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1 Opening items

1.1 Module introduction

In 1954, the Nobel Prize for physics was awarded to Cockcroft and Walton for their initiation of nuclear physics
twenty years previously. They made use of quantum tunnelling to induce nuclear reactions in circumstances
which classical physics deemed impossible. In 1973, the Nobel Prize was awarded to three scientists for their
work in developing useful devices called tunnel diodes which depend for their operation on the same effect.
These devices have opened up whole new areas of physics and technology. In 1986, another Nobel Prize was
awarded to Binnig and Rohrer for their invention of the scanning tunnelling electron microscope. All these
prizes have been awarded for the exploitation of one quantum effect, carried out with great ingenuity and
insight.

The behaviour of particles such as electrons, photons and nucleons is determined by their quantum mechanical
characteristics, and we rely on the Born probability hypothesis to relate particle position to the amplitude
squared of the associated wavefunction. Such particles may therefore be expected to exhibit wave-like
characteristics. When light waves encounter a boundary where the refractive index changes, there may be both a
reflected and a transmitted wave. If the boundary is between a transparent and an opaque material, the wave will
still penetrate into the opaque material for a distance roughly equal to the wavelength. It follows that light can be
transmitted through a layer of a metal provided its thickness is less than the penetration depth of the wave.
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A good example of this is the layer of silver a few atoms thick on a glass slide forming a semi-reflecting mirror.
In the context of quantum mechanics we might expect particles to show similar behaviour.

In the quantum mechanical case, one can think of the particle potential energy as roughly analogous to a
refractive index. If the potential energy changes suddenly with position, then there is usually both a transmitted
and a reflected quantum wave at the boundary, and the particles will be transmitted or reflected with calculable
probability. If the increase in potential energy is greater than the particle kinetic energy, then the quantum wave
will penetrate into the classically forbidden region though its amplitude will rapidly decrease. In consequence, if
the region of high potential energy is narrow enough, the wave will emerge with reduced amplitude on the other
side and there is a probability that the associated particle will tunnel through. A narrow region of high potential
energy is called a potential barrier. Quantum mechanics therefore predicts two effects totally alien to the
classical mechanics based on Newton’s laws: (i) particles may be reflected by any sudden change in potential
energy, and (ii) particles can tunnel through narrow potential barriers. Experiment confirms both of these
remarkable predictions.

Study comment Having read the introduction you may feel that you are already familiar with the material covered by this
module and that you do not need to study it. If so, try the Fast track questions given in Subsection 1.2.  If not, proceed
directly to Ready to study? in Subsection 1.3.



FLAP P11.1 Reflection and transmission at steps and barriers
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

1.2 Fast track questions

Study comment Can you answer the following Fast track questions?. If you answer the questions successfully you need
only glance through the module before looking at the Module summary (Subsection 5.1) and the Achievements  listed in
Subsection 5.2. If you are sure that you can meet each of these achievements, try the Exit test in Subsection 5.3. If you have
difficulty with only one or two of the questions you should follow the guidance given in the answers and read the relevant
parts of the module. However, if you have difficulty with more than two of the Exit questions you are strongly advised to
study the whole module.

Question F1

A stationary state spatial wavefunction ψ1(x) = A1exp(ikx) represents a stream of particles. What is the number
density of particles per unit length, the momentum of each particle, and the flux?



FLAP P11.1 Reflection and transmission at steps and barriers
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

Question F2

A beam of electrons with kinetic energy 5 1eV is incident on a region where the electron potential energy
suddenly increases from 0 to 2.51eV. Calculate the transmission and reflection coefficients at this ‘step’.
Sketch the electron density as a function of position. Account for the sequence of maxima and minima before the
step. Assume the potential is constant before and after the step.

Question F3

Estimate the fraction of 2.51eV electrons that pass through a potential barrier height 51eV and width 0.51nm.

Study comment

Having seen the Fast track questions  you may feel that it would be wiser to follow the normal route through the module and
to proceed directly to Ready to study? in Subsection 1.3.

Alternatively, you may still be sufficiently comfortable with the material covered by the module to proceed directly to the
Closing items.
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1.3 Ready to study?

Study comment In order to study this module, you will need to be familiar with the following physics terms: de Broglie
wave, eigenfunction (of momentum), time-independent Schrödinger equation, wavefunction, Born probability interpretation
of the wavefunction, the (stationary state) probability density function P(x) = |1ψ1(x)1|2. You should be familiar with the
solutions of the Schrödinger equation for a particle moving in one dimension, in a region where the potential energy is
constant. In particular, you should know the different forms of the solutions: (a) when the total energy of the particle is
greater than the potential energy, and (b) when the total energy is less than the potential energy. Some knowledge of classical
Newtonian mechanics is assumed, especially the treatment of particle motion in terms of the total energy, kinetic energy and
potential energy. The module assumes some familiarity with the treatment of transverse waves on a string and the reflection
of travelling waves at a boundary. If you are uncertain of any of these terms, you can review them now by referring to the
Glossary which will indicate where in FLAP they are developed. We have to use complex numbers, so you must be familiar
with them in Cartesian form z = a + ib, polar form z = A(cos1θ + i 1sin1θ) and exponential form z = A1exp(iθ). You must be
confident using a spatial wavefunction written as a complex number: for example ψ1(x) = A 1exp(ikx), and with the
manipulation of complex numbers. We will frequently use differential calculus, including differentiation of elementary
functions such as sine, cosine and exponential. The following Ready to study questions will allow you to establish whether
you need to review some of the topics before embarking on this module.
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Question R1

Write down the spatial part of the wavefunction of a particle travelling in the positive x-direction with definite
momentum p. If the total energy of the particle is E and the potential energy has the constant value V, what is the
relation between p, E , and V? What is the relation between the angular wavenumber k , ☞  the de Broglie
wavelength, and the momentum magnitude p?

Question R2

Write down the time-independent Schrödinger equation for a particle moving in one dimension (x) in a region of
space where the total energy is less than the constant potential energy V. Show by substitution that the spatial
wavefunction ψ1(x) = A1exp(−α 0x) + B1exp(α 0x), where A and B are constants, is a solution of this equation and
find α in terms of E and V.
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Question R3

Define the (stationary state) probability density function P(x), for a particle moving in one dimension, and
describe its physical interpretation. A particle has the spatial wavefunction ψ1(x) = A1exp(−αx), in the region
x ≥ 0, with A and α  real, and ψ1(x) = 0 elsewhere. Write down an expression for the probability density P(x).
Find a real positive value of A if the total probability of finding the particle somewhere between x = 0 and x → ∞
is one (i.e. normalize the wavefunction).

Question R4

(a) Write z = a + i0b in the form z = A1exp(iφ) by relating A and φ to a and b.

(b) Show that the complex number z = a − ib

a + ib
 may be written as z = exp(−2iφ).

(c) Show that the complex number z = 2a

a + ib
 may be written z = 21cos1φ11exp(−iφ ).



FLAP P11.1 Reflection and transmission at steps and barriers
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

2 Reflection and transmission at a potential step when E > V
U(x)

0 d x

V

Figure 14The potential energy
function U(x) for a particle acted on
by a repulsive force between x = 0
and x = d.

2.1 Classical description of the problem
The physical situation we are modelling is quite simple. A particle is moving
with constant velocity in the positive x-direction and encounters at some
point a strong force directed in the negative x-direction. The force is constant
in time and acts over a short distance d. It is usually best to represent the
situation in classical (Newtonian) mechanics with a potential energy function
U(x). The derivative of the potential energy function with respect to x gives
the force component in the negative x-direction:

Fx (x) = − dU(x)
dx

The potential energy function looks like that drawn in Figure 1. Notice that
for convenience we have taken U(x) = 0 for x < 0 and U(x) = V for x ≥ d. It is the change in the potential energy
that is physically significant, and the force acts in the region between 0 and d. For obvious reasons, the situation
is referred to as a potential step, and we wish to know what happens to a particle encountering it.
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Classical mechanics gives a definite answer, and all we need to know is the initial speed of the particle, its mass
m and the potential energy function. Classically, the total energy E of the particle, kinetic plus potential, must be
constant everywhere. So, if we let the speed of the particle be u as it approaches the step, and if we let v be its
speed beyond the step, then

  E = 1
2 mu2 + 0 = 1

2 mv2 + V

Hence
  
 v = 2(E − V )

m
☞

This equation has a real solution only if E ≥ V. The particle then passes across the step and continues with
reduced speed. If the potential energy has a value greater than E beyond the step, then the solution for v is purely
imaginary and does not represent a physical situation. In fact, the particle is reflected from the step and is not
seen in the region x ≥ d.

