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1 Opening items

1.1 Module introduction
A study of the simple harmonic oscillator is important in classical mechanics and in quantum mechanics.
The reason is that any particle that is in a position of stable equilibrium will execute simple harmonic motion
(SHM) if it is displaced by a small amount. A simple example is a mass on the end of a spring hanging under
gravity. The system is stable because the combination of the tension in the spring and the gravitational force will
always tend to return the mass to its equilibrium position if the mass is displaced. Another example is an atom of
hydrogen in a molecule of hydrogen chloride HCl. The mean separation between the hydrogen and the chlorine
atoms corresponds to a position of stable equilibrium. The electrical forces between the atoms will always tend
to return the atom to its equilibrium position provided the displacements are not too large. Such examples of
motion about a position of stable equilibrium can be found in all branches of mechanics, and in atomic,
molecular and nuclear physics.

The key to understanding both the classical and quantum versions of harmonic motion is the behaviour of the
particle potential energy as a function of position. The potential energy function of a particle executing pure
simple harmonic motion has a parabolic graph (see Figure 2), and it may be shown that sufficiently close to a
position of stable equilibrium almost all systems have a parabolic potential energy graph and hence exhibit
SHM. For oscillations of large amplitude, the potential energy often deviates from the parabolic form so that the
motion is not pure SHM.
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In this module, we will review the main features of the harmonic oscillator in the realm of classical or large-
scale physics, and then go on to study the harmonic oscillator in the quantum or microscopic world. We will
solve the time-independent Schrödinger equation for a particle with the harmonic oscillator potential energy, and
hence determine the allowed energy levels of the quantum oscillator, the corresponding spatial wavefunctions
and the probability density distributions. Comparisons will be made between the predictions of classical and
quantum theories, bearing in mind their very different regions of applicability.

Study comment Having read the introduction you may feel that you are already familiar with the material covered by this
module and that you do not need to study it. If so, try the Fast track questions given in Subsection 1.2.  If not, proceed
directly to Ready to study? in Subsection 1.3.
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1.2 Fast track questions

Study comment Can you answer the following Fast track questions?. If you answer the questions successfully you need
only glance through the module before looking at the Module summary (Subsection 3.1) and the Achievements  listed in
Subsection 3.2. If you are sure that you can meet each of these achievements, try the Exit test in Subsection 3.3. If you have
difficulty with only one or two of the questions you should follow the guidance given in the answers and read the relevant
parts of the module. However, if you have difficulty with more than two of the Exit questions you are strongly advised to
study the whole module.

Question F1

What is meant by the term simple harmonic oscillation in classical mechanics? Suggest a criterion for deciding
whether classical mechanics or quantum mechanics should be used in a problem involving harmonic oscillation.

Question F2

Write down an expression for the allowed energies of the harmonic oscillator in quantum mechanics in terms of
the quantum number n, Planck’s constant and the frequency of the corresponding classical oscillator.
Sketch the energy eigenfunctions (i.e. spatial wavefunctions) of the n = 0 and n = 1 states.
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Question F3
Write down the time-independent Schrödinger equation for a particle of mass m in a one-dimensional harmonic
oscillator potential centred at x = 0. Show that the spatial wavefunction

ψ (x) = A exp(− 1
2 α x2 )

is an energy eigenfunction with total energy eigenvalue E = 1
2 ˙ω , where ω is the angular frequency of the

corresponding classical oscillator. Can the quantum oscillator have a lower energy?

Study comment

Having seen the Fast track questions  you may feel that it would be wiser to follow the normal route through the module and
to proceed directly to Ready to study? in Subsection 1.3.

Alternatively, you may still be sufficiently comfortable with the material covered by the module to proceed directly to the
Closing items.
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1.3 Ready to study?

Study comment In order to study this module, you will need to be familiar with the following physics terms and physics
principles:
simple harmonic motion in classical mechanics; the nature of a conservative force and the importance of the
potential energy; the potential energy function for a particle executing SHM (U(x) = ks 0x2/ 02); the solutions of the
time-independent Schrödinger equation for a particle moving in one dimension in a region of constant potential energy; the
allowed wavefunctions or eigenfunctions and the corresponding allowed energies or eigenvalues of energy of a particle in a
stationary state of definite energy in a one-dimensional box; photons, the Planck–Einstein formula, the
de Broglie wavelength, the Heisenberg uncertainty principle; the Born probability interpretation (of the wavefunction).
If you are uncertain of any of these terms, you can review them now by referring to the Glossary which will indicate where
in FLAP they are developed. You should be familiar with the mathematics of elementary trigonometric functions and the
exponential function; the use of complex numbers (including complex conjugates and the role of arbitrary constants in the
solution of second-order differential equations). We will frequently use both integral and differential calculus involving
elementary functions. The following Ready to study questions will allow you to establish whether you need to review some
of the topics before embarking on this module.
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Question R1

