complete
description of the behaviour of a system we can hope to have. This sounds rather grand, and it certainly has far
reaching implications, but in practice we are often restricted to dealing with such simple systems that even their
‘complete description’ is fairly straightforward. In the case of a particle moving in one dimension, for instance,
it usually boils down to knowing the energy and momentum, and something about the relative likelihood of
finding the particle in various regions.

An important mathematical property of the wavefunction Ψ1(x, t) that clearly distinguishes it from a de Broglie
wave is that it is generally a complex quantity. That is to say, given particular values for the variables x and t, the
corresponding value of the wavefunction will generally be complex number and may therefore be written in the
form

Ψ1(x, t) = a + i0b ☞

where a and b are ordinary (real) numbers and i is a special algebraic quantity, usually referred to as the square
root of −1, with the property

i2 = −1
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Complex numbers are used in many parts of physics, but often only as a convenience. In quantum mechanics,
however, they play an essential role and are unavoidable. In this particular module we will use them as little as
possible, but even here we cannot avoid them completely and you will certainly need to know more about them
if you intend to pursue the study of quantum mechanics.

For the moment, the one additional fact you need to know about any complex quantity is that it may always be
associated with a unique real number called its modulus. The modulus of Ψ1(x, t) = a + ib is written |1Ψ1(x, t)1|
and is defined in the following way

if Ψ1(x, t) = a + i0b

then |1Ψ1(x, t)1| = (a2 + b2)1/2

In quantum mechanics the modulus of the wavefunction plays the role that we earlier (and over-simplistically)
assigned to the square of the amplitude of a de Broglie wave. In other words, if the behaviour of a quantum is
described by the wavefunction Ψ1(x, t)

The probability of finding the particle within the small interval ∆x around the position x at time t is

∝  |1Ψ0(x, t)1|021∆x. (7) ☞
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There are several points to note here:

o Since |1Ψ0(x, t)1| is a real quantity (it doesn’t involve i), it must be the case that |1Ψ0(x , t)1|02 is positive.
It is therefore at least possible that |1Ψ0(x , t)1|02 might represent a probability, since probabilities are
represented by real numbers in the range 0 to 1 with 0 for no possibility and 1 for certainty.

o Since ∆x is taken to be very small, |1Ψ0(x , t)1|2 can be thought of as the probability per unit length, or
probability density around position x. ☞

o |1Ψ(x, t)1|21∆x  is a statistical indicator of behaviour. Given a large number of experiments to measure the
position of a particle, set up under identical conditions, it represents the fraction of those experiments that
will indicate a particle in the range ∆x at a time t. The set up for the experiment is fixed but the results of
individual experiments are not always the same.

o We may write an equality sign in place of the proportionality sign in Equation 6, provided we choose an
appropriate scale of probability. For the moment, we do not need to be concerned with this refinement, but
we will return to it in Subsection 4.2 when we discuss normalization.

Our task now is to introduce the appropriate wavefunctions for some simple situations and to determine how
these wavefunctions may be used to obtain the characteristic properties of the associated particle1—1such as its
position, momentum and kinetic energy. We begin with the case of a free particle.
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3.1 A complex travelling wave to represent a free particle
If we are to represent a moving particle by a wave then it is reasonable to use a travelling wave and so we begin
by reviewing how we represent a classical travelling wave, such as a transverse wave on a string. ☞

A classical travelling wave on a string

A wave travelling along a string is characterized by having an amplitude A , frequency f, angular frequency
ω = 2πf, wavelength λ and angular wavenumber k = 2π/λ . ☞ When such a wave propagates in the positive x-
direction, the wave displacement y(x, t) can be represented by:

travelling wave y(x, t) = A1cos1(kx − ω1t) (8) ☞

The wave represented by Equation 8 can be shown to be travelling in the positive x-direction, using the
following argument. Consider the position of the wave at two times t = 0 and t = ∆t, where ∆t is very short
compared to the period of the wave.

At t = 0: y(x, 0) = A1cos1(kx)  and the wave has a maximum at x = 0.

At t = ∆ t: y(x, ∆t) = A1cos1(kx − ω1∆t) and the wave has a maximum when (kx − ω1∆t) = 0. This maximum occurs
at x = ω1∆t/k.
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We deduce that the maximum of the wave has moved a distance ∆x = ω1∆t/k in the time ∆t. It is apparent that the
wave is travelling along the positive x-direction and that a point of  fixed phase (e.g. a point of maximum
displacement where kx − ω1∆t = 0) advances with a phase speed vφ given by:

wave phase speed: vφ = ∆x/∆t = ω1/k (9)

We could rewrite Equation 8

travelling wave y(x, t) = A1cos1(kx − ω1t) (Eqn 8)

in terms of the wave phase speed as:

travelling wave y(x, t) = A1cos1[0k0(x − vφ1t)] (10)

This expression for the travelling wave makes the role of the phase speed clear.
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position x

position x

A

A

(a)

(b)

vφ t

Figure 54(a) An infinitely long wave at time t = 0. (b) The same
wave at a later time t; the speed of the wave is vφ from left to right

so the wave has moved a distance vφ1t to the right, but its shape is
unchanged.

The travelling wave is shown in Figure 5.