In the classical sense, reflected means that the repulsive force is so strong that the particle comes to rest and then
moves back in the direction from which it came.
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U(x)

0 d x

V

Figure 14The potential energy
function U(x) for a particle acted on
by a repulsive force between x = 0
and x = d.

Question T1

Suppose the potential energy function in Figure 1 is U(x) = 0 for x < 0 and
U(x) = 61J for x ≥ d. A particle of mass 61kg approaches from the left with
speed 21m1s−1. Find its speed after the step.4❏

If the force on the particle is in the positive x-direction, then the potential
energy decreases and we have a step down rather than a step up! It is easy to
show that the particle will always gain speed at this step and classical
physics predicts that it will never be reflected.
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Figure 24A schematic
representation of a potential step.
The distance over which the force
acts is assumed to be negligible.
The total energy of the particle is E.

Often we have to model this kind of situation when the distance d is small
compared with any other dimension in the problem. Figure 2 represents a
potential step with the distance d negligibly small; the potential suddenly
increases at the origin from zero to a constant value V. Remember that this
diagram can only be an approximation to the truth, since such a sudden
increase in potential represents an infinite force acting over zero distance.
However, it is a useful device, and it is also convenient to represent the
total energy E  on the diagram. Classical mechanics then makes the
following definite predictions for a particle approaching from the left
(x < 0) with zero potential energy initially:

Particle transmitted across the step if E > V and V > 0

Particle reflected at the step if E < V and V > 0

Particle always transmitted across step if V ≤ 0
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2.2 The time-independent Schrödinger equation and its solutions

U(x)

0 x

E

E
V

region (I) region (II)

Figure 24A schematic
representation of a potential step.
The distance over which the force
acts is assumed to be negligible.
The total energy of the particle is E.

In order to find out what quantum mechanics can tell us about a physical
situation, we have to make a simple model and then solve the
Schrödinger equation to find the appropriate wavefunctions. As in classical
mechanics, we model the potential function as a step and make the
approximation that d is small, but small compared with what? ☞

The relevant dimension is now the de Broglie wavelength of the incident
particle λ = h/p, where h is Planck’s constant and p is the magnitude of the
particle momentum initially. The potential energy diagram is the same as
Figure 2, and it is convenient to call the space x < 0 region (I) and the space
x ≥ 0 region (II). The time-independent Schrödinger equation in one
dimension is:

−˙2

2m

d2ψ (x)
dx2

+ U(x) ψ (x) = E ψ (x) (1)

where E  is the total energy of the particle, U (x) the potential energy
function and ψ1(x) the spatial part of the wavefunction.
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Study comment The full wavefunction Ψ 0(x, t) is time-dependent and satisfies the time-dependent Schrödinger equation.

For a stationary state of definite energy E the wavefunction takes the form

Ψ (x, t) = ψ (x) exp −i
E

˙
t





Since this module is entirely concerned with states of given energy E, we need only determine ψ1(x), which we may therefore
conveniently refer to as the wavefunction. The full wavefunction Ψ0(x, t) follows immediately. Similarly, we may refer to
Equation 1 as the Schrödinger equation.4❏

−˙2

2m

d2ψ (x)
dx2

+ U(x) ψ (x) = E ψ (x) (Eqn 1)

In region (I), U(x) = 0 and ψ1(x) = ψ1(x) so the Schrödinger equation is

−˙2

2m

d2ψ1(x)
dx2

= E ψ1(x)

The solution of this equation takes the form:

ψ1(x) = A1exp(ik1x) + B 1exp(−ik1x) (2)

with A and B arbitrary complex constants and k1 = 2mE ˙.
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In region (II), U(x) = V and the Schrödinger equation is:

−˙2

2m

d2ψ 2 (x)
dx2

= (E − V ) ψ 2 (x)

The solution then has the form:

ψ2(x) = C1exp(ik2x) + D 1exp(−ik2x) (3)

with C and D arbitrary complex constants and k2 = 2m(E − V ) ˙. 
Notice that k2 is a real number because E > V.

The first term on the right-hand side of Equation 2

ψ1(x) = A1exp(ik1x) + B 1exp(−ik1x) (Eqn 2)

represents a particle moving with momentum component ˙k1 in the x-direction, ☞ and the second term
represents a reflected particle moving with momentum component −˙k1. The first term in Equation 3 represents a
particle transmitted across the step moving with momentum component ˙k2, and the second term represents a
particle moving in the negative x-direction. Clearly, we must set coefficient D = 0, since this physical problem
involves a particle approaching the barrier from the left, not from the right and here it cannot return from
infinity.
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U(x)
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Figure 24A schematic
representation of a potential step.
The distance over which the force
acts is assumed to be negligible.
The total energy of the particle is E.

In summary, the solutions to the Schrödinger equation in the two regions
are:

ψ1(x) = A1exp(ik1x) + B 1exp(−ik1x) in region (I) (4a)

ψ2(x) = C1exp(ik2x) in region (II) (4b)

The important question of normalization of the wavefunctions must be
postponed until we have discussed fully the constraints imposed on the
constants A, B and C by the conditions at the boundary between the two
regions.
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2.3 Relations imposed by the boundary conditions
General solutions of differential equations always contain arbitrary constants, and we can determine these from
the conditions assumed to apply at certain positions or times. For example, the general solution of the wave
equation for transverse waves on a string stretched between two fixed points has two arbitrary constants. ☞
We can determine these constants from the initial configuration of the string including the requirement that its
displacement is zero at the ends.

We can apply two boundary conditions, at x = 0, to the solutions of the Schrödinger equation in this
application. We will state them and then make some justification.

boundary condition (1) ψ1(x) = ψ2(x) at x = 0

boundary condition (2)
dψ1(x)

dx
= dψ2 (x)

dx
at x = 0

The first condition ensures that the wavefunction has a single value at x = 0. The Born probability hypothesis
says that the probability density is given by |1ψ1(x)1|2, so that the solution in region (I) must match the solution in
region (II) at the boundary between the regions.
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The second condition

boundary condition (2)
dψ1(x)

dx
= dψ2 (x)

dx
at x = 0

is clear when we examine the Schrödinger equation itself (Equation 1).

−˙2

2m

d2ψ (x)
dx2

+ U(x) ψ (x) = E ψ (x) (Eqn 1)

If both E and U(x) are finite quantities everywhere, then the second derivative d02ψ1(x)/dx2 must also be finite.
This means that the first derivative of the wavefunction dψ1(x)/dx  cannot suddenly change at any point,
including the boundary at x = 0. Therefore the slope of the wavefunction in region (I) at x = 0 is equal to the
slope of the wavefunction in region (II) also evaluated at x = 0.



FLAP P11.1 Reflection and transmission at steps and barriers
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

0 x

0 x

ψ

0 x(a)

(b)

(c)

ψ

ψ

The possibilities are illustrated in Figure 3:

(a) shows a discontinuity in ψ at x = 0,

(b) has ψ continuous but dψ1/dx discontinuous at x = 0,

and in

(c) both ψ and dψ1/dx are continuous.

