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1 Opening items

1.1 Module introduction
During the first third of this century a revolution occurred in our perception of the physical laws controlling the
behaviour of matter at the atomic level. As a result the rules of classical mechanics, enunciated by Isaac Newton
and others, were replaced by the rules of quantum mechanics, in which the Schrödinger equation plays a pivotal
role. Newton’s second law can be written as a second-order differential equation and so too can the Schrödinger
equation, but the methods of implementation of the new mechanics are radically different from those of the old.

Quantum mechanics is profoundly different from classical mechanics. The behaviour of even the simplest
atomic system cannot always be predicted exactly. Often, only a set of probabilities for the allowed values of
physical observables such as position, momentum and energy can be predicted. At the heart of the new theory is
the idea that a particle’s behaviour is described by a wavefunction Ψ0(x, t) which is a complex quantity and which
contains all the information we can know about the particle. For a particle in a particular quantum state, it is the
corresponding wavefunction that determines the relative likelihood of the various possible outcomes of a
measurement. The possible outcomes themselves are determined by a set of eigenvalue equations, each of which
features an operator corresponding to one of the observable quantities. The eigenvalue equation for the energy is
particularly important. Its solutions reveal both the energy eigenvalues (the possible outcomes of measurements
of the energy) and the various energy eigenfunctions that correspond to each of the eigenvalues.
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If a particle is in a stationary state, and the spatial part of its wavefunction, ψ1(x), is identical to one of these
eigenfunctions, then the energy of that particle may be predicted with certainty. It is the eigenvalue equation for
energy, more often referred to as the time-independent Schrödinger equation, that will be our main concern in
this module.

Section 2 reviews the notion of a de Broglie wave, and introduces the idea of a wavefunction that superceded it.
The wavefunction of a free particle is discussed along with the corresponding probability density function and
its relation to the Heisenberg uncertainty principle. Section 3 introduces the idea of operators in quantum
mechanics and develops differential operators for momentum and kinetic energy in one-dimensional motion.
Eigenvalue equations are introduced here, with their associated eigenfunctions and eigenvalues. The eigenvalue
equation for kinetic energy then becomes the time-independent Schrödinger equation for a free particle and the
solutions of this differential equation are explored ☞. Techniques are introduced by which information on the
position, momentum and energy of a particle can be extracted from its wavefunction. Section 4 discusses the
solution of the Schrödinger equation for a particle confined in a one-dimensional box and shows how the use of
boundary conditions enables one to explain quantized energy levels in a natural way. In Section 5 the potential
energy function is introduced into the Schrödinger equation, and the equation is solved for a region where
(a) the total energy exceeds the potential energy and where (b) the total energy is less than the potential energy;
the latter case leads to an explanation of barrier penetration and quantum tunnelling. Section 6 provides a brief
introduction to the time-independent Schrödinger equation in one dimension.
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Physicists today do not say that classical mechanics is wrong and that quantum mechanics is right. Instead, they
say that classical mechanics is an approximation and, in fact, quantum mechanics usually becomes identical to it
for systems much larger than the atom. In atomic physics, quantum mechanics is all they have and they have to
make the best of it! It is a very interesting theory, mathematically challenging of course, but well worth the
effort in mastering the elements. In the early days the best physicists in the world, Albert Einstein, Niels Bohr,
Max Born and many others spent endless hours arguing about the meaning of quantum mechanics at a deep
philosophical level. A total consensus view was definitely not reached. The arguments still rage with
undiminished ferocity. Feel free to join in!

Study comment Having read the introduction you may feel that you are already familiar with the material covered by this
module and that you do not need to study it. If so, try the Fast track questions given in Subsection 1.2.  If not, proceed
directly to Ready to study? in Subsection 1.3.
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1.2 Fast track questions

Study comment Can you answer the following Fast track questions?. If you answer the questions successfully you need
only glance through the module before looking at the Module summary (Subsection 7.1) and the Achievements  listed in
Subsection 7.2. If you are sure that you can meet each of these achievements, try the Exit test in Subsection 7.3. If you have
difficulty with only one or two of the questions you should follow the guidance given in the answers and read the relevant
parts of the module. However, if you have difficulty with more than two of the Exit questions you are strongly advised to
study the whole module.

Question F1

Write down the time-independent Schrödinger equation for a free particle of mass m moving in one dimension.
Show that the spatial wavefunction ψ1(x) = A1sin1(kx) is a solution of this Schrödinger equation when the
potential energy is zero. What is the energy of a particle in a stationary state with this spatial wavefunction?
What is the corresponding time-dependent wavefunction Ψ1(x, t)?
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Question F2

Write down an operator for the x-component of momentum. Show that the function ψ(x) = A1exp1(ikx), with k
real, is an eigenfunction of this momentum operator. If a particle has this spatial wavefunction, what would be
the result of a measurement of (a) its momentum px or (b) its position?

Question F3

Make a sketch of the spatial wavefunction you expect for the lowest energy state of a particle confined in a one-
dimensional box of size D. Explain why the kinetic energy cannot be zero. Why must the spatial wavefunction
go to zero at the boundaries of the box? Where is the particle most likely to be found when in the lowest energy
state?
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Question F4

A particle is moving in a region of constant potential energy V0. Show that the spatial wavefunction
A1exp1(−0α 0x), with α  real, is a solution of the time-independent Schrödinger equation when the total particle
energy E is less than V0.

Find α in terms of E and V0.

Explain whether or not this situation can arise in a world described by classical mechanics.

Study comment

Having seen the Fast track questions  you may feel that it would be wiser to follow the normal route through the module and
to proceed directly to Ready to study? in Subsection 1.3.

Alternatively, you may still be sufficiently comfortable with the material covered by the module to proceed directly to the
Closing items.
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1.3 Ready to study?

Study comment In order to study this module you will need to be thoroughly familiar with the treatment of classical
waves, including the following physics terms: travelling wave, standing wave, wavelength, angular wavenumber (k = 2π/λ 1),
frequency, angular frequency (ω = 2πf1). You should be able to represent a travelling wave in sine or cosine notation. It is
also assumed that you are acquainted with the de Broglie hypothesis (λdB = h/p), the Heisenberg uncertainty principle and
the
Planck–Einstein formula (E = hf1). In addition you must be familiar with the basic ideas of classical mechanics, in particular
conservation of energy and the potential energy function.

The mathematical requirements of this module are also rather stringent. You must be fully conversant with the idea of a
function, the rules of elementary calculus and the meaning of the first and second derivatives of a function. It is also assumed
that you are familiar with homogeneous second-order differential equations with constant coefficients and with their general
solutions. This is not as scary as it sounds; we will only require differential equations such as that describing the
simple harmonic oscillator in mechanics! Of necessity, we have to use complex numbers, so you must be familiar with them
in standard Cartesian form z = a + ib, polar form z = A(cos1θ + i1sin1θ0) and exponential form z = A1exp1(iθ) and with the use of
Euler’s formula, exp1(±iθ0) = cos1θ ± i1sin1θ. In particular you will need to know the meaning of the following terms relating to
complex numbers: argument, complex conjugate , imaginary part, modulus, real part. The following Ready to study
questions will allow you to establish whether you need to review some of the topics before embarking on this module.
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Question R1

(a) What is the momentum px of an electron moving parallel to the positive x-axis with energy 3.51eV?
(1eV = 1.6 × 10−191J)

(b) What is the de Broglie wavelength of this electron?

Question R2

Write down an expression for the transverse displacement y(x, t) of a classical wave which is propagating in the
positive x-direction with angular wavenumber k and angular frequency ω.
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Question R3

(a) A complex number may be written as z = a + i0b where i2 = −1. Find A and θ if z is written in the form
z = A1exp1(iθ). Show that:

(b) A1exp1[i(θ + π)] = −A1exp1(iθ)

(c) 21cos1θ = exp1(iθ) + exp1(−iθ)

Question R4

If y is the function of the independent variable x given by y = A1cos1(kx), show that 
d2 y

dx2
= −k2 y. 

Show that this equation is also satisfied by the complex function y = A1exp1(ikx).
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2 The wavefunction of a free particle
The wavefunction is the central concept of quantum mechanics. This section introduces wavefunctions and
explains their significance.

2.1 A free particle represented by a complex travelling wave
Let us imagine a particle, for example an electron or a proton, moving freely through space. There are no forces
acting on the particle so it travels in a straight line, say in the x-direction, with constant momentum.
If the momentum is px = mvx then in classical physics the kinetic energy is given by:

  
Ekin = 1

2
mvx

2 = px
2

2m
(1)

In quantum physics, the associated de Broglie wave has a de Broglie wavelength λdB given by:

de Broglie wavelength λdB = h/px (2) ☞

and frequency f given by the

Planck–Einstein formula E = h0f (3)
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The transverse displacement y(x, t) of a classical travelling wave propagating in the positive x-direction may be
written in terms of the wave amplitude A, the angular wavenumber k = 2π/λ , and the angular frequency ω = 2πf
as:

y(x, t) = A1cos1(kx − ω1t) ☞

This equation can be written as the real part of a complex quantity:

y x, t( ) = Re A exp i kx − ω t( )[ ]{ }  ☞
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For a de Broglie wave travelling in the x-direction, Equations 2 and 3

de Broglie wavelength λdB = h/px (Eqn 2)

Planck–Einstein formula E = h0f (Eqn 3)

relate the angular wavenumber and angular frequency to the momentum and the energy, respectively, through
the expressions:

px = ˙k (4)

and E = ˙ω (5)

where we have written ˙ = h/(2π) ☞
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position x

λdB

infinitely long wave

Figure 14An infinitely long de Broglie wave of fixed
amplitude. The wavelength gives the momentum exactly but
we can know nothing of the particle’s position coordinate.