Question T3

Obtain an expression similar to Equation 8,

travelling wave y(x, t) = A1cos1(kx − ω1t)  (Eqn 8)

but representing a wave travelling in the
negative x-direction. 4❏
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A quantum travelling wave in one dimension

We can now write down the wavefunction of a freely moving quantum travelling in the +x-direction.
(Remember, this is found by solving the time dependent Schrödinger equation, though we will not go into that in
this module.)

free particle wavefunction Ψ1(x, t) = A1cos1(k0x − ω1t) + i0A1sin1(k0x − ω1t) (11) ☞

As you can see, it owes a great deal to the expression for a one-dimensional travelling wave (Equation 8),

travelling wave y(x, t) = A1cos1(kx − ω1t) (Eqn 8)

but there is also a striking difference. This wavefunction involves i, the square root of −1, and is therefore
intrinsically complex. We will examine the significance of this in a moment, but for the present let us exploit the
similarities with a travelling wave.
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As you might expect the total energy, the momentum and the kinetic energy of the quantum can all be expressed
in terms of the parameters ω and k of the wavefunction, through Equations 1 and 3, as:

total energy: E = hf = hω
2π

= ˙ω (12) ☞

momentum: px = h

λdB
= hk

2π
= ˙k (13)

kinetic energy:
  
Ekin = mvx

2

2
= (mvx )2

2m
= px

2

2m
= ˙2k2

2m
(14)

Where we have introduced the shorthand ˙ for the commonly met quantity h/02π. Notice an important feature of
quantum mechanics shown here1—1the properties of the quantum are derivable from the mathematical form of its
wavefunction, in this case simply by inspection of the coefficients of x and t.
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Now, let us see what information about the position of the quantum, can be derived from the wavefunction of
Equation 11.

free particle wavefunction Ψ1(x, t) = A1cos1(k0x − ω1t) + i0A1sin1(k0x − ω1t) (Eqn 11)

Using the general expression for the modulus of a complex quantity we see that in this case

|1Ψ1(x, t)1| = [A21cos21(kx − ω1t) + A21sin21(kx − ω1t)]1/2

But sin21θ + cos21θ = 1 for all values of θ

So |1Ψ1(x, t)1| = A

and |1Ψ1(x, t)1|12 = A2 (15)

Thus, the probability density is independent of x, and the likelihood of finding the quantum in a small region of
fixed length ∆x is the same everywhere. You shouldn’t be surprised by this result: in the first place there is no
reason why a freely moving quantum should be more likely to be found in one place than another; secondly this
quantum has a well defined momentum magnitude so ∆p = 0 and it follows from the uncertainty principle that
∆x (= ˙/∆p) will be undefined.
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We might now be tempted to calculate the phase velocity from the wavefunction in Equation 11.

free particle wavefunction Ψ1(x, t) = A1cos1(k0x − ω1t) + i0A1sin1(k0x − ω1t) (Eqn 11)

When we do so we are in for a shock! By analogy with the wave on a string we find the phase speed of this
wavefunction is:

phase speed:
  
vφ = ω

k
= E

p
=

1
2 mv2

mv
= v

2
(16)

In Equation 16 we have used the usual expressions for the kinetic energy and momentum magnitude of a particle
travelling with speed v. We have arrived at the disturbing conclusion that the phase speed of the wavefunction is
not the same as the velocity of the associated particle, but half this value! We will resolve this apparent paradox
in the next subsection.
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3.2 A travelling wave packet to represent a free particle
Just as we were able to construct a wave packet from de Broglie waves to represent a localized particle, so too
we can produce a localized wavefunction by superposing free particle wavefunctions like that of Equation 11.

free particle wavefunction Ψ1(x, t) = A1cos1(k0x − ω1t) + i0A1sin1(k0x − ω1t) (Eqn 11)

If this quantum wave packet moves through space, its motion can represent the motion of the associated free
particle. Of course, since the wave packet will involve a range of angular wavenumbers it will not describe a
particle with precisely determined momentum but that, according to the uncertainty principle, is the price we
must pay for having some idea where the particle is located.

When the phase speed of a wave depends on its wavelength or angular wavenumber, individual waves of a given
k will move with different phase speeds whilst the wave packet itself will travel at the group speed. According to
classical wave theory the group speed is the speed with which the energy is propagated and is given by the
expression:

group speed vg = dω1/d0k  (17) ☞

We will soon use Equation 17 to investigate the group speed of our quantum wave packet. However, before we
do that let us clarify the meaning of the equation by using it to investigate a packet of (hopefully familiar)
electromagnetic waves.
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Group speed of an electromagnetic wave packet in a vacuum

For an electromagnetic wave of frequency f and wavelength λ travelling in a vacuum:

c = fλ (18)

so the phase speed of a single electromagnetic wave is

phase speed:
  
vφ = ω

k
= 2πf

2π λ
= fλ = c (19)

The phase speed is constant, it is independent of k, and ω = kc. In a vacuum, an electromagnetic wave packet
composed of many such waves with different values of k moves with an overall speed known as its group speed,
given by

group speed
  
vg = dω

dk
= d

dk
(ck) = c (20)

Since the group speed is also c, the wave packet travels at the same speed as each of the constituent waves
within it. The wave packet thus travels through a vacuum without change of shape.
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In a medium the situation is rather different. If an electromagnetic wave packet travels through any material,
other than vacuum, the phase speed of each constituent wave is reduced by the refractive index, which usually
depends on k. In this case, the group speed and the various phase speeds differ and the wave packet changes its
shape and spreads out as it propagates. This process is called dispersion. and the relation between ω and k is
called the dispersion relation of the material.
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Group speed of a quantum wave packet

To determine the group speed of the quantum wave packet representing a free particle we first need to determine
its dispersion relation (i.e. the relationship between k and ω). We can do this by recognizing that for a free
particle the total energy and the kinetic energy must be identical since it then follows from Equations 12 and 14

total energy: E = hf = hω
2π

= ˙ω (Eqn 12)

kinetic energy:
  
Ekin = mvx

2

2
= (mvx )2

2m
= px

2

2m
= ˙2k2

2m
(Eqn 14)

that:

quantum dispersion relation: ω = ˙k2

2m
(21)

so, quantum group speed:
  
vg = dω

dk
= d

dk

˙k2

2m






= ˙k

m
= px

m
= vx (22)

We thus find that for a quantum wave packet, the group speed with which the packet moves (i.e. speed with
which the energy is transmitted) is equal to the speed of the associated particle. This resolves the problem we
had at the end of Subsection 3.1, where we wrongly associated particle speed with phase speed rather than group
speed.
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Question T4

An electromagnetic wave packet moves through a material in which the dispersion relation is:

k = bω1(1 + aω)

where a and b are positive constants. Obtain expressions for: 
(a) the phase speed and 
(b) the group speed of the wave packet.