Only in case (c) can we say that ψ varies smoothly across the boundary,
and this is what we require. ☞

Figure 34Boundary conditions at x = 0. Only (c) is allowed. (a) ψ1 ≠ ψ2,

(b) ψ1 = ψ2 but dψ1/dx  ≠ dψ2/dx, (c) ψ1 = ψ2 and dψ1/dx  = dψ2/dx.
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Applying the boundary conditions gives us two equations linking A, B and C:

Using Equations 4,

ψ1(x) = A1exp(ik1x) + B 1exp(−ik1x) in region (I) (Eqn 4a)

ψ2(x) = C1exp(ik2x) in region (II) (Eqn 4b)

boundary condition (1) gives:

ψ1(0) = ψ2(0)

so that A1exp10 + B1exp10 = C1exp10

i.e. A + B = C (5)

Applying boundary condition (2):

A(ik1)1exp10 + B(−ik1)1exp10 = C(ik2)1exp10 ☞

so that Ak1 − Bk1 = Ck2 (6)
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Equations 5 and 6

A + B = C (Eqn 5)

Ak1 − Bk1 = Ck2 (Eqn 6)

can be used to determine the two ratios B/A and C/A:

B

A
= k1 − k2

k1 + k2

C

A
= 2k1

k1 + k2

(7)

Question T2

Consider a string lying along the x-axis under tension F. The density per unit length of the string is ρ1 for x < 0
and ρ2 for x ≥ 0. Considering transverse waves on the string, describe how this problem in classical mechanics
might be similar to the quantum-mechanical problem of particles incident on a potential step. 
(The speed of transverse waves is F ρ .)4❏
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2.4 The wavefunctions in each region and the physical interpretation; normalization
In all our discussions of quantum mechanics so far, we have assumed that the wavefunction ψ1(x) is normalized
to unity and represents a single particle, so |1ψ1(x)1|21∆x gives the probability of finding the particle in the range x
to x + ∆x. Now it is convenient to modify the prescription and say that the wavefunction can represent more than
one particle. In particular, the wavefunction ψ1(x) = A1exp(ikx) can represent a set of particles, moving in the
x-direction, all with the same momentum ˙k.

The position of any one particle is not specified (to do so violates the Heisenberg uncertainty principle), but we
say the average number of particles per unit length is given by |ψ1(x)|2. In this context, ‘average’ means the
average of a large number of observations made on particles with this wavefunction. ☞

✦ The wavefunction ψ1(x ) = A1exp(ikx) represents a stream of particles moving in the x-direction. 
Show that, on average, there are |1A1|2 particles per unit length.
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Now we must examine the wavefunctions (Equations 4)

ψ1(x) = A1exp(ik1x) + B 1exp(−ik1x) in region (I) (Eqn 4a)

ψ2(x) = C1exp(ik2x) in region (II) (Eqn 4b)

in the potential step problem in the light of the new prescription.

In region (I), we have the wavefunction:

ψ1(x) = A1exp(ik1x) + B 1exp(−ik1x) with  k1 = 2mE ˙

The first term of this single wavefunction now represents a stream of particles moving in the positive x-direction
towards the step; these are the incident particles. The second term represents a stream of particles moving in the
negative x-direction away from the step, the reflected particles. The average number of incident particles per
unit length is |1A1|2, and the average number of reflected particles is |1B1|2. Notice that the single wavefunction can
represent both the incident and reflected particles.

In region (II), the wavefunction is:

ψ2(x) = C1exp(ik2x) with  k2 = 2m(E − V ) ˙

This simply represents a stream of particles moving in the positive x-direction away from the step, the
transmitted particles. The average number of transmitted particles per unit length is |1C1|2.
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A further simplification of the equations is made, with no loss of generality, if the wavefunctions are normalized
in a special way. If the coefficient A is set equal to one, then the average number of incident particles per unit
length is equal to one.

Question T3

Electrons with kinetic energy 51eV are moving in the positive x-direction in a region of constant potential.
There are on average 5 × 106 electrons per millimetre. Find a suitable wavefunction ☞ to describe them, and
find A and k.4❏
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2.5 Defining particle flux in the classical and quantum models
In classical mechanics, it is straightforward to define the concept of particle flux. We will restrict the discussion
to motion in one dimension, but the extension to three dimensions is not difficult. If there are N particles per unit
length and each one has speed u in the positive x-direction, then all the particles in a length u1∆t will pass a fixed
point in time interval ∆t. The number passing a fixed point per unit time is the particle flux F:

F = Nu ∆t

∆t
= Nu

In quantum mechanics, the definition of particle flux is equally simple, provided we are dealing with
wavefunctions of particles with definite momentum (i.e. momentum eigenfunctions). Consider a stream of
particles represented by the wavefunction ψ1(x) = A1exp(ikx). The average number of particles per unit length is
the constant |1A1|2, and their speed u is obtained from the momentum magnitude:

p = ˙k4and4u = p/m

so that: u = ˙k/m

Since k > 0, so is u.
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The flux is then given by:

F = | A |2
˙k

m
(8)

A word of warning is necessary here! Equation 8 can only be used when the wavefunction is a momentum
eigenfunction; the momentum is then the same for all the particles, and the average number of particles per unit
length is a constant, independent of position.

Question T4

What is the flux of electrons in Question T3?

[Electrons with kinetic energy 51eV are moving in the positive x-direction in a region of constant potential.
There are on average 5 × 106 electrons per millimetre.]

What is the corresponding current in amps?

(Hint: The current is the total charge in coulombs passing a point per second.)4❏
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2.6 Reflection and transmission in the quantum model

U(x)

0 x

E

E
V

region (I) region (II)

Figure 24A schematic
representation of a potential step.
The distance over which the force
acts is assumed to be negligible.
The total energy of the particle is E.

We are now in a position to complete the quantum description of particle
reflection and transmission at potential steps. Two coefficients are defined
which characterize the behaviour of particles when they encounter a
potential step such as that illustrated in Figure 2.

The reflection coefficient is defined as follows:

R =  flux of reflected particles
 flux of incident particles

The wavefunction in region (I) is:

ψ1(x) = A1exp(ik1x) + B 1exp(−ik1x)

The first term represents the particles incident on the step, and, using
Equation 8,

F = | A |2
˙k

m
(Eqn 8)

the incident flux is |1A1|021˙k1/m.
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The second term

ψ1(x) = A1exp(ik1x) + B 1exp(−ik1x)

represents the reflected particles which have average density |1B1|02 per unit length and the reflected flux is
|1B1|021˙k1/m. The reflection coefficient is therefore:

R = | B |2 ˙k1 m

| A |2 ˙k1 m
=

| B |2

| A |2

Using Equations 7,
B

A
= k1 − k2

k1 + k2

(Eqn 7)

we get the result:

R = k1 − k2

k1 + k2







2

(9)

The reflection coefficient at a potential step with E > V
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The transmission coefficient is defined as:

T = flux of transmitted particles
flux of incident particles

The wavefunction in region (II) is ψ2(x) = C 1exp(ik2x), and this represents the particles transmitted across the
step. The transmitted flux is given by |1C1|021˙k2/m and hence the transmission coefficient is:

T = |C |2 ˙k2 m

| A |2 ˙k1 m
=

|C |2 k2

| A |2 k1

Using Equations 7 again:
C

A
= 2k1

k1 + k2

(Eqn 7)

T = 4k1k2

(k1 + k2 )2
(10)

The transmission coefficient at a potential step with E > V
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In order to check that our equations for R and T are self-consistent, we must show that particles are not ‘lost’ at
the step. The number of particles crossing the step per second (the transmitted flux) added to the number
reflected per second (the reflected flux) must be equal to the incident flux. From the definitions of R and T, this
means that R + T = 1. This is indeed the case!

Question T5

Use Equation 9 and Equation 10

R = k1 − k2

k1 + k2







2

(Eqn 9)

T = 4k1k2

(k1 + k2 )2
(Eqn 10)

to show that R + T = 1.4❏
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Remember that R and T are both ratios of fluxes; this means that the formulae for R  and T  are unchanged
whatever the value of A. It is also legitimate to regard R and T as reflection and transmission probabilities if you
are dealing with the behaviour of a single particle at the step.

R = k1 − k2

k1 + k2







2

(Eqn 9)

T = 4k1k2

(k1 + k2 )2
(Eqn 10)

Notice that the reflection coefficient approaches the limit R = 1 and the transmission coefficient goes to zero,
when k2 → 0. This happens when V is equal to the incident particle energy E.

The function P(x) = |1ψ1(x)1|2 represents the probability density when ψ is the wavefunction for a single particle.
However, when ψ represents a set of particles, the function P(x) = |1ψ1(x)1|2 gives the average particle density at
the position x. P(x) is then the particle density function and it is interesting to plot a graph of P(x) across the
potential step.
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P(x)

0 x

Region (I) Region (II)

Figure 44The particle density
function P(x) in the region of a
potential step (E > V). In region (I),
P(x) shows a pattern of alternating
maxima and minima caused by the
interference of the incident and
reflected waves.