Thus the de Broglie wave may be written

Re A exp i
px

˙
x − E

˙
t



















The wave is shown in Figure 1.

We will see that in quantum mechanics the
wavefunction, Ψ0(x, t ), used to describe a free
particle moving with definite momentum, has to be a
complex quantity, not merely the real part of such a
quantity. In this case we can say:

The wavefunction of a free particle with momentum px and energy E is

Ψ x, t( ) = A exp i kx − ω t( )[ ] = A exp i
px

˙
x − E

˙
t











(6) ☞

where A is a complex constant.
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A particle with a wavefunction in the form of Equation 6

Ψ x, t( ) = A exp i kx − ω t( )[ ] = A exp i
px

˙
x − E

˙
t











(Eqn 6)

position x

λdB

infinitely long wave

Figure 14An infinitely long de Broglie wave of fixed
amplitude. The wavelength gives the momentum exactly but
we can know nothing of the particle’s position coordinate.

has a definite momentum px and a definite total
energy E . A ‘snapshot’ of the real part of the
wavefunction at a particular time would look like the
de Broglie wave of Figure 1. However the full
quantum mechanical wavefunction is a complex
quantity and cannot be depicted in such a simple
way.

The formal association between the wavefunction
and the probability of finding the particle in a given
small region around the point x at time t is given as
follows:

The probability of finding the particle within the small interval ∆x around the position x  at time t is
proportional to |Ψ0(x, t)1|121∆x (7)
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This formal association with probability was due to Max Born and has become known as the 
Born probability hypothesis. ☞ Notice the following points here:

o Since |1Ψ0(x, t)1| is a real quantity (it doesn’t involve i), it must be the case that |1Ψ0(x , t)1|02 is positive.
It is therefore at least possible that |1Ψ0(x , t)1|02 might represent a probability, since probabilities are
represented by real numbers in the range 0 to 1 with 0 for no possibility and 1 for certainty.

o Since ∆x is taken to be very small, |1Ψ0(x , t)1|2 can be thought of as the probability per unit length, or
probability density around position x. ☞

o |1Ψ(x, t)1|21∆x  is a statistical indicator of behaviour. Given a large number of experiments to measure the
position of a particle, set up under identical conditions, it represents the fraction of those experiments that
will indicate a particle in the range ∆x at a time t. The set up for the experiment is fixed but the results of
individual experiments are not always the same.

o We may usually convert the proportionality in Equation 7 into an equality, provided we choose an
appropriate scale of probability ☞. For the moment, we do not need to be concerned with this refinement,
but we will return to it in Subsection 4.2 when we discuss normalization.

The probability of finding the particle within the small interval ∆x around the position x  at time t is
proportional to |Ψ0(x, t)1|121∆x (Eqn 7)
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Let us now calculate the probability density function corresponding to the wavefunction of Equation 6.

Ψ x, t( ) = A exp i kx − ω t( )[ ] = A exp i
px

˙
x − E

˙
t











(Eqn 6)

The square of the modulus of the wavefunction is found from the product of the wavefunction Ψ(x, t) and its
complex conjugate, Ψ1*(x, t): ☞

i.e. |1Ψ(x, t)1|2 = Ψ1*(x, t)1Ψ1(x, t) (8)

Here |Ψ (x, t) |2 = A exp −i
px

˙
x − E

˙
t











× A exp i
px

˙
x − E

˙
t











= A2

The probability of finding the particle described by Equation 6 is therefore the same everywhere, irrespective of
the x-coordinate! Although this wavefunction gives precise information on momentum it tells us nothing about
the position of the particle in space. This is a very important lesson; when the wavefunction tells us exactly what
the particle’s momentum is, then it tells us nothing about its position. ☞
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ψ

ψ
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ψ3

ψ4

ψ5

ψ6

ψ7
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x

x

2.2 A free particle represented by a
complex wave packet
The wavefunction of a free particle whose position is
at least approximately known may be represented by a
wave packet or wave group (Figure 2) consisting of a
superposition of complex waves with a limited but
continuous range of angular wavenumbers, rather than
a single wave. The probability density is then no
longer independent of position, but rather peaks
around the mean position of the particle. ☞

Figure 24A wave packet formed by a superposition of
eight waves of different amplitudes and wavelengths.
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Such a wavefunction corresponds to a superposition of a continuous range of possible momenta for the
associated particle, and we find that the position and momentum uncertainties are coupled through the
Heisenberg uncertainty principle.

∆x1∆px  ˙

The speed with which a classical wave packet travels is not determined by the phase speed vφ = ω1/k of the
individual waves but by the group speed vg = dω1/dk. ☞ So, we can calculate the group speed if we know the
relation between ω and k. This relationship is known as the dispersion relation.

For a quantum wave packet the dispersion relation can be found from Equations 1, 4 and 5.

  
Ekin = 1

2
mvx

2 = px
2

2m
(Eqn 1)

px = ˙k (Eqn 4)

and E = ˙ω (Eqn 5)
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For a free particle we may define the potential energy to be zero, the total energy E is then equal to the kinetic
energy, p2/02m, and we may write

E = ˙ω = p2

2m
= ˙2k2

2m
so ω = ˙k2

2m

Thus, the phase speed is

  
vφ = ω

k
= ˙k

2m
= p

2m
= v

2

and the group speed is

  
vg = dω

dk
= d

dk

˙k2

2m






= ˙k

m
= p

m
= v

Note By choosing the potential energy to have some constant value other than zero we would change the phase speed (thus
showing its lack of direct physical significance) but not the group speed.

For a quantum wave packet, the group speed with which the packet moves (which is the speed with which the
energy is transmitted) is equal to the speed of the associated particle. This is reassuring!
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Question T1

A particle moves in one dimension and is described by the wavefunction Ψ (x, t) = A exp[i(ax − bt)], where a
and b are positive real constants. Write down expressions for the momentum px of the particle and for the energy
of the particle. 4❏

Question T2

For the particle described by the wavefunction in Question T1, write down an expression for the probability
density function. Is this result consistent with the Heisenberg uncertainty principle?4❏
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3 From Newton to Schrödinger
The fundamental statement of classical mechanics is embodied in Newton’s second law of motion. 
In one dimension this can be written as:

Newton’s second law: Fx (t) = m
d2 x(t)

dt2
(9)

There are two extremely important aspects of Equation 9:

o This second-order differential equation plays the central predictive role in classical physics; it gives the
time evolution of the position x(t) of the particle, when acted on by a force Fx(t). If we are told some initial
conditions and also the force acting on the particle at all times then we can predict its position, velocity and
acceleration at any later time.

o It is vital to appreciate that Equation 9 cannot be proved mathematically1—1it is an equation which is used to
derive almost all of the equations of mechanics but its own veracity rests not on mathematics but on
experimental observations. We believe it because it works!
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Equation 6

Ψ (x, t) = A exp i kx − ω t( )[ ] = A exp i
px

˙
x − E

˙
t











(Eqn 6)

provides us with an example of a complex wavefunction. We have introduced it as though it were simply a
generalized de Broglie wave, representing a very simple situation1—1a particle with a definite momentum and
energy. However, the truth of the matter is that the wavefunction is found by solving a differential equation.
In what follows we will use the wavefunction of Equation 6 to launch an investigation into the nature of that
differential equation. This will not be a rigorous mathematical process, but it will lead to an equation that plays a
pivotal role in quantum mechanics, just as Equation 9

Newton’s second law: Fx (t) = m
d2 x(t)

dt2
(Eqn 9)

does in classical mechanics. The aim then is to find a differential equation, the Schrödinger equation, whose
solutions include our simple waves but whose general solutions are the wavefunctions which describe any
system for which we may have to make predictions. This is an ambitious target but not beyond our reach.
We will begin the quest by exploring the time dependence of our simple wavefunction.
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3.1 The time dependence of the wavefunction and stationary states
The wavefunction for a particle with energy E and momentum px may be written in the complex form:

Ψ (x, t) = A exp i kx − ω t( )[ ] = A exp i
px

˙
x − E

˙
t











(Eqn 6)

Since ea+b = ea × eb  Equation 6 can be separated into two parts, the first [A1exp0(i0px0x0/0˙)] depending on position
and the second [exp0(−0i0E0t0/0 )̇] depending on time. We will now generalize this particular result by stating that
the time-dependent part of any wavefunction that describes a particle moving in one dimension with a definite
total energy E may be written exp0(−i0E0t0/0˙). Hence:

In one dimension the wavefunction of any particle with definite total energy E is given by:

Ψ (x, t) = ψ (x) exp − iE

˙
t



 (10)

where ψ0(x) in Equation 10 is called the space-dependent part of the wavefunction or simply the 
spatial wavefunction. ☞  ψ0(x) can have many forms and it will be our business to study some of them in
various physical situations. We will give further justification to this claim in Section 6.
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We can re-examine the probability density function (Equation 8)

|1Ψ(x, t)1|2 = Ψ1*(x, t)1Ψ1(x, t) (Eqn 8)

for the case of the general wavefunction of Equation 10:

Ψ (x, t) = ψ (x) exp − iE

˙
t



 (Eqn 10)

|Ψ (x, t) |2 = ψ * (x) exp
iEt

˙




 × ψ (x) exp − iEt

˙






= ψ * (x)ψ (x) = |ψ (x) |2 = P(x)

We see that the time dependence in |1Ψ(x, t) 1|12 disappears whenever the wavefunction corresponds to a fixed
energy. The probability density P(x) depends on position but not time, and for this reason the wavefunctions for
states of a fixed energy are known as stationary states. The free particle wavefunction of Equation 6

Ψ (x, t) = A exp i kx − ω t( )[ ] = A exp i
px

˙
x − E

˙
t











(Eqn 6)

is an example of a stationary state wavefunction.
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From now on we will be primarily concerned with particles of definite total energy moving in one dimension, so
their wavefunctions will describe stationary states and will take the form shown in Equation 10.

Ψ (x, t) = ψ (x) exp − iE

˙
t



 (Eqn 10)

Consequently, we will not need to consider the time-dependent parts of these wavefunctions, since they are
automatically determined once the relevant value of the energy is known. Instead we will concentrate on the
spatial part of the wavefunction, ψ1(x), and the corresponding energy E. Our task of finding the quantum
mechanical equivalent of Newton’s second law1—1the differential equation that determines wavefunctions1
—has now been reduced to the following:

What is the differential equation that determines the spatial part of a stationary state wavefunction of fixed
energy E?

The differential equation we are now searching for is called the time-independent Schrödinger equation.
As a first step towards uncovering its nature we need to consider in greater detail the way in which the
wavefunction provides information about the measurable properties such as energy and momentum.
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3.2 Introducing operators1—1an operator for momentum
The wavefunction contains all that we can hope to know about the quantum state of a system. But how are we
to obtain that information? For the free particle wavefunction of Equation 6

Ψ (x, t) = A exp i kx − ω t( )[ ] = A exp i
px

˙
x − E

˙
t











(Eqn 6)

we have already established that the time dependence of the wavefunction is determined by the energy, whereas
the spatial dependence is determined by the momentum. This suggests that to determine the energy from the
wavefunction we should look at its time dependence and to find the momentum we should look at its spatial
dependence, that is, its x-dependence for one-dimensional motion.

Let us formalize this a little more by first taking the derivative of our special spatial wavefunction,

ψ (x) = A exp
ipx

˙
x



 , with respect to x, thus finding out how the spatial wavefunction for a particle moving

freely along the x-axis changes with x.
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If ψ (x) = A exp
ipx

˙
x



 (11)

then
dψ (x)

d x
= ipx

˙




 A exp

ipx

˙
x



 = ipx

˙




 ψ (x)

Multiplying both sides of this equation by −i˙ we may write it as follows:

−i˙ d

d x









ψ (x) = pxψ (x) (12)

Equation 12 is an example of a very important class of mathematical equations known as eigenvalue equations.

In an eigenvalue equation, some mathematical operation is carried out on a function appearing on the left-
hand side of the equation with the result that the same function reappears multiplied by a real number on the
right-hand side.
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The mathematical operation occurring on the left of an eigenvalue equation can be anything from simply
‘multiply by a number’ or ‘take the sine, cosine or logarithm’ to, as here, ‘take the derivative with respect to x
and then multiply by −i˙’. The operation is said to be carried out by an operator. 

The expression −i ˙ d

d x
 is an example of a differential operator.

When an eigenvalue equation is satisfied then a function which is a solution is called an eigenfunction and the
real number which is generated as a multiplier is said to be the corresponding eigenvalue. ☞ In Equation 12

−i˙ d

d x









ψ (x) = pxψ (x) (Eqn 12)

the differential operator −i ˙ d

d x
 is the momentum operator, the eigenfunction is the spatial wavefunction of

Equation 11,

ψ (x) = A exp
ipx

˙
x



 (Eqn 11)

and the eigenvalue is the corresponding value of the momentum px.
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Physical quantities which have eigenvalues are called observables in quantum mechanics.

In the mathematical language of quantum mechanics we say that this spatial wavefunction is an eigenfunction of
the momentum operator, or more simply, an eigenfunction of momentum. The momentum value is an
eigenvalue of the equation and so the problem of finding the possible values for the momentum of the particle
becomes the problem of finding the functions which are the eigenfunctions of the momentum operator and then
finding the eigenvalues.

There is a general problem in solving an eigenvalue equation in that both the eigenfunctions and the eigenvalues
are unknown initially. Very often a solution is found by recognizing the eigenvalue equation as a differential
equation whose general solutions are known and then inferring the general form of the physical eigenfunctions
from the physical form of the solutions required1—1by inspiration in fact!

We now adopt Equation 12

−i˙ d

d x









ψ (x) = pxψ (x) (Eqn 12)

as a law of quantum mechanics which applies in all circumstances where the particle has a defined momentum,
not just for the single travelling wave solution.
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So:

The operator corresponding to the x-component of momentum, denoted p̂x  is always expressible as:

p̂x = −i ˙ d

d x
(13) ☞

A function ψ1(x) will be an eigenfunction of momentum, with eigenvalue px if it satisfies

p̂xψ (x) = pxψ (x) (14) ☞

The free particle spatial wavefunction

ψ (x) = A exp
ipx x

˙






meets this requirement and is therefore an eigenfunction of momentum with eigenvalue px.
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Question T3

Which of the following functions are eigenfunctions of momentum and what are the corresponding eigenvalues,
if any? In each case q is a positive real number.

(a) ψ (x) = A exp
iqx

˙




 ,  (b) ψ (x) = A cos

qx

˙




 ,  (c) ψ (x) = A exp

−iqx

˙




 .4❏

Application of the momentum operator to a wavefunction is the mathematical equivalent of making a
measurement of the particle’s momentum. If the wavefunction of a system is an eigenfunction of the momentum
operator then the result of measuring the momentum of the system will be the corresponding momentum
eigenvalue. This corresponds to the result of a physical measurement giving a definite, predictable value of the
momentum1—1if the momentum eigenvalue is px then the result of a measurement of momentum is definitely px.

If, however, the wavefunction involves a combination of momentum eigenfunctions then it will not be an
eigenfunction of momentum. The result of a momentum measurement may then be any one of the eigenvalues
corresponding to the eigenfunctions involved in the combination. In this case the wavefunction may be used to
predict the relative likelihood (i.e. the probability) of each of the possible outcomes. ☞
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3.3 An operator for kinetic energy
The general strategy for obtaining observable properties of the system in quantum mechanics is to discover the
appropriate operator and to write down and solve the eigenvalue equation involving this operator. This may
seem an odd approach at first, because it is quite different from that used in classical physics. Nevertheless, let
us press on and try to anticipate a suitable operator for another important observable1—the kinetic energy. ☞

We will be guided by the result from classical physics1—1that in one-dimensional motion the kinetic energy is

expressible in terms of the momentum as Ekin = px
2 (2m). It is natural then to construct an operator for kinetic

energy by replacing px in this expression by the operator p̂x = −i ˙ d

d x
. This implies that we should apply the

momentum operator twice to the spatial wavefunction of Equation 11,

Starting from ψ (x) = A exp
ipx

˙
x



 (Eqn 11)

then divide the result by 2m to find the kinetic energy as an eigenvalue. Let us try it!
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Starting from ψ (x) = A exp
ipx

˙
x



 (Eqn 11)

Operating once with p̂x : −i˙ dψ
d x

= pxψ (Eqn 12)

Operating twice: −i˙ d

dx
−i˙ dψ (x)

dx




 = −i˙ d

dx
pxψ (x)[ ]

but, remember that: −i˙ d

dx
−i˙ d

dx




 ψ (x) = −˙2 d2ψ (x)

dx2

and, since px is constant:

−i˙ d

dx
pxψ (x)[ ] = px −i˙ d

dx
ψ (x)



 = px

2ψ (x)

Thus −˙2 d2ψ (x)
dx2

= px
2ψ (x) i.e. −˙2 d2

dx2






ψ (x) = px

2ψ (x)

Dividing both sides of this equation by 2m we produce another eigenvalue equation, with the kinetic energy
appearing as an eigenvalue on the right. We may therefore identify the operator on the left as the kinetic energy
operator.
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Again, we will assume that this result, valid for the special case of a free particle wavefunction, is also valid
generally. We can the summarize as follows:

The operator corresponding to the kinetic energy in one-dimensional motion is always expressible as:

Êkin = −˙2

2m

d2

dx2
(15)

With: Êkinψ (x) = Ekinψ (x) (16)

The free particle spatial wavefunction

ψ (x) = A exp
ipx x

˙






meets this requirement and is therefore an eigenfunction of kinetic energy with eigenvalue Ekin = px
2 2m .