A particle of mass m is confined in an infinitely deep potential well such that V = 0 for −a/2 ≤ x ≤ +a/2 and
V → ∞  for |1x1| > a/2. Write down the time-independent Schrödinger equation for the particle inside the well.
Confirm that within the well ψ0(x) = A1cos(πx0/a) is a solution to the Schrödinger equation when the total energy
E = π2˙2/(2ma2). Show that this solution satisfies the boundary condition ψ0(x) = 0 at x = ±a/2.

Question R2

Write down the time-independent Schrödinger equation for a particle of mass m moving in the x-direction where
the potential energy has a constant value V that is greater than the total energy E. Show by substitution that

ψ01(x) = A1exp(α 00x) + B1exp(−α 00x)

is a solution with A and B arbitrary constants and α real. Find an expression for α in terms of E and V.

Question R3

If ψ (x) = A exp(− 1
2 α x2 ) , show that d02ψ(x)/dx2 = (x2α 02 − α)ψ(x).
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2 The harmonic oscillator

2.1 Classical description of the problem; classical predictions
We consider a particle of mass m constrained to move in the x-direction. It is subject to a force Fx also directed
in the x-direction, proportional to the distance from the origin and directed towards the origin:

Fx = −ksx (1) ☞

The constant ks is called the force constant, and it plays an important role in our treatment of harmonic motion.
A good example of this kind of force is the restoring force on a particle attached to a spring which is free to
expand or contract. Newton’s second law is now applied, and we immediately obtain a differential equation
relating the position x and the time t:

m˙̇x = −ksx ☞

so ˙̇x = − ks

m




 x (2)
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Notice that the negative sign in Equation 2

˙̇x = − ks

m




 x (Eqn 2)

says that the acceleration is in the negative x-direction when x is positive and is in the positive x-direction when
x is negative. Equation 2 is often regarded as the definition of classical harmonic oscillation:

A particle executes simple harmonic motion about a fixed point O if the acceleration is proportional to the
displacement from O and directed towards O.

The solutions of Equation 2 have been obtained elsewhere in FLAP:

x = A1cos1(ω1t) + B 1sin1(ω1t)4with4ω = ks m

Question T1

Confirm by direct substitution that x = A 1cos(ω1t) + B1sin(ω1t) with ω = ks m  is the general solution of
Equation 2.4❏
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Figure 14A graph of the

oscillation x = a1cos1(ω1t),
showing how the amplitude a
and the period T are defined.

The arbitrary constants A  and B  may be determined from the velocity and
displacement of the particle at t = 0. For example, we can take x = a and ẋ = 0  at
t = 0; then:

x = a1cos1(ω1t) (3)

The amplitude of this simple harmonic oscillation is a, and it is illustrated in
Figure 1. The period T determines the frequency f = 1/T  and the angular
frequency ω = 2π/T. Consequently, in this particular case:

ω = ks

m
 4 T = 2π m

ks
 4and4 f = 1

2π
ks

m
(4)
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For comparisons with the quantum-mechanical treatment, we need to relate the total energy of the oscillator to
its amplitude and also find an expression for the particle velocity in terms of the displacement. The force defined
by Equation 1

Fx = −ksx (Eqn 1)

is a conservative force since it can be derived from a potential energy function U(x):

Fx = − dU(x)
dx

U(x) = − Fx dx∫ = − (−ksx) dx∫
Therefore U(x) = 1

2 ksx2 + C

It is usual to put the arbitrary constant C = 0, and the potential energy function then becomes:

U(x) = 1
2 ksx2 (5)

The potential energy function for a one-dimensional simple harmonic oscillator.



FLAP P11.2 The quantum harmonic oscillator
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

U(x)

xa a

E

A graph of the potential energy function has a parabolic form and is shown
in Figure 2.