This is shown in Figure 4 for the case when A , B  and C  are real.
In region (I), we have to use the full expression for ψ1(x) (Equation 4):

ψ1(x) = A1exp(ik1x) + B 1exp(−ik1x) in region (I) (Eqn 4a)

ψ2(x) = C1exp(ik2x) in region (II) (Eqn 4b)

P1(x) = ψ1
* (x) ψ1(x) = A2 + B2 + 2ABcos(2k1x) (11)

In region (II)

P2 (x) = ψ 2
* (x) ψ 2 (x) = C 2 (12)

P1(x) and P2(x) join smoothly at x = 0 because of the boundary conditions
(Equations 5 and 6).

A + B = C (Eqn 5)

Ak1 − Bk1 = Ck2 (Eqn 6)
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P(x)

0 x

Region (I) Region (II)

Figure 44The particle density
function P(x) in the region of a
potential step (E > V). In region (I),
P(x) shows a pattern of alternating
maxima and minima caused by the
interference of the incident and
reflected waves.

In region (I), P(x) has a cosine component due to the interference between
the incident and reflected waves.

This example of quantum-mechanical interference with material particles
is analogous to the interference of light beams reflected from boundaries
between materials with different optical properties. The interference
minima are not at zero because the amplitude of the reflected wave is less
than the amplitude of the incident wave.
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Question T6

Starting from Equations 4,

ψ1(x) = A1exp(ik1x) + B 1exp(−ik1x) in region (I) (Eqn 4a)

ψ2(x) = C1exp(ik2x) in region (II) (Eqn 4b)

verify Equations 11 and 12.

P1(x) = ψ1
* (x) ψ1(x) = A2 + B2 + 2ABcos(2k1x) (Eqn 11)

In region (II)

P2 (x) = ψ 2
* (x) ψ 2 (x) = C 2 (Eqn 12)

Show that P1(0) = P2(0). (Remember Equations 11 and 12 assume A, B and C are real.)4❏
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P(x)

0 x

Region (I) Region (II)

Figure 44The particle density
function P(x) in the region of a
potential step (E > V). In region (I),
P(x) shows a pattern of alternating
maxima and minima caused by the
interference of the incident and
reflected waves.

Question T7

Figure 4 shows clearly that the probability per unit length of finding a
particle in region (II) is greater, on average, than the probability in region
(I). How can that be when a fraction of the incident particles is
reflected?4❏
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3 Reflection and transmission at a potential step when E < V

3.1 Classical description of the problem
U(x)

0 x

E

VP

Figure 54The function U(x) at a
potential step. The height of the step
V is greater than the energy E of each
incident particle. According to
classical mechanics, the particles
reach the point P and are then
reflected back.

A particle travelling in the positive x-direction encounters a step where the
potential energy U(x) increases by an amount V greater than the particle
energy. The physical situation is modelled by the illustration in Figure 5
and the total energy of a particle is represented by the horizontal dashed
line. Applying the law of energy conservation to solve for the speed of the
particle, we get:

  
1
2 mv2 = E − U(x)

  
v =

2 E − U(x)( )
m

P marks the point where the total energy and the potential energy are equal,
E = U(x) and v = 0. There is no real-number solution to the speed equation
anywhere to the right of P. According to classical mechanics, each particle
will reach the point P and then be reflected back. The classical reflection
coefficient is one.
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3.2 The Schrödinger equation and the solutions in each region
U(x)

0 x

E
V

Figure 64A schematic
representation of a potential step
with E < V. Particles are incident
from the left.

For the quantum mechanical problem we again make the assumption that the
distance over which the potential is increasing is small compared with the de
Broglie wavelength of the incident particles. The situation is illustrated
schematically in Figure 6 with the region x < 0 designated (I) and x ≥ 0
designated (II). The solution of the Schrödinger equation follows exactly as
in Subsection 2.2, and we can write the solutions by referring to Equations
4:

ψ1(x) = A1exp(ik1x) + B 1exp(−ik1x) in region (I) (Eqn 4a)

ψ2(x) = C1exp(ik2x) in region (II) (Eqn 4b)

The angular wavenumbers k1and k2 are given by:

k1 = 2mE

˙
4and4  k2 = 2m(E − V )

˙

In this case it is clear that k2 is a purely imaginary number since E < V, but we cannot abandon this solution.
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Remember that in quantum mechanics, the solutions make sense if the predictions for the values of physical
observable quantities are real. We will continue the analysis and examine the form of the solution in region (II).
If we replace k2 by iα, then α is a real number and we find:

ψ2(x) = C1exp[i(iα)x]

= C1exp(−0αx)4since i2 = −1

The real constant α  may be written in terms of E and V as follows:

α = k2/i = −ik2

However k2 =
2m(E − V )

˙
=

i 2m(V − E)

˙

so that α = 2m(V − E)

˙
In fact, there is a second part of the general solution in region (II) corresponding to a rising exponential rather
than a falling exponential: ψ2(x) = C1exp(−0α 0x) + D 1exp(+α 0x). ☞ The second term is ruled out as unphysical
here because it predicts that the probability of observing the particles increases without limit as x → ∞.
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In summary, we have:

ψ1(x) = A1exp(ik1x) + B 1exp(−ik1x) in region (I)

ψ2(x) = C1exp(−αx) in region (II)  (13) ☞

with4  k1 = 2mE

˙
4and4  α = 2m(V − E)

˙
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3.3 Relationships imposed by the boundary conditions
The general requirements discussed in Subsection 2.3 that the wavefunction and its first derivative must both be
continuous everywhere apply in this example. The relations between the arbitrary constants A, B and C are
exactly the same as in Equations 7:

B

A
= k1 − k2

k1 + k2
4and4 C

A
= 2k1

k1 + k2

However now k2 is a purely imaginary number, and we have equated it to iα so:

B

A
= k1 − iα

k1 + iα
 4and4 C

A
= 2k1

k1 + iα

✦ Show that the complex number B/A can be written in the form: B/A = exp(−2iφ) where tan1φ = α 1/k1.
Show also that |1B1| = |1A1|.

Question T8

Show that the complex number C/A can be written in the form: C/A = 21cos1φ 1exp(−iφ) and |1C1| = 2|1A1|1cos1φ.4❏
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In summary, we have the following relations for the ratios of the constants:

B

A
= k1 − iα

k1 + iα
= exp(−2iφ ) so that4 | B |

| A |
= 1

C

A
= 2k1

k1 + iα
= 2 cos φ exp(−iφ ) so that4 |C |

| A |
= 2 cos φ (14)

with φ = arctan
α
k1






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3.4 The wavefunctions in each region and the physical interpretation

The wavefunctions for particles in regions (I) and (II) are given by Equations 13,

ψ1(x) = A1exp(ik1x) + B 1exp(−ik1x) in region (I)

ψ2(x) = C1exp(−αx) in region (II)  (Eqn 13)

and the ratios of the constants B/A and C/A by Equations 14.
B

A
= k1 − iα

k1 + iα
= exp(−2iφ ) so that4 | B |

| A |
= 1

C

A
= 2k1

k1 + iα
= 2 cos φ exp(−iφ ) so that4 |C |

| A |
= 2 cos φ (Eqn 14)

The incident beam A1exp(ik1x) has an average density of |1A1|12 particles per unit length and the reflected beam
B1exp(−ik1x) has an average density |1B1|12. Our analysis showed that |1B1|02 = |1A1|12 (Equation 14), and the densities
of the reflected and incident particles are equal.
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The transmitted particles are represented by the wavefunction in region (II):

ψ2(x) = C1exp(−αx)

The density of transmitted particles is given by

|ψ2(x)1|2 = |1C1|21exp(−2α 0x)

This is a most important result: quantum mechanics makes the clear prediction that particles can be observed
inside region (II). The particle density decreases exponentially with distance from the step. The scale of the
penetration is set by the constant α = 2m(V − E) ˙. In interesting cases, this is usually of the same order of
magnitude as the angular wavenumber k1 = 2mE ˙ in region (I).