Which of these two speeds is the greater?4❏
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4 The wavefunction for a particle confined in one dimension
We now turn our attention from freely moving particles (whether localized or not) to particles that are confined
to a limited region of the x-axis. As with the travelling wave examples discussed earlier, we will approach the
quantum wave problem through the familiar territory of classical waves, but we must now consider
standing waves.

4.1 A particle confined in a one-dimensional box

A classical standing wave on a string

The simplest classical example of a one-dimensional standing wave is that of a vibrating string with fixed ends,
such as occurs on the string of a musical instrument. For simplicity, we consider an elastic string which, in its
rest state, is straight and taut with length D. It is fixed at each of its ends but may be made to vibrate at right
angles to its length, if disturbed1—1for example, by plucking. A short while after being disturbed, a standing
wave becomes established on the string and this wave can be analysed in terms of a superposition of oppositely
directed travelling waves with various amplitudes; ☞ this result can again be understood mathematically in
terms of a Fourier superposition.
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The significant difference between the free moving wave packet, discussed in Subsection 3.2, and the
standing wave here, is that the wavelengths involved in the superposition can now have only certain
particular values and do not form a continuous range.

The origin of this restriction on the contributing wavelengths is easy to explain. Since the end points of the string
are fixed the displacement of the string must be zero at either end. These are known as the boundary conditions
on the standing wave, and all the travelling waves that contribute to the superposition must obey them.
In this case, the boundary conditions of zero displacement require that the standing wave can be expressed as a
sum of travelling sine waves of definite wavelengths and amplitudes.

The particular wavelengths allowed are those for which an integer number of half wavelengths fits into the
distance D, between the ends of the string.
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D

λ = 2D

λ = D

λ = 2D/ 3

λ = D /2

Figure 6 shows ‘freeze-frame’ snapshots of some of these simplest
standing waves that can arise. These elemental oscillations are known as
the standing wave modes of the string. It is possible to excite a single
mode, with a particular initial condition, but in general, several modes
may be operating at the same time. When a single mode is excited, each
point on the string oscillates at the same mode frequency but with an
amplitude which depends on position along the string. Positions with zero
amplitude are called nodes and positions with maximum amplitude are
called antinodes; the ends of the string are nodes. The distance between a
node and the adjacent antinode is one quarter of the wavelength for that
mode. If the string is excited into single mode oscillation it will continue
in that mode until it is disturbed in some way, although energy losses due
to friction usually damp the oscillation away, eventually.

✦ How many half wavelengths are contained in the distance D for the
wave form in the bottom picture of Figure 6?

Figure 64Four of the standing wave modes that may be set up on a taut, elastic
string that is fixed at each end.
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D

λ = 2D

λ = D

λ = 2D/ 3

λ = D /2

The vertical displacements in any one of the one-dimensional standing
wave modes, shown in Figure 6, may be represented mathematically as
follows:

Standing wave mode n: yn (x, t) = An sin (kn x) cos(ωnt) (23)

The wavelength ☞ of the mode n is determined by the condition:

D = nλn

2

for n = 1, 2, 3, 4, … (i.e. n is a positive integer).

We can write the associated angular wavenumbers kn as:

kn = 2π
λn

= nπ
D

(24)

so the modes become:

yn (x, t) = An sin
nπx

D




 cos(ωnt) for n = 1, 2, 3, … (25)

Figure 64Four of the standing wave modes that may be set up on a taut, elastic
string that is fixed at each end.
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For a given mode Equation 23

Standing wave mode n: yn (x, t) = An sin (kn x) cos(ωnt) (23)

does not lead to a travelling wave. Each point at position x on the string undergoes oscillation at the same
angular frequency ωn, but with an amplitude A n 1sin1(knx), which depends on position. At an antinode the
amplitude is An. Since all points on the string oscillate in phase at the same frequency, the time dependence of
this stationary wave is the same at each point and for many purposes is of less interest than the spatial
dependence of the mode.

However, if we ask what happens when two or more different modes operate simultaneously then we find that a
more interesting time-dependence emerges. In particular, interference between two standing waves of different
frequencies produces beats  ☞  at the difference frequency and the shape of the string is no longer a fixed
sinusoid. Visually, the string appears to contain travelling waves which move back and forth along it.
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Dx = 0

z

x x = D

(a)

y

Figure 7a4A particle of mass m is
moving in the space between two
parallel infinite planes, separated by a
distance D, measured along the x-axis.

A quantum wavefunction for one-dimensional confinement

For our quantum example, we will again consider the simplest case of
one-dimensional confinement subject to appropriate boundary conditions.
The wavefunction can then be completely specified in terms of a single
position coordinate (x) and a time coordinate (t). The particle is not
allowed outside of a finite range of x-values, say between x = 0 and x = D.