Since the only force acting on the particle is the restoring force, given by
Equation 1,

Fx = −ksx (Eqn 1)

the sum of the kinetic and potential energies is constant. We call this
constant the total energy E:

E = 1
2 mẋ2 + 1

2 ksx2 (6)

However when ẋ = 0 , then x = a, and we have:

E = 1
2 ksa2

so, a = 2E

ks
(7)

Figure 24The potential energy function for a simple harmonic oscillator. A possible energy E is represented by a horizontal
line, and the corresponding amplitude a is indicated. The potential energy function has a parabolic form.
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U(x)

xa a

E

The amplitude of the oscillation increases as the square root of the total
energy. The relation between the total energy E and the amplitude a is also
illustrated in Figure 2.

We can rearrange Equation 6

E = 1
2 mẋ2 + 1

2 ksx2 (Eqn 6)

to obtain the desired expression for the particle velocity:

ẋ2 = 2E

m
− ks

m




 x2

Substituting Equation 7:

a = 2E

ks
(Eqn 7)

ẋ2 = ks

m




 (a2 − x2 )

Figure 24The potential energy function for a simple harmonic oscillator. A possible energy E is represented by a horizontal
line, and the corresponding amplitude a is indicated. The potential energy function has a parabolic form.
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It is convenient to replace the ratio ks/m by ω02 (Equation 4),

ω = ks

m
 4 T = 2π m

ks
 4and4 f = 1

2π
ks

m
(Eqn 4)

so that:

ẋ = ±ω a2 − x2 (8)

The speed | ẋ |  is maximum at x = 0 and is zero at the extremes x = ±0a.

Now, imagine making observations on the position of the particle as it oscillates, and assume they are made at
random times. Obviously, you are more likely to find the particle in regions where it is moving slowly, and
conversely less likely to find it where it is moving quickly. We can quantify this argument as follows:

Let the probability of finding the particle in a narrow region of length ∆x at position x be P(x)1∆x, and let ∆t be
the time required for the particle to cross ∆x . Since the particle crosses ∆x twice during each complete
oscillation, we have:

P(x)1∆x = 2∆t/T

where T is the period. In the limit as ∆x and ∆t tend to zero, ∆x/∆t tends to ẋ  and

P(x) = 2
| ẋ |T

☞
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Figure 34The classical probability
density for a particle executing simple
harmonic motion. The amplitude of the
oscillation is a. The corresponding
classical probability of finding the
particle in any finite region between

x = x01 and x = x02 is given by P(x) dx
x1

x2

∫

Using Equations 4 and 8,

ω = ks

m
 4 T = 2π m

ks
 4and4 f = 1

2π
ks

m
(Eqn 4)

ẋ = ±ω a2 − x2 (Eqn 8)

we find:

P(x) = ω
π

1

ω a2 − x2

Hence P(x) = 1

π a2 − x2
(9)

The function P(x) is the classical probability density, and we will
compare it with the corresponding quantum probability density in due
course. Figure 3 shows the graph of P(x). You can see the probability
density increasing as the displacement increases and the speed decreases;
eventually, the probability density goes asymptotically to infinity when
x  → ±0a. However, the probability of finding the particle in any finite
region remains finite.
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2.2 The Schrödinger equation for a simple harmonic oscillator
Before you embark on any mechanics problem, it is important to decide whether to use the classical
approximation or quantum mechanics. One test is to compare a typical de Broglie wavelength with an
important linear dimension in the problem. If the de Broglie wavelength is negligibly small, then classical
mechanics may safely be used. In the harmonic oscillator problem, we can compare the de Broglie wavelength
with the amplitude of the oscillation. This leads to the following conditions:

If E is the total energy, h is Planck’s constant and f is the classical oscillator frequency:

Use classical mechanics if E >> hf. Otherwise use quantum mechanics! ☞

In the quantum-mechanical description of particle motion, the concept of a particle trajectory is completely lost.
We cannot know the particle position and momentum simultaneously, and this fundamental limitation is
formalized in the Heisenberg uncertainty relation ∆x1∆px ≥ ˙. In the case of the quantum simple harmonic
motion, you must stop visualizing a particle oscillating about a mean position and concentrate on the
wavefunction! The wavefunction corresponding to a particular state tells you all that can be known about the
behaviour of the particle in that particular state.
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Study comment The one-dimensional wavefunction Ψ1(x, t) is time-dependent and satisfies the time-dependent
Schrödinger equation. For a stationary state of definite energy E the wavefunction takes the form