Question T4

Show that the function ψ (x) = A cos qx ˙( )  is an eigenfunction of kinetic energy. 

What is the corresponding eigenvalue?4❏
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3.4 The free particle time-independent Schrödinger equation
Now we have all the tools necessary to reach our first goal1—1establishing the form of the time-independent
Schrödinger equation for the free particle. Remember, the role of the time-independent Schrödinger equation
was to determine the spatial part of a wavefunction of fixed energy E. We can now express this by saying:

The time-independent Schrödinger equation for any system is simply the eigenvalue equation for the total
energy of the system. ☞

Our task here is to discover an operator for the total energy of our free particle and then to write down a
differential equation which is an eigenvalue equation of the total energy operator. The result must be consistent
with the fact that the free particle spatial wavefunction, ψ (x) = A exp ipx x ˙( ), corresponding to a fixed total

energy, must therefore be an eigenfunction of the total energy operator.
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Fortunately this task is fairly straightforward. As we noted earlier, the potential energy of a free particle is
constant and may be chosen to be zero. If we make this choice, the total energy of the free particle is identical to
its kinetic energy, and the kinetic energy operator of Equation 15

Êkin = −˙2

2m

d2

dx2
(Eqn 15)

is also the total energy operator. We can therefore say that:

The time-independent Schrödinger equation for a free particle moving in one dimension is:

−˙2

2m

d2ψ (x)
dx2

= Eψ (x) (17) ☞

Notice that we have not derived this second-order differential equation from anything. Schrödinger did not
derive it either! He stated it as a rule of quantum mechanics, which could be justified only by the critical
comparison of its predictions with experimental results. This is also entirely in keeping with the role played by
Newton’s second law in classical physics, as we discussed in Subsection 2.2.
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In obtaining Equation 17

−˙2

2m

d2ψ (x)
dx2

= Eψ (x) (Eqn 17)

we have adopted an approach based on inspiration and the fore-knowledge of the wavefunction for a free
particle.

Of course, quantum mechanics must be applicable in much more complicated situations, where we may have no
idea of the form of the wavefunctions or the energies. To deal with such situations we will need a more general
form of the time-independent Schrödinger equation, one that is not limited to free particles. However, before we
try to develop such an equation let us pause to investigate Equation 17.
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3.5 Solving the free particle Schrödinger equation
For a fixed value of E, Equation 17

−˙2

2m

d2ψ (x)
dx2

= Eψ (x) (Eqn 17)

is a linear homogeneous second-order differential equation with constant coefficients and its general solution
has the standard form:

ψ(x) = A1exp1(ikx) + B 1exp1(−ikx) (18) ☞

where A  and B are arbitrary complex constants and the constant k relates to the constant E through the
expression:

E = ˙2k2

2m
(19)
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Question T5

Verify, by direct substitution, that Equation 18

ψ(x) = A1exp1(ikx) + B 1exp1(−ikx) (Eqn 18)

is a solution to the free particle Schrödinger equation (Equation 17).

−˙2

2m

d2ψ (x)
dx2

= Eψ (x) (Eqn 17)

4❏

Question T6

Show that the function ψ0(x) = A1exp1(ikx) is an eigenfunction of momentum with eigenvalue px = ˙k and an

eigenfunction of kinetic energy with eigenvalue Ekin = ˙2k2 (2m) .4❏



FLAP P10.4 The Schrödinger equation
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

In the special case where B = 0 in Equation 18,

ψ(x) = A1exp1(ikx) + B 1exp1(−ikx) (Eqn 18)

ψ0(x) becomes the spatial wavefunction of a free particle moving with definite momentum px = ˙k in the positive
x-direction and having a total energy E = px

2 (2m) . Alternatively, if A = 0, ψ 0(x) becomes the spatial
wavefunction of a particle with the same total energy but with momentum px = −˙k, so it is moving in the
negative x-direction. A most interesting case arises when A = B in Equation 18. We can then write:

ψ0(x)= A[exp1(ikx) + exp1(−ikx)]

We can use Euler’s relation, that exp1(±iθ) = cos1θ ± i1sin1θ, to write ☞:

ψ0(x) = A[cos1(kx) + i1sin1(kx) + cos1(−kx) + i1sin1(−kx)]

so ψ0(x) = A[21cos1(kx) + i(sin1(kx) − sin1(kx))] = 2A1cos1(kx)

This spatial wavefunction is an eigenfunction of kinetic energy but it is not an eigenfunction of momentum, as
we saw in Question T3(b). The mathematics shows that the spatial wavefunction is the sum of two parts.
The first part, exp1(ikx), is itself an eigenfunction of momentum and represents a particle with definite
momentum px = ˙k. The second part, exp1(−ikx), is another momentum eigenfunction corresponding to
momentum px = −˙k.
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This situation is interpreted in the following way. If a particle has wavefunction proportional to cos1(kx) then a
measurement of momentum is equally likely to give px = ˙k or px = −˙k. The particle is equally likely to be
moving in the positive or negative directions. ☞  This is typical of the superposed states that can arise in
quantum physics. We often have to accept that we cannot make definite predictions about the state of motion or
the position of a particle. When this occurs the best we can do is to predict the probability of the possible
outcomes of a measurement.

Contrast this situation with that described by Newtonian mechanics. In the large scale world, if a particle is free
to move in the x-direction its position and momentum can both be known simultaneously and we can follow the
particle’s trajectory. In the quantum world the concept of a trajectory is lost. For example, you may have noticed
that we set up the previous problem by saying that the particle had only x-motion (i.e. motion parallel to the
x-axis) but not that it was moving along the x-axis. To have only x-motion requires that py = pz = 0, so that the
y- and z-momenta are known perfectly; the claim that the motion was along the x-axis would also require y = 0
and z = 0, i.e. perfect knowledge of the y and z position coordinates. To claim such perfect knowledge of both
position and momentum along either of these two axes is a violation of the Heisenberg uncertainty principle.
To be confident of having one-dimensional x-motion requires complete ignorance of the y and z position
coordinates, so the particle cannot be said to be moving along the x-axis.
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Question T7

Show that the spatial wavefunction ψ0(x) = A1sin1(kx) is a solution of the free particle time-independent
Schrödinger equation (Equation 17).

−˙2

2m

d2ψ (x)
dx2

= Eψ (x) (Eqn 17)

What is the kinetic energy of the associated particle? What are the possible results of a measurement of
momentum? (Hint: Express sin1(kx) as a sum of two exponential terms.)4❏

Question T8

The spatial wavefunction ψ1(x ) = A1cos1(kx) is one possible solution of the free particle time-independent
Schrödinger equation (Equation 17). Write down the corresponding probability density P(x) = |1ψ1(x)1|02 and
sketch both ψ(x) and P(x) from x = −π0/k to x = +π0/k. Where is the particle most likely to be found within this
range and where is it least likely to be found?4❏
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4 A particle confined in one dimension; the one-dimensional box
One of Schrödinger’s primary aims in developing his wave equation was to understand why electrons confined
inside atoms could exist only in discrete energy levels. He realized that the wave model of de Broglie could play
a key role in that understanding because he knew that mechanical waves, when confined to strings or surfaces or
volumes of fixed dimensions, always have certain normal modes, consisting of standing waves, with definite
frequencies.

Up to this point we have only been able to argue, by analogy with the situation of confined mechanical waves,
that when the de Broglie waves are similarly confined they too should have only certain possible frequencies and
wavelengths. Using the de Broglie hypothesis, these definite frequencies or wavelengths translate directly into
definite values of energy and momentum and immediately the quantized energies of a confined particle are
predicted. Now we can do much better than this because we have a differential equation whose solutions, we
suspect, include the required physical wavefunctions and energies.

In this section we see how the case of a particle confined in one-dimensional motion is treated in quantum
mechanics. In doing this we will not produce a single result which could not have been correctly predicted from
the de Broglie wave approach but we will be introducing a technique which is quite different and which is
capable of solving much more difficult problems, such as you will meet later.
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4.1 The Schrödinger equation in the one-dimensional box
In one-dimensional confinement the wavefunction of the particle depends on a single position coordinate (e.g. x)
and the particle is not allowed outside of a finite range of x-coordinates, say between x = 0 and x  = D .
The realization of this situation could be a particle held in the space between two parallel infinite planes,
separated by a distance D, measured along the x-axis. For example, we might locate one plane at x = 0 and the
other at x = D. This is usually called a one-dimensional box1—1it is actually a box in three-dimensional space,
but the confinement is in one dimension only. The particle is completely free to move in y and z but is restricted
in x.  ☞ We must set the boundary conditions such that the wavefunction is zero everywhere outside the box,
since there is no probability of finding the particle there. Also, it is essential that the wavefunction should have
only a single value at any given point, since it corresponds to the probability of finding the particle at that point.
This requirement, combined with the mathematical demand that ψ1(x) should be continuous at the boundary,
means that the wavefunction must also be zero at the walls (i.e. at x = 0 and x = D).