A realization of this situation could be a particle held in the space between
two parallel infinite planes, separated by a distance D, measured along the
x-axis. For example, we might locate one plane at x = 0 and the other at
x = D, as shown in Figure 7a. This is usually called a one-dimensional
box1—1it is actually a box in three-dimensional space, but the confinement
is in one dimension only. The confinement of the particle means that the
wavefunction must be zero everywhere outside the box, so there is no
probability of finding the particle outside the box. It follows from this that
we require the wavefunction to fall to zero at the boundary1—1in this case,
at the walls of the box.

Thus the wavefunction must satisfy the boundary conditions:

Ψ0(0, t) = 04and4Ψ0(D, t) = 0 for all t
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Before we consider this system in detail, let us examine whether the uncertainty principle has anything to say
about this situation. When we make a mental picture of the situation we must be careful not to imply more
information than we can legitimately claim from the Heisenberg uncertainty principle.

Question T5

Could we say that, in the realization of a one-dimensional box described above, the particle has only x-motion,
i.e. that this is a one-dimensional problem, since the particle has no y- or z-components of velocity? Present your
argument carefully. ☞ 4❏

Question T6

In the situation described in Question T5, could we claim that the particle is moving along the x-axis?
Present your argument carefully. ☞4❏
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The simplest wavefunctions describing a quantum confined between x = 0 and x = D, in a one-dimensional box
may be written in the form:

confined wavefunction: ☞

Ψn (x, t) = ψ n (x)[cos(ωnt) + i sin (ωnt)] = An sin
nπx

D




[cos(ωnt) + i sin (ωnt)] n = 1, 2, 3, … (26)

Note that these wavefunctions satisfy the boundary conditions, and that we can separate out the spatial and time
dependencies, as we did for the classical wave. The part of the wavefunction that depends on position (x) is
denoted by the lower case Greek letter ψ and is therefore written as ψ1n(x) in each case. This is called the spatial
part of the wavefunction, or simply the spatial wavefunction. (Note the distinction between the wavefunction
Ψ1n(x, t) and its spatial part ψ1n(x).) In this particular case

spatial wavefunction:

ψ n x( ) = An sin(kn x) = An sin
nπx

D




 n = 1, 2, 3, … (27)
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ψ3

ψ2

ψ1

ψ3
2

ψ2
2

ψ1
2

(b)

(c)

✦

Figure 7b & c4(b) The three lowest energy stationary state wavefunctions that can

describe the particle. (c) The values of |1ψ(x )1|2 0 for the three lowest energy stationary
states shown in (b).

As for the classical case, the quantum wavefunctions consist of a set of modes
for the system. The time-dependence is common to a particular mode and it is
the spatial part of these wavefunctions which is of most interest. The spatial
part of each of the first three wavefunctions, as given by Equation 27,

ψ n x( ) = An sin(kn x) = An sin
nπx

D




 n = 1, 2, 3, … (Eqn 27)

is shown in Figure 7b. As in the classical case, if the system is excited into a
particular single mode then it will continue with this same wavefunction
indefinitely, unless it is perturbed in some way. These persisting single mode
wavefunctions are called the stationary states of the system; they are the
quantum equivalent of the modes of a classical system. Stationary states have
the particular property that they correspond to a probability density |1Ψ n(x, t)
1|02 that is independent of time.

Confirm that |1Ψ1(x, t)1|12 is independent of time for these stationary states,
and show that |1Ψ1(x, t)1|12 = |1ψ1(x)1|12.
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The time dependence of the nth wavefunction in Equation 26

confined wavefunction:

Ψn (x, t) = ψ n (x)[cos(ωnt) + i sin (ωnt)] = An sin
nπx

D




[cos(ωnt) + i sin (ωnt)] n = 1, 2, 3, …    (Eqn 26)

is determined by the particle’s total energy, En through Equation 12:

total energy: En = ˙ωn (Eqn 12)

Equation 13 gives the momentum in the nth mode as:

momentum: px = ˙kn (Eqn 13) ☞

Equation 14 gives the kinetic energy in nth mode as:

kinetic energy: Ekin = ˙2kn
2

2m
(Eqn 14)
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For this situation, there are no changes in potential energy in the box and so we may set the potential energy
equal to zero everywhere in the box. This means that the kinetic energy is the same as the total energy En, which
is:

The total energy: En = ˙2kn
2

2m
= ˙2n2π2

2mD2
= n2h2

8mD2
(28)

where n can take on any positive integer value (n ≥ 1). These allowed values of En are known as the
energy levels of the system.
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n = 416

9

4

1
0

n = 3

n = 2

n = 1

En/MeV

Figure 84The first four allowed energy
levels of a particle in a one-dimensional
box. En = n2h2/(8mD2).

Figure 8 shows the first four such energy levels. The stationary state of
lowest energy is called the ground state and the associated energy level
is called the ground level. States with higher energy are called
excited states and their energies are excited levels. Equation 28

The total energy: En = ˙2kn
2

2m
= ˙2n2π2

2mD2
= n2h2

8mD2
(Eqn 28)

represents a very important and characteristic feature of quantum
mechanics. It shows that, if a particle is constrained (the constraint
being represented by boundary conditions on the wavefunction) then its
energy may not take on any arbitrary value. Only certain discrete
energies determined by the integer n in Equation 28 are permitted.
The energy is said to be quantized  and n  is referred to as a
quantum number.
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4.2 Comparison between the classical and quantum cases
We have now arrived at the predictions of quantum mechanics for a particle in a one-dimensional box. These
predictions are in striking conflict with classical physics so we should take time to reflect on them and draw out
just how fundamental the differences are. Before we draw together the conclusions of the quantum model, let us
look briefly at how classical physics would model a particle trapped between these two impenetrable walls.