Ψ (x, t) = ψ (x) exp −i
E

˙
t





Since this module is entirely concerned with such states we will concentrate on determining the spatial wavefunctions ψ1(x)
which satisfy the time-independent Schrödinger equation, and the corresponding values of E. Because of this restriction we
may conveniently refer to ψ1(x) as the wavefunction since Ψ1(x, t) follows immediately from ψ1(x) and E.4❏

The time-independent Schrödinger equation for particle motion in one dimension is:

−˙2

2m

d2ψ (x)
dx2

+ U(x) ψ (x) = E ψ (x) (10)

Here, U (x) is the potential energy function, and we have to solve the equation with appropriate
boundary conditions to obtain the allowed values of the total energy E and the corresponding wavefunctions.
Solutions of the time-independent Schrödinger equation for a particle trapped in a one-dimensional box,
discussed elsewhere in FLAP, show that confinement leads to quantized energy levels labelled by an integer
quantum number n and that each energy level has a corresponding wavefunction ψn(x). Much can be learned
from this example and the lessons applied to the harmonic oscillator.
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First we substitute Equation 5 into Equation 10

U(x) = 1
2 ksx2 (Eqn 5)

−˙2

2m

d2ψ (x)
dx2

+ U(x) ψ (x) = E ψ (x) (Eqn 10)

to produce the Schrödinger equation for the quantum harmonic oscillator:

−˙2

2m

d2ψ (x)
dx2

+ 1
2 ksx2 ψ (x) = E ψ (x)

and after rearrangement:

˙2

2m

d2ψ (x)
dx2

= 1
2 ksx2 − E( )ψ (x) (11)

The time-independent Schrödinger equation for a quantum harmonic oscillator.
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2.3 The energy eigenfunctions
There are very many solutions of Equation 11,

˙2

2m

d2ψ (x)
dx2

= 1
2 ksx2 − E( )ψ (x) (Eqn 11)

and we have to select those which satisfy the appropriate boundary conditions. ☞  In the case of the one-
dimensional box, or infinite square well, the allowed wavefunctions are constrained to zero at the edges where
the potential energy goes to infinity ☞. However, the harmonic oscillator potential energy function has no such
rigid boundary but it does go to infinity at infinite distance from the origin. Our boundary condition is that the
allowed wavefunctions approach zero as x approaches +∞ or −∞. You may think that this condition is easy to
arrange with any value of the total energy E since the solution to any second-order differential equation contains
two arbitrary constants. This is not so! One of the constants fixes the overall normalization of the wavefunction,
and the remaining constant and the value of E are used to satisfy the two boundary conditions. In fact, it turns
out that there are an infinite number of discrete values of E which we label E1, E2, E3, …, En, and to each of
these there is a corresponding allowed wavefunction ψ1, ψ2, ψ3, …, ψn. If E is varied, even infinitesimally, from
any one of the allowed values, then the wavefunction will diverge to infinity as x approaches +∞ or −�∞.
The allowed values of E are called eigenvalues of total energy and the corresponding wavefunctions are
eigenfunctions of total energy.



FLAP P11.2 The quantum harmonic oscillator
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

U(x)

xa a

E

Physical intuition can give us some idea of the form of the allowed
wavefunctions (eigenfunctions). For any given energy E, there will be a
region of space (see Figure 2) where the potential energy is less than the
total energy; this is the so-called classically allowed region ☞. Here, we
expect the wavefunction to have properties similar to the standing waves
inside a one-dimensional box. In particular, we expect the number of points
at which ψn0(x)  = 0, the number of nodes of the wavefunction, to increase
with increasing energy. In the region of large x where the particle energy is
much less than the potential energy, the classically forbidden region, we
might expect a solution of the Schrödinger equation of an exponential
form. It would be incorrect to anticipate ψn 0(x) ≈ exp(−α 0x) here since this
would not fall asymptotically to zero for negative x. We require instead a
symmetric function of x such as ψn 0(x) ≈ exp(−α 0x02), which tends to zero as
x → ∞ or x → −∞, as required physically.

Figure 24The potential energy function for a simple harmonic oscillator. A possible energy E is represented by a horizontal
line, and the corresponding amplitude a is indicated. The potential energy function has a parabolic form.
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In fact, each wavefunction will include a term of the form

ψ (x) = A exp(− 1
2 α x2 ) (12)

where A is a constant and α = ω0m/˙. ☞

Study comment

You can omit the following question at first reading if you wish.