Incidentallty, we can indicate that our particle is free to move inside a one-dimensional box, but is incapable of
escaping, by noting that its potential energy function, U(x) is:

U(x) = 0 within the interval 0 ≤ x ≤ D

and U(x) = ∞ for x < 0 and x > D

This second condition will prevent the particle escaping from the box, since the particle’s kinetic energy,
however large, must be finite.
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(a)

∞ ∞
E

O D x

Figure 3a4A one-dimensional box,
shown as an infinite potential well.

Figure 3a shows this potential energy function schematically. Any region
in which the potential energy is lower than in surrounding regions is
known as a potential well; for obvious reasons, this well here is known as
an infinite potential well.

In Subsection 3.5 we developed the Schrödinger equation for a free
particle (i.e. one for which the potential energy can be set equal to zero
everywhere) moving in one-dimension. This situation was represented by
the Schrödinger equation:

−˙2

2m

d2ψ (x)
dx2

= Eψ (x) (Eqn 17)

The general solutions were of the form:

ψ(x) = A1exp1(ikx) + B 1exp1(−ikx) (Eqn 18)

where A and B are arbitrary (complex) constants, and the energy of the
system was related to the constant k by the expression:

E = ˙2k2

2m
(Eqn 19)
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In Subsection 3.5 there were no physical restrictions on these solutions and the energy (wholly kinetic) could
take any non-negative value.

For the one-dimensional box there are still no forces acting on the particle, except where it encounters a wall.
The walls are impenetrable, irrespective of the impact energy of the particle. Therefore we can still set the
potential energy to be zero between the walls and can therefore use Equation 17 and its general solution,
Equation 18,

−˙2

2m

d2ψ (x)
dx2

= Eψ (x) (Eqn 17)

ψ(x) = A1exp1(ikx) + B 1exp1(−ikx) (Eqn 18)

immediately, provided that we only consider solutions which meet the boundary conditions that ψ = 0 at x = 0
and at x = D, and provided we impose the additional demand that ψ1(x) = 0 outside the box.

It is more convenient for this problem if we re-write Equation 18 in an equivalent form using sine and cosine
functions:

ψ(x) = a1cos1(kx) + b1sin1(kx) (20)

where a and b are constants (in general, complex constants).
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✦ Rewrite Equation 18

ψ(x) = A1exp1(ikx) + B 1exp1(−ikx) (Eqn 18)

in the form of Equation 20.

ψ(x) = a1cos1(kx) + b1sin1(kx) (Eqn 20)

Substitution of the boundary conditions into Equation 20 gives:

o At x = 0: ψ(0) = 0. This implies that a = 0.

o At x = D: ψ(D) = 0. This implies that b1sin1(kD) = 0

Assuming b ≠ 0, the second condition gives: kD = π or 2π or 3π or … etc.

i.e. k = π
D

,
2π
D

,
3π
D

,…
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so, there are several possible solutions, each of the form ψn(x) = bn1sin1(kx0x)

where kn = nπ
D

with n = 1, 2, 3, … (21)

The positive integer n is called a quantum number, in this context. It can be used to label the energy
eigenvalues and the corresponding eigenfunctions:

from Equation 19: En = ˙2kn
2

2m
= n2π2˙2

2mD2
= n2h2

8mD2
(22)

inside the box the spatial wavefunctions are: ψ n (x) = bn sin
nπx

D




 (23) ☞

outside the box the spatial wavefunctions are: ψn(x) = 0
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9h2

8mD2

E

4h2

8mD2

h2

8mD2

0 D

E1

E2

E3

(b)   

0 D

ψ3

ψ2

ψ1

n = 3

n = 2

n = 1

(c)

Figure 3b/c4(b) The first three energy levels and (c) the
corresponding eigenfunctions in this well.

The discrete energy eigenvalues are usually
termed energy levels; the first three energy
levels and their eigenfunctions are shown in
Figure 3b and 3c. These results are identical to
those obtained using the primitive idea of de
Broglie waves but the approach is quite
different. With the de Broglie approach we
assume the wavefunction solutions and find
the energies. In the Schrödinger approach we
assume the Schrödinger equation and deduce
both the wavefunction and the energies.

Notice in particular that the energy of the
particle is inversely proportional to D2 the
square of the size of the confining region.
This is a result of fundamental importance for
quantum physics.
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Atomic energy levels are typically separated by about ten electronvolts (eV) ☞ and this is just the energy scale
expected for electrons bound in structures of dimension ≈ 10−101m. Nuclear energy levels are usually measured
in MeV (11Mev = 1061eV); this is expected for protons or neutrons bound in structures of dimensions ≈ 10−141m.

You will notice that n = 0 is not on the list of allowed quantum numbers. This is because it would correspond to
ψ1(x) = 0 inside the box, which we know cannot be true: the particle is in there somewhere. So n = 1 is the lowest
allowed quantum number and this means that the minimum value of the kinetic energy of a confined particle is
greater than zero. This remarkable conclusion is quite contrary to Newtonian mechanics, where a confined
particle can have zero speed and thus zero kinetic energy. The minimum kinetic energy of a confined quantum
particle is called the zero point energy and has important physical consequences. For example, even when a
material is cooled down to temperatures close to absolute zero, the atomic electrons have non-zero kinetic
energies, even in their state of lowest energy, so the electrons can never be regarded as stationary. ☞
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Question T9

Show by direct substitution that ψ n (x) = sin nπx D( ) is a solution of the Schrödinger equation (Equation 17)

−˙2

2m

d2ψ (x)
dx2

= Eψ (x) (Eqn 17)

with En = n2h2 (8mD2 ). Confirm that ψn(x) = 0 at x = D, provided n is an integer.4❏

Question T10

What is the zero point energy of an electron (mass = 9.1 × 10−311kg) confined in a one-dimensional box of size
1.01nm (≈ the diameter of a hydrogen atom).4❏

Question T11

A particle in a one-dimensional box of size D has a wavefunction ψ n (x) = sin 2πx D( )  with ψn(x) = 0 outside

the box. What is the particle’s kinetic energy? Find the x-coordinates where the particle is: (a) least likely and
(b) most likely to be found.4❏
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4.2 Normalization of the wavefunctions

When a particle is trapped in a one-dimensional box the probability of finding the particle somewhere in the box
must be 1. We can ensure that each of the spatial wavefunctions ψn(x) in Equation 23

inside the box the spatial wavefunctions are: ψ n (x) = bn sin
nπx

D




 (Eqn 23)

individually corresponds to a quantum state that meets this requirement by adjusting the arbitrary constant bn in
Equation 23 so that the integral of the probability density over the whole box interval, 0 ≤ x ≤ D, is equal to 1.
This procedure is called normalization. In mathematical terms normalization implies

1 = | ψ n (x) |2
0

D

∫ dx = bn
2 sin2 nπx

D






0

D

⌠
⌡

dx = bn
2 D

2

Thus bn = 2 D , and the normalized wavefunctions are:

ψ n (x) = 2 D sin
nπx

D




 (24)
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−π/k

x

ψ (x)

−π/k π/k

x

P(x)

π/k

For a particle in a stationary state corresponding to any
particular one of the spatial wavefunctions, ψn(x), the
probability of finding the particle in any interval within the
box between positions x  = x1 and x  = x 2 is given by the
integral:

P(x)
x1

x2

∫ dx = |ψ n (x) |2
x1

x2

∫ dx

This is simply the area under a graph of |1ψ(x)1|2 (such as
Figure 4 in Answer T8) between x = x1 and x = x2.

Figure 44See Answer T8.
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If however the particle is in a quantum state described by a wavefunction constructed from a combination of
energy eigenfunctions, so that

Ψ(x, t) = a1ψ1(x) exp (−iE1t ˙) + a2ψ 2 (x) exp (−iE2t ˙) + … + aN ψ N (x) exp (−iENt ˙)

where a1, a2, a3 … aN, etc. are (complex) constants, then we must impose the additional requirement that

Ψ (x, t) 2

0

D

∫ dx = 1

Although it is beyond the scope of this module to do so, it may be shown that this leads to the normalization
condition

|1a11|12 + |1a21|12 + |1a31|12 + … + |1aN1|12 = 1

Where |1a11|12 is the probability that an energy measurement will yield the value E1; and |1a21|12 is the probability of
measuring E2; and so on.
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5 Including potential energy in the Schrödinger equation

In Newtonian mechanics a knowledge of the potential energy of a particle, subject to conservative forces ☞,

allows us to use the concept of energy conservation to work out the particle’s motion. Usually, the potential
energy varies with position in space and its negative gradient in any direction gives the component of the force
on the particle in that direction. For motion in one dimension the potential energy can then be represented by a

function of position U(x) and the force on a particle is given by Fx = −dU(x)
dx

.