Question T7

Explain how classical physics could describe a particle with fixed kinetic energy, trapped in a one-dimensional
box, given that there is no motion in the y- or z-directions. Comment on the speed and direction of the motion
and whether the speed or energy is restricted in any way by the box.4❏
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In contrast, the summary conclusions of our quantum treatment are as follows:

1 The system has available to it certain stationary states, or discrete states, each described by the
appropriate wavefunction for that state. For the nth state:

Ψn (x, t) = ψ n (x)[cos(ωnt) + i sin (ωnt)] = An sin
nπx

D




[cos(ωnt) + i sin (ωnt)]

2 Each stationary state has an associated definite discrete total energy:

En = n2h2

8mD2
. These are known as the energy levels of the system.

3 The system’s lowest energy is not zero but equal to E1 = h2

8mD2
.

4 For the stationary states the wavefunctions are complex standing waves, which do not travel and so
imply no particular direction of motion for the associated particle in the box.

These conclusions differ at almost every point from the classical model!
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✦ The energy becomes zero if we were to set n = 0 in the expression for En. Why does this give a result which
is not physically sensible?

1 The system has available to it certain stationary states, or discrete states, each described by the
appropriate wavefunction for that state. For the nth state:

Ψn (x, t) = ψ n (x)[cos(ωnt) + i sin (ωnt)] = An sin
nπx

D




[cos(ωnt) + i sin (ωnt)]

2 Each stationary state has an associated definite discrete total energy:

En = n2h2

8mD2
. These are known as the energy levels of the system.

3 The system’s lowest energy is not zero but equal to E1 = h2

8mD2
.

4 For the stationary states the wavefunctions are complex standing waves, which do not travel and so
imply no particular direction of motion for the associated particle in the box.

These claims seem outrageous (particularly points 3 and 4),
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but before we are tempted to abandon this quantum model as being unrealistic, we should reflect on the fact that
these discrete energy levels, which are a consequence of the confinement of the particle to a given region of
space, are broadly similar what is observed to happen when an electron is confined within a hydrogen atom.
Indeed, it was the discrete energy levels and the fixed transitions between them which were an integral part of
the Bohr model of hydrogen and which were completely inexplicable using classical physics. Clearly, our
one-dimensional box doesn’t look much like a hydrogen atom, but it shows some encouraging features as an
atomic model. ☞
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Question T8

In the state n = 1, as described by Equation 28,

The total energy: En = ˙2kn
2

2m
= ˙2n2π2

2mD2
= n2h2

8mD2
(Eqn 28)

the kinetic energy is known exactly. Since the motion is one-dimensional this appears to imply, by Equation 14,

kinetic energy:
  
Ekin = mvx

2

2
= (mvx )2

2m
= px

2

2m
= ˙2k2

2m
(Eqn 14)

that the momentum px is known exactly. We then appear to have the particle located in x to within ∆x = D
but with the momentum px known exactly (∆px = 0). Are we claiming more information than is allowed by the
Heisenberg uncertainty principle? Present your argument carefully.4❏
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Location of the particle in the one-dimensional box

Now we ask where the particle is most likely to be found within the box. From the general principle given in
Equation 7, the probability of finding the particle in the interval between x and x + ∆x is proportional to
|1Ψ(x, t)1|021∆x. Since we are dealing with a stationary state, this is proportional to the square of the spatial part of
the wavefunction, |1ψ(x)1|021∆x.

✦ At which places is the particle most likely to be detected, when in its ground state?

To find the actual numerical value of the probability near any point we must first of all normalize the
wavefunction. This means that we must ensure that the total probability of finding the particle somewhere in the
box is 1 (i.e. certainty). Mathematically, this implies

|ψ n (x) |2
0

D

∫ dx = An
2 sin2 nπx

D






0

D

⌠
⌡

dx = 1 (29)
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i.e.
An

2

2
1 − cos

2nπx

D










0

D

∫ dx = An
2

2
x − D

2nπ




 sin

2nπx

D










0

D

= An
2 D

2
= 1

so that we must take An = 2 D   ☞ and the normalized spatial wavefunction for the state n is therefore:

normalized spatial wavefunction: ψ n x( ) = 2
D

sin
nπx

D




 (30) ☞

where n = 1, 2, 3, 4, …

Question T9

What is the probability that a particle in the n = 5 state will be detected between x = 0 and x = +0.1D? 4❏
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4.3 Energy changes or transitions in the one-dimensional box ☞

The quantum model for a particle in a one-dimensional box shows the existence of a set of stationary states of
different energy. If the particle in one of these states is unperturbed, it will remain in the state indefinitely, in just
the same way that a single standing wave mode on a string will continue with fixed energy indefinitely. If either
system is perturbed, for example by gaining or losing energy, then the state of oscillation will change.
In the classical case, other wave modes will become excited as the energy changes; in the quantum case, the
system may make a transition between stationary states as the energy changes.