✦ Show by substitution that Equation 12

ψ (x) = A exp(− 1
2 α x2 ) (Eqn 12)

is a solution of Equation 11

˙2

2m

d2ψ (x)
dx2

= 1
2 ksx2 − E( )ψ (x) (Eqn 11)

when x is large. ☞
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Solutions to Equation 11

˙2

2m

d2ψ (x)
dx2

= 1
2 ksx2 − E( )ψ (x) (Eqn 11)

for all values of x can now be found by multiplying Equation 12

ψ (x) = A exp(− 1
2 α x2 ) (Eqn 12)

by suitable polynomial functions fn(x) of degree n. This results in wavefunctions similar to standing waves in the
classically allowed region joining smoothly to the falling exponential shape in the classically forbidden region:

ψn (x) = An f n (x) exp(− 1
2 αx2 ) , where n = 0, 1, 2, 3 … (13) ☞

These are the energy eigenfunctions, and to each one there is a corresponding energy eigenvalue 
(see Subsection 2.4).
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Figure 44The first four energy eigenfunctions for the quantum simple harmonic oscillator (not
normalized). The limits of motion for a classical oscillator with the same energy are indicated
by the vertical dashed lines. The horizontal axis is marked in the dimensionless variable α x .

The first four of the
relevant polynomial
functions fn(x) are listed
be low,  and  the
eigenfunctions are
illustrated in Figure 4:

f0 = 1

f1 = 2 α x (14)

f2 = 2 − 4α 0x 02

f 3 = 12 α x − 8α α x3

The exponential
combined with the
polynomials produces
functions that have n
nodes in the classically
allowed regions.
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Figure 44The first four energy eigenfunctions for the quantum simple harmonic oscillator (not
normalized). The limits of motion for a classical oscillator with the same energy are indicated
by the vertical dashed lines. The horizontal axis is marked in the dimensionless variable α x .

As the number of nodes
increases, so does the
corresponding energy
as expected.

The boundaries of the
classically allowed
regions are marked in
Figure 4, so you can
clearly see the transition
from the standing wave
forms to the falling
exponential.

The falling exponential
w i t h  a r g u m e n t
proportional to x02
ensures that  the
wavefunct ions  go
smoothly to zero as
x → ±0∞.
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Figure 44The first four energy eigenfunctions for the quantum simple harmonic oscillator (not
normalized). The limits of motion for a classical oscillator with the same energy are indicated
by the vertical dashed lines. The horizontal axis is marked in the dimensionless variable α x .

Notice that each
allowed wavefunction
h a s  a  d e fi n i t e
symmetry, it is either an
odd or an even function
of x. A wavefunction is
odd or even depending
on whether or not ψ0(x)
changes sign under the
transformation x → −x:

If ψ0(x) = +ψ0(−x), then
ψ0(x) is even.

If ψ0(x) = −ψ0(−x), then
ψ0(x) is odd.

Inspection of the first
four eigenfunctions
(Figure 4) shows that
ψn(x) is even or odd
when n is even or odd.
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This property of the wavefunction is extremely important and follows from the nature of the potential function
U(x) = 1

2 kx2 . Clearly, U(x) = U(−x), i.e. the potential is symmetric about x = 0. This means that any physical
observable must also be symmetric about x  = 0, including the stationary state probability density functions
Pn (x) = ψ n

* (x) ψ n (x) = |ψ n (x) |2 . We must have Pn(x) = Pn(−x), and therefore:

|ψ n (x) |2 = |ψ n (−x) |2

In this case the wavefunctions are real, so the condition becomes

ψ n
2 (x) = ψ n

2 (−x) ☞

and taking the square root we obtain

ψn(x) = ±ψn(−x)

The eigenfunctions are therefore necessarily either odd or even when the potential function is symmetric about
the origin.