In quantum mechanics a particle’s potential energy function U(x) ☞ generally plays a role in determining its
wavefunction. This quantity must therefore be included in the time-dependent Schrödinger equation that
determines Ψ1(x, t), and the time-independent Schrödinger equation that determines the spatial wavefunction
ψ1(x) in a stationary state of given energy. This will enable us to deal with problems involving particles
influenced by forces. This potential energy function must accurately represent the potential energy of the system
in the region of space in which the solutions of the Schrödinger equation are sought.
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5.1 The one-dimensional Schrödinger equation, including potential energy

In Subsection 3.4 we found that the Schrödinger equation for a free particle was the eigenvalue equation for the
total energy operator, in this special case where the total energy operator was simply the kinetic energy operator:

Êkin = −˙2

2m

d2

dx2
(Eqn 15)

and the spatial wavefunction corresponding to a stationary state of total energy E = Ekin satisfies

Êkinψ (x) = Ekinψ (x) (Eqn 16)

In classical physics, when changes in potential energy are also important we write the total energy as the kinetic
energy plus the potential energy and, for an isolated ☞ system, it is this total energy which is a constant during
the motion. If we try to transfer this energy conservation principle into quantum mechanics it seems eminently
sensible to construct a total energy operator by adding a potential energy operator to the kinetic energy
operator, as obtained in Subsection 3.4.
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The total energy operator, often called the Hamiltonian operator, then becomes:

Hamiltonian operator: Ĥ = Êkin + Êpot = −˙2

2m

d2

dx2
+ U(x)







 (25)

and the full time-independent Schrödinger equation in one dimension as:

Ĥψ (x) = Eψ (x) , i.e. 
−˙2

2m

d2ψ (x)
dx2

+ U(x)ψ (x) = Eψ (x) (26)

Study comment Equation 26 can in principle be used to solve any fixed energy one-dimensional problem in quantum
mechanics, once the appropriate potential energy function U(x) is substituted. However, for the general case of U(x) this
solution requires approximation methods. In this module we will look only at a few special cases which can be solved
exactly.
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Do not be hoodwinked by all this mathematics! We have not derived the time-independent Schrödinger
equation; we have simply postulated it, on the basis of consistency with energy conservation and with the
operator formalism developed in Section 3. Nevertheless, experience in using this equation reinforces our belief
in it1—1its solutions do appear to be spatial wavefunctions of particles with a definite total energy, moving in one
dimension under a potential energy function U(x).

Remember that Equation 26

Ĥψ (x) = Eψ (x) , i.e. 
−˙2

2m

d2ψ (x)
dx2

+ U(x)ψ (x) = Eψ (x) (Eqn 26)

gives only the spatial parts of the stationary state wavefunctions, i.e. the energy eigenfunctions.

The full wavefunction corresponding to any given quantum state depends on time as well as position, and
satisfies the time-dependent Schrödinger equation. We will investigate this equation shortly, but for the moment
concentrate on Equation 261—the time-independent Schrödinger equation.

Equation 26 is the central result of this module. Here is the reason why it is so important.
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Ĥψ (x) = Eψ (x) , i.e. 
−˙2

2m

d2ψ (x)
dx2

+ U(x)ψ (x) = Eψ (x) (Eqn 26)

Equation 26 is the central result of this module. If we know the potential energy U(x) of a particle moving in
one dimension, then we can write down the corresponding time-independent Schrödinger equation (Equation
26). This is an eigenvalue equation for the total energy of the particle. Its solutions are the possible energy
eigenvalues of the particle (E1, E2, E3, …) and the corresponding energy eigenfunctions (ψ1(x), ψ2(x), ψ3(x) …).
The energy eigenfunctions are also the spatial parts of the stationary state wavefunctions

Ψ1(x, t) = ψ1(x) exp (−iE1t ˙) , Ψ2 (x, t) = ψ 2 (x) exp (−iE2t ˙), Ψ3 (x, t) = ψ3 (x) exp (−iE3t ˙), …

Each of these stationary state wavefunctions represents a state of definite total energy. Other states, in which
the energy does not have a single definite value, may be represented by wavefunctions constructed from
combinations of the stationary states, such as

Ψ (x, t) = a1Ψ1(x, t) + a2Ψ2 (x, t) + … + aN Ψ N (x, t)

where a1, a2, a3 …aN, etc. are complex constants and the normalization of Ψ1(x, t) (see Subsection 4.2) requires

|1a11|12 + |1a21|12 + |1a31|12 + … + |1aN1|12 = 1



FLAP P10.4 The Schrödinger equation
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

5.2 Solutions in a region where E > U(x)
We will now examine solutions of Equation 26

Ĥψ (x) = Eψ (x) , i.e. 
−˙2

2m

d2ψ (x)
dx2

+ U(x)ψ (x) = Eψ (x) (Eqn 26)

in a region where the total energy E exceeds the potential energy U(x). This qualification corresponds to the
kinetic energy being positive, as expected in classical physics.

In the classical world the potential energy can be positive or negative but the kinetic energy must be positive
(or zero), so the total energy must always exceed (or equal) the potential energy. In the next subsection we will
find that the Schrödinger equation predicts some rather interesting solutions when this condition is violated, but
for the moment we will postpone this.
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We consider a region where the potential energy is constant at U(x) = U0. 
In such a region, the Schrödinger equation is:

−˙2

2m

d2ψ (x)
dx2

= (E − U0 )ψ (x) (27)

This equation is identical to Equation 16,

Êkinψ (x) = Ekinψ (x) (Eqn 16)

with the kinetic energy eigenvalue, (E − U0), as the difference between the total energy E and the potential
energy U0. The solutions follow immediately from Equations 18 and 19.

E = ˙2k2

2m
(Eqn 19)

Provided E > U0 ψ(x) = A1exp1(ikx) + B 1exp1(−ikx) (Eqn 18)

where A and B are arbitrary constants (complex) and the constant k is related to the kinetic energy (E − U0) by
the expression:

E − U0 = ˙2k2

2m
(28)
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The values of k are reduced, relative to their values for the case U0 = 0. Since the momentum of the particle is
determined by the value of k this is equivalent to saying that a particle of total energy E travelling through a
region with U0 = 0 will have its momentum reduced if it subsequently enters a region where U0 > 0.
This is consistent with classical physics1—1for a given total energy, the kinetic energy must fall if the potential
energy rises. Similarly, if U0 < 0 then the kinetic energy is increased.

Question T12

Show by direct substitution that ψ(x) = A1exp1(ikx) is a solution of the time-independent Schrödinger equation in
the case when U(x) has a constant value U0. Confirm that the momentum of the particle is given by px = ˙k and
the total energy is given by

E = px
2

2m
+ U0 4❏
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5.3 Solutions in a region where U(x) > E
In Newtonian mechanics a particle with total energy E cannot enter a region of space where the potential energy
function U(x) > E, because to do so would imply a negative kinetic energy. However, there are solutions of
Schrödinger’s equation when U(x) > E and physical consequences follow from this.

Again, we consider a region where the potential energy is constant at U(x) = U0 so that the time-independent
Schrödinger equation may be written:

˙2

2m

d2ψ (x)
dx2

= (U0 − E)ψ (x) (29)

where (U0 − E) is now positive and we have multiplied both sides of Equation 26 by −1 to remove the minus
sign on the left-hand side.

 
−˙2

2m

d2ψ (x)
dx2

+ U(x)ψ (x) = Eψ (x) (Eqn 26)

The loss of the negative sign is crucial, since the modified differential equation no longer leads to the spatial
parts of wave-like wavefunctions. In fact, we can write Equation 29 as:
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d2ψ (x)
dx2

= 2m(U0 − E)
˙2

ψ (x) = α 2ψ (x) (30)

where α 2 = 2m(U0 − E)
˙2

> 0 (31)

The general solutions of Equation 30 are of the form:

ψ(x) = A1exp1(α 0x) + B1exp 1(−0α 0x) (32)

where A and B are arbitrary constants and α can be taken as positive. These solutions are real exponential
solutions, not complex exponential solutions.

Question T13

Verify, by direct substitution, that Equation 32 is a solution to Equation 30.4❏

Question T14

Show that ψ(x) = B1exp1(−α 0x) is not an eigenfunction of momentum. Obtain the probability density function
P(x).4❏
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The functions A1exp 1(α 0x) and B1exp1(−α 0x) are not travelling waves, nor are they eigenfunctions of momentum.
Hence the spatial wavefunction of Equation 32

ψ(x) = A1exp1(α 0x) + B1exp 1(−0α 0x) (Eqn 32)

does not predict a unique momentum. However, the probability density function P(x) is a real quantity and so
the theory predicts that

There is a finite probability that the particle can be found in a region whereE < U0, even though this region
is forbidden classically.