In Subsection 4.2 we noted that classically, when two standing wave modes are simultaneously operating on a
string, the resulting disturbance has a time dependence at the difference frequency of the two modes.
Visually, the string shows the presence of a disturbance which oscillates back and forth on the string, at this
difference frequency. In the quantum case, the mixing of two stationary states with different characteristic
angular frequencies ωn and ωm produces a superposition state which is no longer a stationary state and in which
the probability density consequently depends on time. If we calculate the probability of finding the particle at a
given position in the box we find that the probability density oscillates at the angular beat frequency |1ωn − ωm1|.
This corresponds to a real oscillation of the particle between the walls1—1rather as the classical picture
suggested.
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Since an electron is a charged particle, any oscillation that it exhibits should, according to classical physics, be
accompanied by radiation. The oscillating electron would either be radiating away its energy (emission), or
gaining energy (absorption) from an incoming electromagnetic wave. It is natural, therefore, to try to associate
the emission and absorption of radiation by an atom with the presence of an electron in a superposition state,
mixing two stationary states of the system. At some initial time the system is in one of these two states and at
some later time it will be in the other state, having made a transition between the two states; in the interim the
state is a non-stationary superposition state in which the proportions of the two stationary states are changing
with time. The energy change may then be associated with a photon of frequency f = |1ωn − ωm1|1/12π, and so
corresponds to energy change

∆E = hf = h|1ωn − ωm1|1/12π = |1En − Em1| ☞
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Dx = 0

z

x x = D

(a)

y

Figure 7a4A particle of mass m is
moving in the space between two
parallel infinite planes, separated by a
distance D, measured along the x-axis.

Question T10

An electron is confined in the one-dimensional box in Figure 7a.

(a) Sketch the spatial wavefunction that describes the electron when its

total energy is E = 9h2

8me D2
.

(b) Where is the electron most likely to be detected when it has this
energy?

(c) If the electron makes a transition from this state to the ground state,
obtain an expression for the reduction of its energy.

(d) If this energy is given out as a quantum of radiation, what will be the
frequency f of its associated radiation?4❏
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5 A particle confined in two or three dimensions
The quantum treatment of a particle confined in one dimension has shown many encouraging features in relation
to explaining the observed behaviour of an atom. The Heisenberg uncertainty principle explains why an atom is
stable against collapse into the nucleus and the confined wave model predicts quantized energies of a confined
electron and associates transitions between these with the emission or absorption of electromagnetic radiation.
Now we need to extend the model to confinement in three dimensions.

5.1 Extension to two-dimensional confinement
We have seen from Section 4 that when a particle is confined in one dimension it may be found in certain
quantum states labelled by a single quantum number, the integer n, and described by a wavefunction Ψn 0(x, t).
Extending this idea to two dimensions means that the wavefunction must involve two spatial coordinates
(e.g. x and y) as well as t. As usual, our deliberations will be guided by the classical analogue.
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y-axis

x-axis

square drum
(no vibrations)

nx = 1; ny = 1 nx = 1; ny = 2

nx = 2; ny = 1 nx = 2; ny = 2

Figure 94Four standing waves on a square, two-
dimensional membrane. The integers nx and n y
indicate the number of half wavelengths in the x-
and y-directions, respectively.

A classical standing wave on a square membrane

Consider a flexible two-dimensional surface, such as a taut
square drum membrane stretched over and fixed to a square
framework of side D (see Figure 9). Vibrations in this surface
may be set up and there will be boundary conditions in both x-
and y-directions, such that there can be no vibration along the
perimeter of the square.

The displacement must be zero along both the lines y = 0 (the
x-axis) and y = D for any value of x between 0 and D, and along
both the lines x  = 0 (the y-axis) and x = D  for any value of
y between 0 and D. These boundary conditions are complicated
to write down, but they will affect the possible vibrations of the
membrane in a way that is a simple extension of the one-
dimensional case.
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y-axis

x-axis

square drum
(no vibrations)

nx = 1; ny = 1 nx = 1; ny = 2

nx = 2; ny = 1 nx = 2; ny = 2

Figure 94Four standing waves on a square, two-
dimensional membrane. The integers nx and n y
indicate the number of half wavelengths in the x-
and y-directions, respectively.

The standing waves that can be set up will involve an integer
number of half wavelengths in each of the two independent
spatial dimensions. Thus there will be two integers that define a
particular mode of vibration of the drum, nx for the x-direction
and ny for the y-direction. This may be most clearly seen by
looking at the examples shown in Figure 9.

The integers nx and ny simply designate the number of half-
wavelengths of the standing wave between the two boundaries
along the relevant axis. The oscillations in the two dimensions
are independent in the sense that any valid value of nx can be
combined with any valid value of ny to produce a valid wave
mode, labelled (nx, ny) on the membrane.



FLAP P10.3 Wavefunctions
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

A quantum wavefunction for two-dimensional confinement

We need a two-dimensional box in which to confine our particle. A realization of this might involve using two
pairs of parallel infinite planes, one pair separated by a distance D along the x-axis and the other pair separated
by a distance D  along the y-axis. The particle is completely unrestricted in z but is confined in x and y.
Because we have not constrained the particle in z (∆z is undefined) we may legitimately claim that pz = 0, or
∆pz = 0; the particle can then be said to have no motion along z, or to have only motion along x and y. These two
motions will be completely independent and each will have an associated kinetic energy, with the total kinetic
energy given by the sum of the two independent kinetic energies. ☞

Treating the two contributions to the kinetic energy as being independent will require that we use two
independent quantum numbers, nx and ny, to describe each stationary state. The energy levels of those states will
then be given by an extension of Equation 28:

The total energy: En = ˙2kn
2

2m
= ˙2n2π2

2mD2
= n2h2

8mD2
(Eqn 28)

Enx ,ny = h2

8mD2
nx

2 + ny
2( ) (31)

where nx = 1, 2, 3, 4, …and ny = 1, 2, 3, 4, …
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The corresponding spatial wavefunctions now also require two quantum numbers to label them

ψ nx ,ny x, y( ) = Asin
nxπx

D




 sin

nyπy

D






(32)

where nx = 1, 2, 3, 4, … and ny = 1, 2, 3, 4, …

Compare Equations 31 and 32

Enx ,ny = h2

8mD2
nx

2 + ny
2( ) (Eqn 31)

with Equations 28 and 27, respectively.