It is helpful to visualize the situation by plotting a graph of the density function P(x) as we did at the end of
Subsection 2.6.
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We can simplify the algebra by setting A = 1 so that there is one incident particle per unit length. In region (I),
we have with the help of Equations 14:

B

A
= k1 − iα

k1 + iα
= exp(−2iφ ) so that4 | B |

| A |
= 1

C

A
= 2k1

k1 + iα
= 2 cos φ exp(−iφ ) so that4 |C |

| A |
= 2 cos φ (Eqn 14)

ψ1(x) = A1exp(ik1x) + B 1exp(−ik1x) in region (I) (Eqn 4a)

and, since B = exp(−2iφ):

ψ1(x) = exp(ik1x) + exp[−i(2φ + k1x)]

Now P1(x) = ψ1
* (x) ψ1(x)

so that P1(x) = 2 + exp[i(2φ + 2k1x)] + exp[−i(2φ + 2k1x)]

= 2 + 21cos(2k1x + 2φ) (15)
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P(x)

0 x

4

region (II)region (I)

Figure 74The density function P(x) in the
region of a potential step at x = 0. The
incident beam is from the left. The energy E
of each particle is less than the height of the
step V. In region (I), there is a pattern of
maxima and minima due to the interference
between incident and reflected waves of
equal amplitude. In region (II), the density
decreases exponentially.

In region (II), we have with the help of Question T8:

ψ2(x) = C1exp(−α 0x)

P2 (x) = ψ 2
*(x) ψ 2 (x) = |C |2 exp(−2αx)

and since C = 21cos1φ10exp(−iφ)

P2(x) = 41cos2 0φ 1exp(−2α 0x) (16)

P1(x)  = 2 + 21cos(2k1x + 2φ) (Eqn 15)

The density function is drawn in Figure 7 using Equations 15 and
16. You can see a perfect interference pattern in region (I) with the
regular array of maxima and minima. The amplitudes of the incident
and reflected waves are equal so the maximum value of P1(x) is 4
and the minimum 0. At the boundary, P1(0) = P2(0) = 41cos21φ, and
the density function passes smoothly to the decreasing exponential
in region (II).
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Question T9

Why does the density function have a maximum of four particles per unit length in region (I) when the incident
particle density is one per unit length?4❏

We can characterize the penetration of particles into region (II) by a distance D = 1/(2α). At this distance, the
density, given by Equation 16,

P2(x) = 41cos2 0φ 1exp(−2α 0x) (Eqn 16)

falls to 1/e of its value at x = 0:

P2(D)  = P2(0)1exp(−2α 0D) = P2(0)1exp(−1) = P2(0)/e
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The penetration depth is given in terms of E and V using Equations 13:

ψ2(x) = C1exp(−αx) in region (II)  (Eqn 13)

D = 1
2α

= ˙
2 2m(V − E)

(17)

The penetration depth for particles incident on a potential step with E < V

Question T10

A beam of electrons of energy 51eV approaches a potential step of height 101eV. Assume there is on average one
incident particle per unit length. Calculate the following: (a) the average particle density at x = 0; 
(b) the point nearest the step where P1(x) is minimum; (c) the penetration depth D.4❏
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In this subsection, we have obtained two remarkable predictions of quantum mechanics. The predictions seem to
defy common sense but they have been verified experimentally in many situations.

o Particles can penetrate into classically forbidden regions where V > E.

o Quantum-mechanical interference arises from a potential step and produces a regular set of points where the
particle density is zero.
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3.5 Reflection and transmission in the quantum model
The reflection coefficient R was defined in Subsection 2.6:

R = flux of reflected particles
fllux of incident particles

The wavefunction in region (I) is:

ψ1(x) = A1exp(ik1x) + B 1exp(−ik1x)

Equation 8 gives the incident flux |1A1|121˙k1/m and the reflected flux |1B1|21˙k1/m. We have already demonstrated
that when E  < V , |1B1|12 = |1A1|12 (Equation 14), so that the reflected flux is equal to the incident flux and the
reflection coefficient is one.

R = 1 (18)

The reflection coefficient at a potential step with E < V
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This result agrees with the prediction of classical mechanics, but what can we say about the transmission
coefficient? Particles can be observed across the step in the classically ‘forbidden’ region, but is there any flux?
If particles are not to be created or destroyed at the boundary, then R  + T = 1, and if R = 1, then T = 0.
Even though particles are observed in region (II), there is no flux. Remember that the wavefunction
ψ2(x) = C 1exp(−α 0x) is not an eigenfunction of momentum, and so does not represent a travelling wave with an
associated momentum and an associated flux. Equation 8

F = |1A1|21˙k/m (Eqn 8)

cannot be used to calculate flux since k is not defined.

T = 0 (19)

The transmission coefficient at a potential step with E < V
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3.6 Summary of Sections 2 and 3
At a step where the potential energy increases by an amount V, classical mechanics makes definite predictions
for the transmission and reflection of particles. If the total energy E of the incident particles is greater than V,
then the particles are always transmitted across the step and are never reflected. If E is less than V, then the
particles are always reflected and never transmitted.

When the distance over which the potential is changing is of the same order as, or smaller than, the de Broglie
wavelength of the incident particles, then it is inappropriate to use classical mechanics. A quantum-mechanical
treatment is required. Quantum mechanics makes some unexpected predictions which reveal the wave nature of
particles in an interesting way. In the case E  > V, there is always a finite probability that a particle will be
reflected and the theory allows a calculation of the reflection and transmission coefficients, R and T 
(Equations 9 and 10).

R = k1 − k2

k1 + k2







2

(Eqn 9)

T = 4k1k2

(k1 + k2 )2
(Eqn 10)
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In the case E  < V, the quantum predictions for R and T agree with the classical predictions but there are
important new features. There is always a finite probability of particles being found in the classically forbidden
region beyond the step where the wavefunction has an exponential shape and the particle has no defined
momentum. The theory allows a calculation of the penetration depth D in terms of E and V (Equation 17).

D = 1
2α

= ˙
2 2m(V − E)

(Eqn 17)

The penetration depth for particles incident on a potential step with E < V

Critical elements in the theory are the selection of appropriate solutions of the Schrödinger equation in the
regions before and after the potential step and the matching of the solutions at the boundary with both ψ1(x) and
dψ1(x)/dx being continuous at the boundary.
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P(x)

0 x

Region (I) Region (II)

Figure 44The particle density
function P(x) in the region of a
potential step (E > V). In region (I),
P(x) shows a pattern of alternating
maxima and minima caused by the
interference of the incident and
reflected waves.

P(x)

0 x

4

region (II)region (I)

Figure 74The density function P(x) in the
region of a potential step at x = 0. The
incident beam is from the left. The energy E
of each particle is less than the height of the
step V. In region (I), there is a pattern of
maxima and minima due to the interference
between incident and reflected waves of
equal amplitude. In region (II), the density
decreases exponentially.

The wave nature of material
particles is made very clear
by the appearance of
‘fringes’ caused by the
interference of the incident
and reflected waves. There is
a regular pattern of points
where the particle density is
a minimum separated by
points where the density is
maximum (Figure 4 and
Figure 7).
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4 Reflection and transmission at a barrier when E < V
U(x)

0 x

E
V

P

B C

DA

Figure 84A potential barrier with height V.
Particles with energy E are incident from the left
and, according to classical theory, are reflected at
the point P.

4.1 Classical description of the problem
We can now model a slightly more complicated physical
situation by forming a potential barrier from two closely
spaced steps. This is shown in Figure 8. The particles approach
from the left and encounter first a negative force from point A to
point B; from B to C there is no force, and from C to D there is a
positive force. Particles with energy E < V will reach point P,
according to classical mechanics, before being reflected back.
The classical reflection coefficient for a barrier of this nature is
one.
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4.2 The Schrödinger equation and the solutions in each region

U(x)

0 x

E
V

P

B C

DA

Figure 84A potential barrier with height V.
Particles with energy E are incident from the left
and, according to classical theory, are reflected at
the point P.

U(x)

0 x

E
V

d

region (I)

region (II)

region (III)

Figure 94A schematic
representation of a potential barrier
width d. The energy E of each particle
is less than the height of the barrier V.

A quantum treatment of
this barrier problem is
required if any of the
distances AB, BC, CD in
Figure 8 are of the same
order as, or less than, the
de Broglie wavelength of
the incident particles.
We will assume that the
distances AB and CD are
the ‘small’ ones and the
barrier is then drawn
schematically as in
Figure 9.