In the case when B = 0 and α  > 0 the spatial wavefunction is a rising exponential as x increases positively,
ψ(x) = A1exp1(α 0x), and so is the probability density P(x) = |1ψ(x)1|02 = A21exp1(2α 0x). If A = 0 and α  > 0 both the
spatial wavefunction and the probability density are falling exponentials: ψ0(x ) = B1exp1(−α 0x) and
|1ψ0(x)1|2 = B21exp1(−2α 0x), as in Answer T14. In an unbounded region in which x can tend either to +0∞ or −0∞ only
one of these two alternatives will be physically sensible in each of the positive and negative x regions, since the
wavefunction cannot be allowed to grow without limit within the range of x.
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The possibility of observing a particle in a region of space where the potential energy is greater than the total
energy is a purely quantum mechanical effect. The phenomenon is observed in the α-decay of unstable nuclei
where the α-particle has to pass through a region of potential energy which is higher than the total particle
energy (a so-called potential barrier). Also, in semiconductor devices electrons are found to tunnel through thin
films of material in situations where the electric potential would be high enough to exclude the electrons, if the
laws of classical physics held. These barrier penetration processes are examples of a process called
quantum tunnelling. ☞
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6 The time-dependent Schrödinger equation
Most of this module has been devoted to the time-independent Schrödinger equation and to the energy
eigenfunctions (i.e. spatial wavefunctions) that it determines. However, it has also been stressed that the really
important quantity in quantum mechanics is the full time-dependent wavefunction, Ψ1(x, t), which obeys another
differential equation1—1the time-dependent Schrödinger equation. It is to this equation and the wavefunctions
that satisfy it that we now turn our attention.

6.1 Partial derivatives
Wavefunctions such as Ψ1(x, t) are functions of two independent variables, x and t. This means that when we
consider how Ψ1(x, t) changes when x or t changes we can ask questions such as: ‘What is the rate of change of
Ψ1(x, t) with respect to t while x is held constant?’ or, quite separately: ‘What is the rate of change of Ψ1(x, t)
with respect to x while t is held constant?’ The answer to both of these questions is found by differentiating
Ψ1(x, t), but because it is a function of two variables we have to take care to specify what is changing and what is
being held constant when the differentiation is performed. This is done by using the mathematical concept of a
partial derivative. ☞ For example, the answer to our first question, ‘What is the rate of change of Ψ1(x, t) with
respect to t while x is held constant?’ is given by the first partial derivative of Ψ1(x, t) with respect to t.
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This may be denoted in any of the following ways:

∂Ψ
∂ t

at constant x

 or, more briefly 
∂Ψ
∂ t





 x

 or, briefer still 
∂Ψ
∂ t

☞

Similarly, the answer to our second question, ‘What is the rate of change of Ψ(x, t) with respect to x while t is

held constant?’ is given by the partial derivative of Ψ1(x, t) with respect to x which may be written 
∂Ψ
∂ x

.

Evaluating partial derivatives is no harder than evaluating ordinary derivatives: you just have to remember to
treat x as a constant when differentiating partially with respect to t, and, similarly, to treat t as a constant when
differentiating partially with respect to x. A question (which you may prefer to treat as an example) should make
the process clear.

✦

If f1(x, t) = x2 − x0t2, find  
∂ f

∂ x
 and  

∂ f

∂ t
.
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6.2 The time-dependent Schrödinger equation
The fundamental equation of quantum mechanics, the time-dependent Schrödinger equation is a partial
differential equation. In a simple one-dimensional case it would take the form

− ˙2

2m

∂Ψ (x, t)
∂ x2

+ U(x, t)Ψ (x, t) = i˙ ∂Ψ (x, t)
∂ t

 (33) ☞

where U(x, t) is the potential energy function of the physical system being considered, and Ψ1(x, t) is a
wavefunction describing that system. In practice, we are usually interested in the wavefunction corresponding to
some particular state of the system, and we must determine this from the general solution of Equation 33 by
imposing appropriate boundary conditions. If we wanted to consider a different system then the function U(x, t)
would have to be changed to represent the new problem.
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The time-dependent Schrödinger equation

− ˙2

2m

∂Ψ (x, t)
∂ x2

+ U(x, t)Ψ (x, t) = i˙ ∂Ψ (x, t)
∂ t

 (Eqn 33)

has many interesting mathematical properties, but we shall note just four of them:

1 The equation involves i, the square root of –1, this is why complex numbers play an essential role in
quantum mechanics.

2 If the potential energy function is actually independent of time, so that we may replace U(x, t) by U(x) then
the time-dependent Schrödinger equation can be shown to have solutions that are separable, that is
solutions that may be written in the form

Ψ1(x, t) = ψ(x)φ0(t) ☞

where φ1(t) = exp1(−iEt/̇ )and ψ1(x) satisfies the time-independent Schrödinger equation:

− ˙2

2m

d2ψ (x)
dx2

+ U(x)ψ (x) = Eψ (x)

These are nothing other than the stationary state wavefunctions we have been concentrating on in this
module.
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− ˙2

2m

∂Ψ (x, t)
∂ x2

+ U(x, t)Ψ (x, t) = i˙ ∂Ψ (x, t)
∂ t

 (Eqn 33)

3 Since the time-independent Schrödinger equation is actually an eigenvalue equation for the total energy,
there will generally be several different energy eigenfunctions ψ1(x), ψ 2(x), ψ 3(x), ψ 4(x), … etc.
corresponding to the energy eigenvalues E1, E2, E3, E4, … etc. Consequently, provided the potential energy
is independent of time there will generally be many different stationary state wavefunctions which may be
conveniently labelled Ψ1(x, t), Ψ2(x, t), Ψ3(x, t), Ψ4(x, t), … etc., where

Ψ1(x, t) = ψ01(x)1exp1(i0E1t/˙), Ψ2(x, t) = ψ02(x)1exp1(i0E2t/˙),

Ψ3(x, t) = ψ03(x)1exp1(i0E3t/˙), … etc.

4 The time-dependent Schrödinger equation has the property of linearity, this means that if Ψi(x, t) and
Ψj(x, t) are both solutions to the time-dependent Schrödinger equation for a given potential energy function,
then Ψ(x, t) = αΨi0(x, t) + βΨj0(x, t), where α  and β are (complex) constants, will also be a solution.
This means that once we know the stationary state wavefunctions that correspond to states of definite
energy, we can also construct superpositions such as:

Ψ1(x, t) = α 1exp 1(i0Ei0t/˙)ψi0(x) + β1exp1(i0Ej0t/˙)ψj0(x)
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Assuming that Ei ≠ Ej, it is clear that this last wavefunction

Ψ1(x, t) = α 1exp 1(i0Ei0t/˙)ψi0(x) + β1exp1(i0Ej0t/˙)ψj0(x)

describes a state in which the system has no definite energy. However, according to quantum mechanics, if the
energy of the particle is measured then the result will be either Ei or Ej and the probability of obtaining either
result in a sequence of identical measurements is predictable. In fact, if the energy eigenfunctions have been
properly normalized, the probability of finding the energy to be Ei will be equal to |1α 1|12 and the probability of
finding the energy to be Ej will be equal to |1β1|12.
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7 Closing items

7.1 Module summary
1 The de Broglie hypothesis connects a particle’s momentum with the angular wavenumber of the associated

de Broglie wave, through px = ˙k. The kinetic energy is then

Ekin = px
2

2m
= ˙2k2

2m
The total energy is related to the angular frequency of the de Broglie wave by E = ˙ω.

2 In quantum mechanics a wavefunction is a complex quantity that provides the most complete possible
description of a quantum state. The wavefunction of an unlocalized free particle moving in the x-direction is
a complex travelling wave of the form

Ψ x, t( ) = A exp i kx − ω t( )[ ] = A exp i
px

˙
x − E

˙
t











(Eqn 6)

3 The Born probability hypothesis is that the probability of finding the particle within the small interval ∆x
around the position x at time t is proportional to |1Ψ(x , t)1|2∆x. The function |1Ψ(x, t)1|2 is known as the
probability density.
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4 The wavefunction of a localized free particle, known to be located within a specified region of space, may
be represented by a quantum wave packet, composed of a superposition of complex travelling waves with a
range of angular wavenumbers, which travels at the wave group velocity.

5 The wavefunction of a particle with definite total energy E can be written as

Ψ (x, t) = ψ (x) exp − iE

˙
t



 (Eqn 10)

where ψ1(x) is called the spatial wavefunction. For wavefunctions of this kind the probability density is
given by |Ψ (x, t) |2 = |ψ (x) |2 = P(x)  and so has no time dependence. These wavefunctions of fixed energy
are said to describe stationary states.
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6 In quantum mechanics observables such as energy and momentum correspond to operators. 
The x-component of momentum of a particle is represented by a differential operator

p̂x = −i ˙ d

d x
(Eqn 13)

If the spatial wavefunction of a stationary state is an eigenfunction of momentum then the momentum
eigenvalue px can be found by solving the eigenvalue equation

p̂xψ (x) = pxψ (x) (Eqn 14)

For example, if ψ (x) = A exp
ipx

˙
x



  then the momentum eigenvalue is px and this is also the definite

outcome of a momentum measurement.
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7 The kinetic energy of a particle is represented by the differential operator

Êkin = −˙2

2m

d2

dx2

If the wavefunction of the particle is a stationary state wavefunction then its spatial part is an eigenfunction
of kinetic energy. The kinetic energy eigenvalue Ekin can then be found by solving the eigenvalue equation

Êkinψ (x) = Ekinψ (x)

and this value would be the definite outcome of a kinetic energy measurement. On the other hand, if the
wavefunction is a combination of stationary state wavefunctions then the outcome of an energy
measurement might be any one of the corresponding energy eigenvalues, and the wavefunction can be used
to predict the probability of each such value.