Question T2

Within a one-dimensional box between x  = −a/2 and x = a/2 the eigenfunctions of a confined particle are
ψn(x) = A1cos(nπx0/a) for n = 2, 4, 6 … and ψn(x) = A1sin(nπx0/a) for n = 1, 3, 5 …. Confirm that these are even
and odd functions, as required by symmetry.4❏
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2.4 The energy eigenvalues
The allowed total energies or eigenvalues of total energy corresponding to the first few eigenfunctions given by
Equations 13 and 14

ψn (x) = An f n (x) exp(− 1
2 αx2 ) , where n = 0, 1, 2, 3 … (Eqn 13)

f0 = 1

f1 = 2 α x (Eqn 14)

f2 = 2 − 4α 0x 02

f 3 = 12 α x − 8α α x3

may be found by direct substitution into the Schrödinger equation. We will do the first one, and then you can try
the second!
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Starting with ψ 0 (x) = A0 exp(− 1
2 α x2 )  we get by successive differentiation ☞:

ψ″ = (α 02x2 − α)ψ

Substitute this into Equation 11:

˙2

2m

d2ψ (x)
dx2

= 1
2 ksx2 − E( )ψ (x) (Eqn 11)

˙2

2m
(α 2 x2 − α )ψ = ( 1

2 ksx2 − E)ψ

Collecting terms: x2 ˙2α 2

2m
− 1

2 ks






ψ + E − α ˙2

2m






ψ = 0

This is not an equation to be solved for a particular value of x1—1rather it is an identity that is true for all values
of x. It follows that the coefficient of x2 and of the constant term must each be equal to zero. From the x2 term:

˙2α 2

2m
= ks

2
4i.e.4α 2 = ksm

˙2
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Using ω = ks m , we confirm that α = ωm

˙

x2 ˙2α 2

2m
− 1

2 ks






ψ + E − α ˙2

2m






ψ = 0

Now, from the constant term E = ˙2α
2m

and substituting α = ω0m/˙ gives: E = 1
2 ˙ω

or in terms of the frequency f = ω0/(2π) E = 1
2 hf

We have confirmed that ψ 0 (x) = A0 exp(− 1
2 α x2 )  is an energy eigenfunction of the system and the

corresponding eigenvalue is E0 = 1
2 hf . This is in fact the lowest possible value of the energy of the quantum

harmonic oscillator. There is a zero point energy of the harmonic oscillator (0just as there is for a particle
confined in a one-dimensional box). In Question T5, you can show that this is a consequence of the Heisenberg
uncertainty principle ∆px1∆x ≥ ˙.
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In exactly the same way, it can be shown that the eigenfunctions ψ1(x), ψ2(x) and ψ3(x) have eigenvalues 3
2 hf ,

5
2 hf  and 7

2 hf , respectively. This suggests a general rule which, although true, we will not attempt to prove:

The allowed energy eigenvalues of the quantum harmonic oscillator are:

En = n + 1
2( )hf with n = 0, 1, 2, 3 … (15)

where the quantum number n characterizes the allowed energies and wavefunctions.

Question T3

Show that ψ1(x) = A12 α x exp(− 1
2 αx2 ) is an eigenfunction of the quantum harmonic oscillator and that the

corresponding total energy eigenvalue is E1 = 3
2 hf . (A1 is an arbitrary constant.)4❏
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E =

U(x)

x0

7
2hf

E = 5
2hf

E = 3
2hf

E = 1
2hf

E = 9
2hf

Figure 54The quantum harmonic
oscillator energy levels superimposed
on the potential energy function.

The energy eigenvalues given by Equation 15

En = n + 1
2( )hf with n = 0, 1, 2, 3 … (Eqn 15)

are often referred to as the harmonic oscillator energy levels. The levels
are spaced equally by an amount hf. They are shown schematically in
Figure 5 superimposed on the potential energy function.
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−2

2
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(d)
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Figure 44The first four energy eigenfunctions for the quantum simple harmonic oscillator (not
normalized). The limits of motion for a classical oscillator with the same energy are indicated
by the vertical dashed lines. The horizontal axis is marked in the dimensionless variable α x .

You should now refer
back to Figure 4 and
a s s o c i a t e  e a c h
eigenfunction shape
with the corresponding
energy eigenvalue.
Notice, in particular, the
following:

o The energy levels
are equally spaced.

o The number of
n o d e s  i n  t h e
eigenfunctions, given
by n, increases with
energy.

o The eigenfunctions
spread out in space as
the energy increases.



FLAP P11.2 The quantum harmonic oscillator
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

For each of the energy eigenvalues En, we can work out, from Equation 7,

E = 1
2 ksa24or4 a = 2E

ks
(Eqn 7)

the region of space in which a classical simple harmonic oscillator with that energy would be confined.
Let the region for energy En be bounded by x = ±an then;

since En = 1
2 ksan

2 an = 2En

ks

but En = (n + 1
2 )hf = (n + 1

2 )˙ω 

However α = ω0m/˙ = ks/(˙ω), so that4 En = (n + 1
2 )ks α 4and4an = 2n + 1

α
 

making the equation dimensionless:

α an = 2n + 1 (16)
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Figure 44The first four energy eigenfunctions for the quantum simple harmonic oscillator (not
normalized). The limits of motion for a classical oscillator with the same energy are indicated
by the vertical dashed lines. The horizontal axis is marked in the dimensionless variable α x .