In most physical situations, the width of the barrier, d, is greater than the de Broglie wavelength. The region
x < 0 is designated (I), the region 0 ≤ x < d designated (II) and the region x ≥ d designated (III).
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As usual, particles are incident on the barrier from the left with energy E. The solutions of the Schrödinger
equation in regions (I) and (III), where the potential is zero, have the same form. You can refer back to
Subsection 2.2 and Equation 2:

ψ1(x) = A1exp(ikx) + B1exp(−ikx)4in region (I) (Eqn 2)

ψ3(x) = G1exp(ikx) + H1exp(−ikx)4in region (III)

with k = 2mE

˙
We can immediately put H = 0 because particles cannot return from infinity. The general solution to the
Schrödinger equation in region (II), where E < V, was derived in Subsection 3.2:

ψ2(x) = C1exp(−α 0x) + D1exp(α 0x)

with α = 2m(V − E)

˙
Notice that we have included the rising exponential term here because region (II) does not extend to infinity.
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In summary, we have the general forms of the wavefunctions in the three regions:

ψ1(x) = A1exp(i0kx) + B1exp(−i0kx) in region (I)

ψ2(x) = C1exp(−0α 0x) + D1exp(α 0x) in region (II) (20)

ψ3(x) = G1exp(ikx) in region (III)

with k = 2mE

˙
4and4α = 2m(V − E)

˙



FLAP P11.1 Reflection and transmission at steps and barriers
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

4.3 Relationships imposed by the boundary conditions
The situation now seems to be getting out of hand with five arbitrary complex constants and the boundary
conditions to be applied at x = 0 and x = d. Matching the wavefunctions and their derivatives at the boundaries
gives us four independent simultaneous equations which can, in principle, be solved for the four ratios B/A, C/A,
D/A, and G/A. This piece of algebraic manipulation is extremely tedious, and we will not bore you with the
details. We are interested mainly in the constant G because this tells us what the transmission coefficient is.
We will quote the result and not even ask you to confirm it!

G

A
= 4kα exp(−αd)

(k + iα )2 − (k − iα )2 exp(−2αd)

Now look closely at the denominator of this expression. We have already stated that the width of the barrier d is
usually much greater than the de Broglie wavelength of the incident particles. This in turn makes the argument
of the exponential large and the second term in the denominator negligibly small compared with the first term.
To a very good approximation, we have the following expression:

G

A
= 4kα exp(−αd)

(k + iα )2
(21)
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This can be rewritten more conveniently as:

G

A
= 4 exp(−αd) exp(−2iφ )

k α + α k
(22)

Question T11

Show that Equation 21
G

A
= 4kα exp(−αd)

(k + iα )2
(Eqn 21)

can be written in the form of Equation 22.

What is the modulus of G/A when α = k?4❏

The presence of the exponential factor exp(−α 0d) in the numerator of Equation 22 ensures that |1G1|1/1|1A1| is very
small and very sensitive to the value of d.
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We can now make similar approximations in region (II), and we find that the wavefunction is dominated by the
falling exponential term, ψ2(x) = C1exp(−α 0x), and the rising exponential makes a negligible contribution.
The ratios B/A and C/A are then to a good approximation the same as for the potential step (Equation 14 in
Subsection 3.3). In summary, we have the following results:

B

A
≈ k − iα

k + iα
= exp(−2iφ ) and  

| B |
| A |

≈ 1

C

A
≈ 2k

k + iα
= 2 cos φ exp(−iφ ) and 

|C |
| A |

≈ 2 cos φ

D

A
≈ 0 (23)

G

A
≈ 4 exp(−αd)

k α + α k
exp(−2iφ ) and  

|G |
| A |

≈ 4 exp(−αd)
k α + α k

with tan φ = α
k
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4.4 The wavefunctions in each region and the physical interpretation
The wavefunctions in the three regions are given by Equations 20, with the ratios of the constants given by
Equations 23. Remember that we have made the assumption that the width of the barrier is much greater than the
de Broglie wavelength. In region (I), the particles are represented by travelling waves, the incident particles by
A1exp(ikx) and the reflected particles by B1exp(−ikx). The density of the reflected particles, |1B1|02, is almost equal
to the density of the incident particles, |1A1|2, since |1B/A1| ≈ 1. In the classically forbidden region (II), the
wavefunction is dominated by the falling exponential so that the density of particles is given approximately by
|ψ2(x)1|02 = |1C1|21exp(−2α 0x). Finally, in region (III), the transmitted particles are represented by the travelling
wave G 1exp(ikx), where |1G1| is much smaller than |1A1|. The density of the transmitted particles is consequently
very much smaller than the density of the incident particles.

Quantum mechanics unambiguously predicts that particles can tunnel through a potential barrier and can be
observed with reduced density but with their original momentum. This process is known as quantum
tunnelling.
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Question T12

Show that the density of particles in region (III) is constant and is given by 16 × | A |2 exp −2αd( )
k α + α k( )2 .4❏

P(x)

0 x

region (II)region (I) region (III)

d

Figure 104The particle density function P(x) near a
potential barrier of height V. Particles are incident from the
left, each with energy E less than V.

All these facts can be neatly represented by the graph
of the density function P(x) = |1ψ1(x)1|12 shown in
Figure 10. The form of P(x) in regions (I) and (II) is
very similar to that shown in Figure 7 for the
potential step, because of the realistic approximations
described in Subsection 4.3, so there is no need to
repeat the calculations. In region (I), there is an
almost perfect pattern due to the interference between
incident and reflected waves of almost equal
amplitude. At the boundary, x = d, P(x) has not quite
fallen to zero and joins smoothly to its constant value
in region (III). ☞
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4.5 Transmission in the quantum model

U(x)

0 x

E
V

d

region (I)

region (II)

region (III)

Figure 94A schematic
representation of a potential barrier
width d. The energy E of each particle
is less than the height of the barrier V.

The method for finding the particle fluxes and hence the reflection and
transmission coefficients follows from Equation 8

F = | A |2
˙k

m
(Eqn 8)

and the pattern set in Subsections 2.6 and 3.5. The transmission coefficient
for the potential barrier illustrated in Figure 9 is given by:

T = flux of transmitted particles
flux of incident particles

The incident flux in region (I) is given by |1A1|21˙k0/m and the transmitted
flux in region (III) by |1G1|121˙k0/m. Consequently:

T = |G |2

| A |2
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Equation 21
G

A
= 4kα exp(−αd)

(k + iα )2
(Eqn 21)

gives the constant G  in terms of A , and from this we can get the square modulus of G (see, for example,
Question T12):

|G |2 ≈ | A |2 16 exp(−2αd)

k α + α k( )2

It follows immediately that:

T ≈ 16 exp(−2αd)

k α + α k( )2 (24)

The transmission coefficient for a potential barrier
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In many applications, the incident particle angular wavenumber k, and the factor α  which characterizes the
wavefunction inside the barrier, are the same order of magnitude. The denominator then takes a value of about 4,
and the transmission coefficient has the approximate value:

T ≈ 41exp(−2αd) (25)

where α = 2m(V − E)

˙
 and d is the barrier width.

An approximate value for the transmission coefficient when k ≈ α

This is a good equation to remember, because it usually gives a good estimate of the transmission coefficient of
a barrier. The most important factor in calculating T is the exponential; remember that exponential functions can
change by orders of magnitude for relatively small changes in the argument.

The reflection coefficient of the barrier R  is of course very close to one because T  is small with the
approximations we have used. Application of the approximate formulae for |1B1|1/1|1A1| given in Equations 23, also
gives R ≈ 1; a better approxi-mation is obtained by using Equation 25 and putting R = 1 − T.
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We can show that the phenomenon of barrier penetration is consistent with the Heisenberg uncertainty principle
∆E ∆t ≈ ˙.

The Heisenberg uncertainty principle tells us that a particle can ‘borrow’ energy ∆E sufficient to surmount the
barrier provided it ‘repays’ the debt in a time ∆t of order ˙/∆E. The value of ∆E is given by V − E . 
Let us assume a typical barrier of width d = 2/α so that T ≈ 41exp(−14) = 0.07 (using Equation 25).