ψ n x( ) = An sin(kn x) = An sin
nπx

D




 n = 1, 2, 3, (Eqn 27)

The total energy: En = ˙2kn
2

2m
= ˙2n2π2

2mD2
= n2h2

8mD2
(Eqn 28)

Equation 32 obviously satisfies the boundary conditions at x = 0 and x = D and also at y = 0 and y = D.
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Shared energy levels1—1degeneracy

Equations 31 and 32

Enx ,ny = h2

8mD2
nx

2 + ny
2( ) (Eqn 31)

ψ nx ,ny x, y( ) = Asin
nxπx

D




 sin

nyπy

D






(Eqn 32)

also show a feature which did not occur for the one-dimensional case. Since the energy does not depend
separately on nx and ny but on the special combination (nx

2 + ny
2 ) , if we exchange the values of nx and ny we

leave the energy unchanged. For example, the spatial wavefunctions ψ1,2 and ψ2,1 will correspond to the same
energy level even though they are different functions. When different wavefunctions share the same energy level
the wavefunctions are said to be degenerate and the system is said to exhibit degeneracy. In this case we see
that the degeneracy arises as a consequence of the symmetry between the x and y variables. ☞
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Table 14Energies, expressed in units of
h2/(8mD2), for a particle confined in two-
dimensions.

nx = 1 nx = 2 nx = 3 nx = 4

ny = 1 2 5 10 17

ny = 2 5 8 13 20

ny = 3 10 13 18 25

ny = 4 17 20 25 32

Table 1 shows the energies, expressed in units of h2/(8mD2), for the
states ψnx

,ny
 for a range of values of nx and ny, you should be able to

see several examples of degeneracy.

Degeneracies usually arise in systems with symmetries1—1here, it is
the symmetry between the x- and y-motion. If we were to break the
symmetry, for example by allowing the box to have different
dimensions in x and y, we would remove the degeneracy, since the
energy depends on nx

2  and ny
2  separately but not on (nx

2 + ny
2 ) .

Symmetry and symmetry breaking are important considerations in
quantum mechanics.
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x

z

y

Figure 104Standing waves confined to a
cube in three dimensions.
nx = 1, ny = 2 and nz = 4.

5.2 Extension to three-dimensional confinement
The extension to three dimensions1—1where the complete specification
of the wavefunction of the particle requires three spatial coordinates
(x, y, z)1—1is now straightforward. The particle is confined to a cube of
side D  in which standing waves may be formed, as in Figure 10.
The energy levels in this case are:

Enx ,ny ,nz = h2

8mD2
nx

2 + ny
2 + nz

2( ) (33)

where nx = 1, 2, 3, 4, …; ny = 1, 2, 3, 4, …; nz = 1, 2, 3, 4, …

The spatial wavefunctions are:

ψ nx ,ny ,nz x, y, z( ) = Asin
nxπx

D




 sin

nyπy

D






sin
nzπz

D




 (34)

where nx = 1, 2, 3, 4, …; ny = 1, 2, 3, 4, …; nz = 1, 2, 3, 4, …
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In three dimensions, a far richer range of degeneracies becomes possible. First, we have the symmetry due to the
three spatial coordinates; for each set of three quantum numbers there will be six permutations of these three
which give the same energy. There are also now a whole range of accidental degeneracies, based on the
accidental equality of (nx

2 + ny
2 + nz

2 )  for two or more sets of three quantum numbers. For example, the state

nx = 8, ny = 6, nz = 5, has the same energy as the state nx = 4, ny = 3, nz = 10. There are now many cases where
several independent wavefunctions share a common energy level; the number of such wavefunctions sharing a
given energy level is said to be the order of degeneracy of the energy level.

Question T11

(a) Write down an expression for the energy of the ground state of a particle confined in three dimensions.
Explain whether or not this state is degenerate.

(b) What is the energy of the first excited state? Is this state degenerate and, if so, what is its order of
degeneracy?4❏
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6 Closing items
6.1 Module summary
1 Indications of the particle-like behaviour of electromagnetic radiation, include evidence for the photon as a

particle with energy E = hf and momentum p = E/c = h/λ.

2 Indications of the wave-like behaviour of matter, as predicted by the de Broglie hypothesis (λdB = h/p),
include a variety of particle diffraction experiments. The Heisenberg uncertainty principle states that the
simultaneous uncertainties in the position and momentum of a particle obey the restriction

∆x ∆px
h

2π
(Eqn 6)

3 The quantum mechanical wavefunction Ψ(x, t), of a particle moving in one dimension is a complex quantity
found by solving the time-dependent Schrödinger equation. The probability of finding the particle within
the small interval ∆x around the position x  at time t being ∝  |1Ψ1(x , t) 1|021∆x, where |1Ψ(x , t)1|2 is the
probability density at position x.

4 An unlocalized free particle may be represented by a wavefunction of the form
ψ n (x, t) = A cos(kx − ω t) + iAsin (kx − ω t)

this describes a particle for which the total energy E = ˙ω, the momemtum px = ̇ k and the kinetic energy
Ekin = ˙2k2/02m.
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5 The probability density for finding an unlocalized free particle at any value of x is constant and does not
depend of x.

6 A localized free particle may be represented by a wavefunction constructed from a superposition of
unlocalized free particle wavefunctions. Analysis of the dispersion relation for these wavefunctions shows
that the superposition has a group speed that is equal to speed of the associated particle.