These boundaries are
marked in Figure 4
which showed the
eigenfunctions.

Notice that for the
quantum oscillator the
amplitude ceases to
have direct physical
meaning, since there is
no definite limit to the
region of space in which
the particle may be
found.  Also  the
eigenfunctions are
stationary states and
imply no particle
oscillation, as in the
classical model.
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If we associate energy emission with a transition between two stationary states then we need to consider the
time dependence of the full wavefunction. This complication is beyond the scope of this module but is
developed in the FLAP module dealing with the one-dimensional box.

Question T4

In classical theory, a charged particle executing SHM of frequency f emits electromagnetic radiation, also of
frequency f. Write down an expression for the allowed energies of the equivalent quantum oscillator.

What is the energy of a photon emitted when the quantum oscillator jumps from level n1 to level n2 (n1 > n2)?
Show that it is only when n2 = n1 − 1 that the frequency of the radiation associated with such photons is equal to
the classical frequency f.4❏
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2.5 Probability densities and comparison with classical predictions
We must be particularly careful when comparing the predictions of quantum mechanics and classical mechanics.
The two theories were developed for very different systems. Classical mechanics is the appropriate tool, in
general, for the large-scale world of objects we sense directly, and it was developed on the basis of experimental
observations on such objects. Quantum mechanics applies, in general, to the world of atoms and nuclei, where
the relevant objects1—1electrons, nucleons etc.1—1cannot be sensed directly. It is hardly surprising that the
predictions of quantum mechanics seem strange and often defy common sense when compared with the
predictions of classical mechanics which accord with everyday experience.

Although it is beyond the scope of FLAP, one can show that the laws of quantum mechanics do agree with the
laws of classical mechanics in the limit of large distances or high energies or large quantum numbers.
We can therefore regard quantum mechanics as the more fundamental theory and classical mechanics as an
approximation that becomes more exact as we move from the microscopic to the macroscopic world. The notion
that classical physics can be obtained from some limiting case of quantum phyics is known as the
correspondence principle.
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The most important result we derived from the quantum mechanics of the harmonic oscillator was the prediction
of quantized energy levels. If the potential energy function of a particle of mass m moving along the x-axis is

U(x) = 1
2 ksx2 , then the total energy can be one of the discrete set En = (n + 1

2 )hf  with f = 1
2π

ks

m
 and the

quantum number n = 0, 1, 2, 3 …. No other value of E  is possible. The difference between adjacent energy
levels ∆E = En − En1−11 = hf and in the limit of large quantum numbers this becomes negligible compared with
En:

∆E

En

= hf

n + 1
2( )hf

→ 0 as n → ∞

For very large quantum numbers the energy levels become so close to each other that the essential ‘granularity’
is not noticed. This corresponds to classical mechanics, which predicts a continuum of values of the total energy.
It is also in agreement with our condition for the applicability of classical mechanics E >> hf, and is an example
of the correspondence principle.

Another important prediction of quantum mechanics is the so-called zero point energy. When the quantum
number n = 0, the total energy is E0 = 1

2 hf , and this is the smallest possible value of the total energy of any
harmonic oscillator. The zero point energy is a purely quantum effect and it has no parallel in classical
mechanics, which allows energies arbitrarily close to zero.
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Quantum mechanics predicts:

discrete energy levels En = (n + 1
2 )hf ;

the zero point energy E0 = 1
2 hf .

Classical mechanics predicts:

a continuum of energies from zero upwards.

Quantum mechanics → classical mechanics as n → ∞.