T ≈ 41exp(−2αd) (Eqn 25)

where α = 2m(V − E)

˙
 and d is the barrier width.

We estimate ∆t from the speed of the particle:

  
∆t ≈ d

v
4and4

  
v = p

m
= ˙k

m

Hence ∆t ≈ 2 α
˙k m

= 2m

˙kα
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However α = 2m(E − V )

˙
4and4 k = 2mE

˙

Substituting these gives ∆t ≈ ˙
E(V − E)

Both E and V − E are of the same order of magnitude, so that:

∆t ≈ ˙
V − E

≈ ˙
∆E

which is the required relation.4❏
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Figure 114The potential barrier

‘seen’ by an α -particle in a
radioactive nucleus.

4.6 Examples of quantum
tunnelling
The idea of tunnelling was first used
to explain α -decay in radioactive
nuclei. α -particles may be formed
within a nucleus. In heavy nuclei they
may be formed with enough energy
to escape. ☞ They are held within
the nucleus by a potential barrier
which consists of an attractive part
(due to nuclear forces), and a
repulsive part (due to the electrostatic
repulsion between the α-particle and
the residual nucleus), as shown
schematically in Figure 11.
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Figure 114The potential barrier

‘seen’ by an α -particle in a
radioactive nucleus.

This combination produces a
potential well in which in which the
α-particle is trapped. Notice that the
energy is positive and states of this
same energy exist outside the
potential well of the nucleus, so the
α -particle can tunnel out of its
potential well and escape from the
nucleus. This is α-decay.
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Figure 124The variation in decay rate

with α-particle energy for a number of
radioactive nuclei.

The shape of the barrier is more complex than we have envisaged so far,
but it should be clear that the higher the energy of the α -particle, the
more likely it will be to penetrate the barrier, both directly because of
the increased energy, and indirectly because of the decreased width of
the barrier. These two effects lead to an extremely wide variation in
decay rates for a relatively small change in energy. Figure 12 shows a
variation of a factor 1024 in decay rates λ  for a change of a factor 2 in
energy. ☞

This same idea, used in reverse, suggested to Cockcroft and Walton that
it would be possible to induce nuclear reactions using low-energy
protons (about 0.51MeV) without sufficient energy to overcome the
electrostatic repulsion. This began the whole study of nuclear physics
using particle accelerators.

The same process is involved in the nuclear reactions that supply the
Sun’s energy. The principal reaction here involves the eventual
formation of helium by the fusion of hydrogen nuclei (protons). It is
essential to take tunnelling into account to be able to explain the rate of
energy production. In laboratory fusion experiments the same principle
allows nuclear fusion at attainable temperatures.
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Figure 94A schematic
representation of a potential barrier
width d. The energy E of each particle
is less than the height of the barrier V.

An example of quantum tunnelling occurs when an electric current passes
through a junction made by twisting two copper wires together.
The surface of the copper, unless it is newly cleaned, is always covered
with a thin layer of oxide — an insulator — so that in classical physics no
current would flow; the potential energy of the electrons varies in the same
way as in Figure 9. However, since the oxide layer is very thin, it is
possible for electrons to tunnel through the barrier.

A development of this idea is the tunnel diode; in this device, the height of
the potential barrier between two semiconductors is controlled externally,
and the physical size of the junction is so small that the flow of electrons
can be turned on or off very rapidly, within a few picoseconds. Further
developments using superconductors have led to the Josephson junction
and the SQUID (semiconducting quantum interference device), which can
measure magnetic fields as small as 10−151T.

The scanning tunnelling electron microscope was developed recently by Binnig and Rohrer, who were awarded
the Nobel Prize in 1986. This remarkable device works by the tunnelling of electrons from the surface of a
sample to the tip of a very fine needle. It is so sensitive that the detail of the surface can be resolved to distances
much less than an atomic radius.
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Figure 104The particle density function P(x) near a
potential barrier of height V. Particles are incident from the
left, each with energy E less than V.

Finally, good approximations are derived for the transmission coefficient T. In our approximation, T  is
dominated by the exponential factor exp(−2α 0d).

4.7 Summary of Section 4
This section describes one of the most powerful
predictions of quantum mechanics. We have seen that
material particles can penetrate into classically
forbidden regions due to their wave nature. Here we
go further and show that particles can penetrate
through classically forbidden barriers (Figures 8 and
9). In most realistic situations, the width of the barrier
is such that the transmission coefficient is small and
considerable simplifications can be made in the
theory. The nature of the particle wavefunctions is
described in the regions before the barrier, inside the
barrier and after the barrier. Matching the
wavefunctions at the two boundaries allows the particle density ratios to be calculated. A graph of the particle
density function near the barrier is given in Figure 10. Three features are important:
o The interference pattern due to the incident and reflected waves;
o The exponential decay within the barrier;
o The constant density beyond the barrier.

Mike Tinker


Mike Tinker


Mike Tinker


Mike Tinker
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E

E
V
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Figure 24A schematic
representation of a potential step.
The distance over which the force
acts is assumed to be negligible.
The total energy of the particle is E.

5 Closing items
5.1 Module summary
1 A particle with kinetic energy E approaches a step where the potential

increases by V. Classical mechanics predicts that if E  > V  then the
particle will always pass over the step.

2 If the dimensions of the step are of the same order or less than the de
Broglie wavelength of the incident particle, then quantum mechanics
rather than classical mechanics must be used.

3 A potential step where E > V is shown in Figure 2. The solutions of the
Schrödinger equation are:

ψ1(x) = A1exp(ik1x) + B 1exp(−ik1x) in region (I) (Eqn 4a)

ψ2(x) = C1exp(ik2x) in region (II) (Eqn 4b)

with k1 = 2mE

˙
 4and4  k2 = 2m(E − V )

˙
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The ratios of the coefficients are determined by boundary conditions. The wavefunction ☞ and its slope
must both be continuous at x = 0. This gives:

B

A
= k1 − k2

k1 + k2
4and4 C

A
= 2k1

k1 + k2
(Eqn 7)

4 The wavefunction ψ1(x) represents the incident particles, with density |1A1|12 per unit length, moving with
momentum ˙k1 in the positive x-direction, and the reflected particles, with density |1B1|12 moving with
momentum −˙k1. The wavefunction ψ2(x) represents the transmitted particles, of density |1C1|2, moving with
momentum ˙k2.

5 For a wavefunction ψ1(x) = A1exp(ikx), which is a momentum eigenfunction, the flux of particles is given by

F = |1A1|21˙k/m (Eqn 8)

6 At a potential step, the reflection coefficient R and the transmission coefficient T are defined:

R =  flux of reflected particles
 flux of incident particles

4and4T = flux of transmitted particles
flux of incident particles
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P(x)

0 x

Region (I) Region (II)

Figure 44The particle density
function P(x) in the region of a
potential step (E > V). In region (I),
P(x) shows a pattern of alternating
maxima and minima caused by the
interference of the incident and
reflected waves.

If E > V, quantum mechanics predicts:

R = k1 − k2

k1 + k2







2

4and4T = 4k1k2

(k1 + k2 )2
(Eqns 9 and 10)

As expected R + T = 1. The prediction that R > 0 when E > V is a
direct contradiction of classical mechanics.

7 The wave nature of particles is demonstrated by the 
particle density function P(x) in region (I), which shows the
interference between the incident and reflected waves (Figure 4).
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Figure 54The function U(x) at a
potential step. The height of the step
V is greater than the energy E of each
incident particle. According to
classical mechanics, the particles
reach the point P and are then
reflected back.

8 A potential step where E < V is shown in Figure 5. The solutions of the
Schrödinger equation are:

ψ1(x) = A1exp(ik1x) + B 1exp(−ik1x) in region (I)

ψ2(x) = C1exp(−αx) in region (II) (Eqn 13)

with k1 = 2mE

˙
 4and4α = 2m(V − E)

˙
The ratios of the constants are given by the boundary conditions at
x = 0:

B

A
= k1 − iα

k1 + iα
= exp(−2iφ ) so that4 | B |

| A |
= 1

C

A
= 2k1

k1 + iα
= 2 cos φ exp(−iφ ) so that4 |C |

| A |
= 2 cos φ (Eqn 14)

with φ = arctan
α
k1






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0 x

4
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Figure 74The density function P(x) in the
region of a potential step at x = 0. The
incident beam is from the left. The energy E
of each particle is less than the height of the
step V. In region (I), there is a pattern of
maxima and minima due to the interference
between incident and reflected waves of
equal amplitude. In region (II), the density
decreases exponentially.