7 The quantum analogue to the confined wave on a stretched string is the particle confined in a
one-dimensional box. The wavefunctions for this system consist of a set of stationary states for which the
probability density is independent of time. The spatial wavefunctions of these states must satisfy
boundary conditions that require them to vanish at the edges of the box. The spatial wavefunctions form a
discrete set and are given by

ψ n x( ) = An sin
nπx

D




 4n = 1, 2, 3, … (Eqn 27)

8 These spatial wavefunctions correspond to a restricted range of energy values for the particle. The allowed
energy levels are

En = n2h2

8mD2
4n = 1, 2, 3, …

where n is known as a quantum number. The ground state has a non-zero energy, which confirms that
quantum mechanics forbids the idea of a confined particle at rest.
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9 The stationary states imply no particular direction of motion for the confined particle and have a constant
energy. If the system is perturbed and the energy does change, this can be associated with a transition
between two stationary states. For an electron in a box, such a classical oscillation would be accompanied
by the emission or absorption of electromagnetic radiation. This idea can be extended, in a modified way, to
the quantum case.

10 A particle confined in two or three dimensions can be treated similarly, except that two or three independent
quantum numbers are needed to specify the states and the energy levels. The energy levels are now:

Enx ,ny ,nz = h2

8mD2
nx

2 + ny
2 + nz

2( ) (Eqn 33)

and the stationary state spatial wavefunctions are:

ψ nx ,ny ,nz x, y, z( ) = Asin
nxπx

D




 sin

nyπy

D






sin
nzπz

D




 (Eqn 34)

The symmetry of the system produces some shared energy levels for several independent wavefunctions, an
effect known as degeneracy, and some accidental degeneracies also occur.
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Study comment As a final cautionary note we must admit that our approach in this module has been inspirational rather
than rigorous. We have presented plausible arguments, based on analogies with classical wave ideas and have developed
self-consistent models which throw some light on the quantum world. However, the classical models on which we have
placed such reliance were themselves based on the rigorous solution of a wave equation, to which we have given scant
reference here. The justification for the wavefunctions presented here also rests on the rigorous solution of an equation, the
Schrödinger equation1—1but this must be left to other FLAP modules.
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6.2 Achievements
Having completed this module, you should be able to:

A1 Define the terms that are emboldened and flagged in the margins of the module.

A2 State and use the relationship between a wavefunction Ψ(x, t) and the probability of detecting the particle to
which it relates.

A3 Describe how a free particle may be represented either by a wavefunction  consisting of a single complex
travelling wave of definite wavelength, or by a wave packet constructed from such travelling waves and
explain how these representations conform with the Heisenberg uncertainty principle.

A4 In the representation of a free particle by a single wavelength wavefunction, recall and use expressions for
the total energy, the momentum and the kinetic energy of the particle in terms of the angular wavenumber
and the wave angular frequency.

A5 Apply the Heisenberg uncertainty principle in simple cases.

A6 Write down the spatial wavefunctions for a particle constrained in a one-dimensional box.
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A7 Show that the energy levels for a particle constrained in a one-dimensional box are En = n2h2

8mD2
 and use

this expression to discuss transitions between quantized energy levels.

A8 Explain what is meant by degeneracy of the energy levels of a particle confined in a two- or three-
dimensional box. Determine orders of degeneracy in simple cases.

Study comment  You may now wish to take the Exit test for this module which tests these Achievements.
If you prefer to study the module further before taking this test then return to the Module contents  to review some of the
topics.
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6.3 Exit test

Study comment  Having completed this module, you should be able to answer the following questions each of which tests
one or more of the Achievements. ☞

Question E1

(A2)4A particle in a stationary state is represented by the spatial wavefunction ψ(x) = exp (−3x2).

(a) Is this spatial wavefunction normalized? 

[You may use the following standard integral, exp (−ax2 )
−∞

+∞

∫ dx = π a .]

(b) If it is not, write down a normalized spatial wavefunction that represents the particle in the same state.

(c) What is the probability that the particle will be detected between x and x + ∆x (for small ∆x)?
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Question E2

(A3, A4 and A5)4Explain why a particle represented by a wave packet may not simultaneously have both its
position and momentum known to arbitrarily high precision. What is the relationship between ∆x and ∆px, the
uncertainties in the measurements of position and momentum, respectively? 
(Hint: No mathematical derivations are required.)

Question E3

(A7)4A helium nucleus has a mass of 6.6 × 10−271kg. What is its minimum energy if it is confined in one
dimension within a box of length 7.21fm? (1 1fm = 10−151m) Explain the reasoning involved.
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Question E4

(A4, A6 and A7)4A particle is confined in a one-dimensional box of dimension D.

(a) Write down the spatial wavefunction that is analogous to a standing wave that has five half wavelengths
within the box.

(b) What is the momentum of a particle in the stationary state described by this spatial wavefunction?

(c) Show that the energy of the particle is 25h2/(8mD2) in this case.
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Question E5

(A8)4A particle confined to be within a cube of side D is in a stationary state with a spatial wavefunction:

ψ nx ,ny ,nz x, y, z( ) = Asin
nxπx

D




 sin

nyπy

D






sin
nzπz

D






and with energy Enx ,ny ,nz = h2

8mD2
nx

2 + ny
2 + nz

2( ) .

(a) What does it mean to say that an energy level is degenerate?

(b) The energy level 7h2/(4mD2) is degenerate. Determine the order of degeneracy and give expressions for the
corresponding wavefunctions.
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Study comment  This is the final Exit test question. When you have completed the Exit test go back to Subsection 1.2 and
try the Fast track questions if you have not already done so.

If you have completed both the Fast track questions and the Exit test, then you have finished the module and may leave it
here.
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