8 The time-independent Schrödinger equation for any system is simply the eigenvalue equation for the
total energy of the system. For a free particle moving in one dimension and where the potential energy is
zero this equation is

−˙2

2m

d2ψ (x)
dx2

= Eψ (x) (Eqn 17)

The spatial wavefunctions for the free particle are solutions of this equation.
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9 The time-independent Schrödinger equation predicts that the energy of a particle confined in a
one-dimensional box, length D , can take only certain values, these energy levels are given by the
expression:

En = n2h2

8mD2
with n = 1, 2, 3, … (Eqn 22)

The corresponding spatial wavefunctions inside the box are given by:

ψ n (x) = bn sin
nπx

D




 (Eqn 23)

Outside the box ψn(x) = 0. The particle has a minimum possible energy called the zero point energy when
the quantum number n = 1. The zero point energy is inversely proportional to D2.

10 With normalized wavefunctions the probability of finding the particle in a small interval ∆x close to x is
P(x) ∆x = | ψ (x) |2 ∆x .

The spatial wavefunctions of a particle in a one-dimensional box can be normalized by setting the arbitrary
constant bn = 2 D , they then satisfy the condition

Ψ (x, t) 2

0

D

∫ dx = 1
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11 With the inclusion of a potential energy function U(x), the operator for the total energy is called the
hamiltonian operator:

Ĥ = Êkin + Êpot = −˙2

2m

d2

dx2
+ U(x)







(Eqn 25)

and the time-independent Schrödinger equation for a particle moving in one dimension is:

Ĥψ (x) = Eψ (x) ,4i.e.4 −˙2

2m

d2ψ (x)
dx2

+ U(x)ψ (x) = Eψ (x) (Eqn 26)

Spatial wavefunctions, and hence stationary state wavefunctions, for a wide variety of one-dimensional
problems can be found by solving this equation, with an appropriate potential energy function inserted and
with appropriate boundary conditions imposed on the solutions.

12 The solutions of the time-independent Schrödinger equation for a particle moving in a uniform constant
potential U0, with E > U0, are

ψ(x) = A1exp1(i0k0x) + B1exp1(−0i0k 0x)

with kinetic energy E − U0 = ˙2k2

2m
This energy eigenfunction is a combination of two functions, each of which is also a momentum
eigenfunction.
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13 The solutions of the time-independent Schrödinger equation for a particle moving in a uniform constant
potential U0, with E < U0, are linear combinations of real exponential functions:

ψ(x) = A1exp1(α 0x) + B1exp 1(−0α 0x)

with α 2 = 2m(U0 − E)
˙2

 and with the positive root taken for α 0.

The Schrödinger equation here predicts that a particle can penetrate some distance into a region forbidden
by classical physics, where the potential energy exceeds the total energy. These solutions provide an
explanation of quantum tunnelling.

14 The time-dependent Schrödinger equation, for a system consisting of a single particle of mass m moving in
one dimension with potential energy U(x, t), is the partial differential equation

−˙2

2m

∂ 2Ψ (x, t)
∂ x2

+ U(x, t)Ψ (x, t) = i˙ ∂Ψ (x, t)
∂ t

This is the central equation of quantum mechanics. Its solutions Ψ1(x, t), subject to appropriate boundary
conditions, are the wavefunctions and describe the possible states of the system. A wavefunction is
generally a complex quantity and is not directly measurable, but it may be used to obtain (probabilistic)
information about the behaviour of the system.
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7.2 Achievements
After completing this module, you should be able to:
A1 Define the terms that are emboldened and flagged in the margins of the module.
A2 Write expressions for the de Broglie wave and the quantum mechanical wavefunction of an unlocalized

free particle moving in one dimension with momentum px and total energy E.
A3 Define the differential operators for the momentum and for the kinetic energy of a particle moving in one-

dimension.
A4 Describe a test to determine whether or not a given function is an eigenfunction of a given operator.
A5 Describe the relationship between an eigenvalue equation and the measurement of the corresponding

observable.
A6 Recall the time-independent Schrödinger equation for a free particle moving in one-dimension.
A7 Recall the Born probability interpretation of the wavefunction and relate this to the idea of a stationary

state.
A8 Use the time-independent Schrödinger equation to predict the energy levels and corresponding

eigenfunctions of a particle confined in a one-dimensional box. Demonstrate the role of boundary
conditions on the eigenfunctions in deriving these results.
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A9 Recall how the energy levels of a particle in a one-dimensional box depend on the quantum number n and
the size of the box. Recall the shape of the eigenfunctions for the first few energy levels.

A10 Explain how the eigenfunctions for a particle, confined in a one-dimensional box, can be normalized so
that the probability of observing the particle in a given region can be calculated.

A11 Interpret the energy levels in real physical systems in terms of the results of the idealized one-dimensional
box.

A12 Write down the time-independent Schrödinger equation for a particle moving in one dimension, with a
potential energy described by a potential energy function U(x).

A13 Describe the general behaviour of the solutions of the Schrödinger equation for one-dimensional motion,
where the potential energy is constant.

A14 Explain how particles can penetrate into regions where the total energy is less than the potential energy,
and use the solutions of the Schrödinger equation for one-dimensional motion to explain the phenomenon
of quantum tunnelling.

A15 Write down the time-dependent Schrödinger equation and explain the significance of the property of
linearity that it possesses.
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Study comment  You may now wish to take the Exit test for this module which tests these Achievements.
If you prefer to study the module further before taking this test then return to the Module contents  to review some of the
topics.
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7.3 Exit test

Study comment  Having completed this module, you should be able to answer the following questions each of which tests
one or more of the Achievements.

Question E1

(A3, A4 and A5)4The spatial wavefunction of a particle moving parallel to the x-axis is

ψ(x) = A1cos1(qx) + B1sin1(qx) where q is a positive real number.

Show that ψ(x) is an eigenfunction of momentum if B = i0A.

What would then be the result of a measurement of momentum on a particle in a stationary state with this spatial
wavefunction?

Show that this ψ(x) is also an eigenfunction of kinetic energy for any values of A and B.

What would be the result of a measurement of kinetic energy?
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Question E2

(A5, A6 and A7)4An electron (mass = 9.1 × 10−311kg) is in a stationary state described by the spatial
wavefunction ψ1(x) = A1cos1(kx) with k = 1.5 × 10101m−1.
(a) Show that the wavefunction is a solution of the free particle Schrödinger equation. What is the electron

energy in eV?
(b) What are the possible results of a measurement of momentum?

Question E3

(A8)4Describe in words how the time-independent Schrödinger equation is solved for a particle in a
one-dimensional box. Why are certain boundary conditions imposed and how does this lead to quantized energy
levels?
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Question E4

(A9 and A10)4The normalized spatial wavefunction for a particle in a one-dimensional box is:

ψ (x) = 2 D sin
πx

D




  40 ≤ x ≤ D4and otherwise ψ0(x) = 0

(a) What is the result of a measurement of the energy?
(b) Confirm that the probability of finding the particle somewhere within the box is 1.
(c) Show that the probability of finding the particle between x = 0 and x = D/2 is exactly 0.5.

(Hint: You do not need to do the integral, just consider the shape of |1ψ0(x)1|2.)

Question E5

(A9 and A11)4A very crude (one-dimensional) model of an atomic nucleus assumes that protons are confined to
a region 10−141m in size. Estimate the difference in energy, in MeV units, between the first two energy levels.
(Mass of a proton mp = 1.67 × 100−271kg.)
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Question E6

(A11, A12, A13 and A14)4(a) What is the general solution of the time-independent Schrödinger equation for a
particle moving in one-dimension, where the potential energy is a constant, U0, which is greater than the total
energy E?
(b) An electron (mass me = 9.1 × 100−311kg) of total energy 51eV is in the region of space of positive x and the
potential energy is 101eV. The spatial wavefunction is ψ0(x) = B 1exp1(−0α 0x) with α  > 0. Find the value of α
(the units are m−1). Over what distance from x = 0 does the probability density of observing the electron decrease
by a factor of 10?

Study comment  This is the final Exit test question. When you have completed the Exit test go back to Subsection 1.2 and
try the Fast track questions if you have not already done so.

If you have completed both the Fast track questions and the Exit test, then you have finished the module and may leave it
here.
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