9 In region (I), the wavefunction ψ1(x) represents the incident and
reflected particles with the same density, |1B1|2 = |1A1|2.

In region (II), the wavefunction ψ2(x) is not a momentum
eigenfunction and there is no flux of particles. The particle
density function P(x) (Figure 7) shows a perfect interference
pattern in region (I) and joins smoothly to the falling
exponential in region (II). There is a finite probability of
particles being observed in the classically forbidden region:
P2(x) = 41cos21φ1exp(−2α 0x). At the penetration depth D  = 1/(2α),
the particle density is 1/e of its value at x = 0.

10 The reflection coefficient at the step where E < V is given by:

R = | B |2

| A |2
= 1 (Eqn 18)

This agrees with the classical prediction.
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Figure 94A schematic
representation of a potential barrier
width d. The energy E of each particle
is less than the height of the barrier V.

11 A potential barrier with width d and V > E is shown schematically in
Figure 9. The distances over which the potential is increasing or
decreasing are assumed to be smaller than the de Broglie wavelength
of the incident particles. The solutions of the Schrödinger equation are

ψ1(x) = A1exp(ikx) + B1exp(−ikx) in region (I)

ψ2(x) = C1exp(−αx) + D1exp(αx) in region (II) (Eqn 20)

ψ3(x) = G1exp(ikx) in region (III)

with k = 2mE

˙
 and α = 2m(V − E)

˙
The ratios of the constants are given by matching the wavefunctions
and their slopes at the two boundaries.
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With the assumption that d >> 1/α, the following approximations are valid:

B

A
≈ k − iα

k + iα
= exp(−2iφ ) and  

| B |
| A |

≈ 1

C

A
≈ 2k

k + iα
= 2 cos φ exp(−iφ ) and 

|C |
| A |

≈ 2 cos φ

D

A
≈ 0 (Eqn 23)

G

A
≈ 4 exp(−αd)

k α + α k
exp(−2iφ ) and  

|G |
| A |

≈ 4 exp(−αd)
k α + α k

with tan φ = α
k
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Figure 104The particle density function P(x) near a
potential barrier of height V. Particles are incident from the
left, each with energy E less than V.

12 In region (I), the wavefunction ψ1(x) represents
both the incident and reflected particles with
approximately the same density. In region (II),
the wavefunction ψ2(x) is not a momentum
eigenfunction. In region (III), the wavefunction
ψ3(x) represents the transmitted particles.
The density function P(x) (Figure 10) shows a
typical interference pattern in region (I), falls
exponentially in region (II) and joins smoothly to
the constant value |1G1|2 in region (III).

13 The transmission coefficient at a barrier where
V > E is given by T = |1G1|21/1|1A1|2

 

so that:

T ≈ 16 exp(−2αd)

k α + α k( )2 (Eqn 24)

When α  and k are of the same order of magnitude, a good approximation is T  ≈  41exp(−2α 0d).
The transmission coefficient is normally much less than one so that the reflection coefficient R ≈ 1.

14 Quantum tunnelling also allows particles to tunnel into or out of a potential well. Such processes are
responsible for nuclear fusion and also allow many technological developments.
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5.2 Achievements
Having completed this module, you should be able to:

A1 Define the terms that are emboldened and flagged in the margins of the module.

A2 Describe the motion of a particle at a potential step using classical mechanics. Identify the circumstances
when quantum mechanics should be used rather than classical mechanics.

A3 Recall the form of the solutions of the Schrödinger equation for particles of energy E encountering an
idealized potential step when E > V. Interpret the solutions in terms of the density and flux of the incident,
reflected and transmitted particles.

A4 Recall conditions on the wavefunctions at a boundary, and use the conditions to determine the relations
between the constants appearing in the wavefunctions.

A5 Derive expressions for the transmission and reflection coefficients at a potential step when E > V. Compare
and contrast the predictions of quantum and classical mechanics.

A6 Recall the form of the solutions of the Schrödinger equation for particles of energy E encountering an
idealized potential step when E < V. Interpret the solutions in terms of the density and flux of the incident
and reflected particles. Explain how these solutions predict that particles can penetrate into the classically
forbidden region.
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A7 Use the theory to confirm that the reflection coefficient for a step is unity when E < V, in agreement with
classical theory.

A8 Recall the form of the solutions of the Schrödinger equation for particles of energy E < V encountering an
idealized potential barrier of width d. Interpret the solutions in terms of the density and flux of the incident,
reflected and transmitted particles.

A9 Use the approximate formula for the transmission coefficient through a potential barrier.

A10 Use the quantum theory results to calculate fluxes of particles transmitted by, and reflected from, specified
steps and barriers.

A11 Outline the use of barrier penetration, or tunnelling, in different physical situations.

Study comment  You may now wish to take the Exit test for this module which tests these Achievements.
If you prefer to study the module further before taking this test then return to the Module contents  to review some of the
topics.
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5.3 Exit test

Study comment Having completed this module, you should be able to answer the following questions, each of which tests
one or more of the Achievements.

Note We have used electron beams with energies in the eV region to illustrate the general principles of quantum mechanics
applied to steps and barriers. This is an attempt to keep to a minimum the amount of repetitive arithmetic in the questions.
You should be fully aware that similar examples can be generated using nuclear particles (e.g. protons or α-particles) with
energies in the MeV region and lengths of the order of 10−151m.

Question E1

(A2 and A10)4A beam of electrons, each with kinetic energy 51eV, is incident on a step where the potential
energy decreases by 2.51eV. Calculate the transmission and reflection coefficients in the quantum model.
What does classical mechanics predict? How can you decide which theory of mechanics to use?
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Question E2

(A4, A5 and A7) Explain qualitatively how the boundary conditions on wavefunctions lead to Equations 5 and 6.

A + B = C (Eqn 5)

Ak1 − Bk1 = Ck2 (Eqn 6)

Verify Equations 7
B

A
= k1 − k2

k1 + k2

and
C

A
= 2k1

k1 + k2

(Eqn 7)

from Equations 5 and 6. Derive expressions for the transmission and reflection coefficients when V < E.

Show that for a potential step with V > E the ratio

B

A
= k1 − iα

k1 + iα
4where4α = 2m(V − E)

˙

Hence show that |1B1| = |1A1| and the reflection coefficient is one.
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Question E3

(A3)4Find a suitable wavefunction to describe the incident electrons in Question E1 if the current is 101µA.

[A beam of electrons, each with kinetic energy 51eV, is incident on a step where the potential energy decreases
by 2.51eV.]

What is the current after the step?

Question E4

(A6)4At the junction between copper and an insulator, the potential energy of a conduction electron increases
by 11.11eV. Find the penetration depth, into the insulator, of a typical conduction electron with kinetic energy
7.01eV.

Sketch the graph of the density function and account for the series of maxima and minima inside the copper.
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Question E5

(A8, A9 and A10)4A beam of electrons with kinetic energy 5 1eV approaches a potential barrier of height 101eV
and width 11nm. Sketch the graph of the density function near the barrier.

Calculate the transmission coefficient, T, according to Equation 24.

T ≈ 16 exp(−2αd)

k α + α k( )2 (Eqn 24)

Are the approximations made to derive the formula valid in this case?

What is the value of T when the barrier potential is reduced to 61eV?

Is Equation 25 also a good approximation?

T ≈ 41exp(−2αd) (Eqn 25)
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Question E6

(A9, A10 and A11)4In a modern scanning tunnelling microscope, the tip of a fine needle is 11nm from a metal
surface. The needle to metal gap behaves like a potential barrier of height 51eV. Calculate the transmission
coefficient T for electrons of energy 2.51eV.

By what factor does T change when the gap increases to 1.11nm? What is the significance of this result?

Study comment  This is the final Exit test question. When you have completed the Exit test go back to Subsection 1.2 and
try the Fast track questions if you have not already done so.

If you have completed both the Fast track questions and the Exit test, then you have finished the module and may leave it
here.
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