The essential lumpy or grainy characteristic of quantum mechanics and the smoothness of classical mechanics is
also evident in the probability density distributions P(x). We worked out a probability density for the classical
harmonic oscillator under the assumption that observations on the particle position were made at random times
during the oscillation. This was found to be:

Pcl (x) = 1

π a2 − x2
(Eqn 9)
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In quantum mechanics, there is a fundamental uncertainty in the position of the particle before the observation is
made, and the probability of finding the particle in the range x  to x  + ∆ x  is given by |1ψ0(x)1|21∆x.
The quantum probability density is then P(x) = |1ψ0(x)1|02. The quantum probabilities are readily worked out by
squaring the real eigenfunctions given by Equations 13 and 14:

ψ n (x) = An f n (x) exp(− 1
2 α x2 ) with n = 0, 1, 2, 3 … (Eqn 13)

f0 = 1

f1 = 2 α x (Eqn 14)

f2 = 2 − 4α 0x 02

f 3 = 12 α x − 8α α x3

Pn (x) = An
2 f n

2 (x) exp(−αx2 )  with n = 0, 1, 2, … (17)

Quantum probability densities for the harmonic oscillator.

The graphs of the probability functions given by Equation 17
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Figure 64The probability
density functions for the
harmonic oscillator. Four
cases are shown for
particles in energy levels
given by the quantum
number n = 0, 1, 2, and 6.
The dotted curves show
the corresponding classical
calculat ion of  the
probability density, with
the dashed lines the
classical limits of the
oscillation.

for the three lowest
energy levels and for
the n = 6 energy level
are shown in Figure 6,
plotted as a function of
the dimensionless
variable α x .
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density functions for the
harmonic oscillator. Four
cases are shown for
particles in energy levels
given by the quantum
number n = 0, 1, 2, and 6.
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classical limits of the
oscillation.

Also shown in Figure 6
are the corresponding
classical probability
distributions given by
Equation 9.

Pcl (x) = 1

π a2 − x2
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These are obtained by finding the amplitude of the classical oscillator from Equation 16: α a = 2n + 1 .
Of course, it is really absurd to suggest that the classical calculation is relevant in the region of small quantum
numbers, and the classical and quantum probability distributions bear little resemblance to each other for n = 1,
2 or 3. But for n = 6, you can see that the quantum distribution is beginning to approach the classical one.
It does not stretch the imagination too much to see that the two forms become indistinguishable as n → ∞.
This is another instance of the correspondence principle.

Question T5
Write down the probability density function P(x) for the n = 0 state of the quantum oscillator.

Show that at a distance ∆x = 1 α  from the origin, P(x) falls to 1/e of its maximum. ∆x is regarded as the
uncertainty in the position of the particle.

Now estimate the momentum of the particle using the relation px ≈ ± 2mE , and hence estimate the
uncertainty in the momentum ∆px. Find the product ∆x1∆px, and comment on the result.4❏
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3 Closing items

3.1 Module summary
1 If a particle of mass m is subject to a force Fx = −ks0x, then classical (Newtonian) mechanics shows that it

will execute simple harmonic motion (SHM) about the origin with frequency

f = 1
2π

ks

m

2 The potential energy function of a particle executing SHM is U(x) = 1
2 ksx2 . The total energy of a particle

executing SHM is related to the amplitude of the oscillation by the equation

E = 1
2 ksa24or4 a = 2E

ks
(Eqn 7)

3 The classical probability density for a particle executing SHM is

P(x) = 1

π a2 − x2
(Eqn 9)

4 E >> h0f is a condition for the use of classical mechanics in oscillator problems. Otherwise use quantum
mechanics.
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5 The Schrödinger equation for the quantum harmonic oscillator is:

˙2

2m

d2ψ (x)
dx2

= ( 1
2 ksx2 − E)ψ (x) (Eqn 11)

6 The energy eigenfunctions are given by

ψ n (x) = An f n (x) exp(− 1
2 α x2 ) with n = 0, 1, 2, 3 … (Eqn 13)

where fn(x) is a polynomial function of degree n and has n nodes. The first few polynomials are given by
Equations 14 and the eigenfunctions illustrated in Figure 4.

7 Since the potential function is symmetric about the x = 0 line, the eigenfunctions are odd or even functions.
They are odd when n is odd, and even when n is even.

8 The total energy eigenvalues are given by the formula:

En = n + 1
2( )hf with n = 0, 1, 2, 3 … (Eqn 15)

When n = 0, we have the zero point energy. This prediction of discrete energies, with the lowest energy not
equal to zero, is in contrast to classical mechanics which allows a continuum of possible energies from zero
upwards.
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9 The quantum probability density function is given by:

Pn (x) = ψn
2 (x) = An

2 f n
2 (x) exp(−αx2 ) with n = 0, 1, 2, 3… (Eqn 17)

The probability density functions are bounded approximately by the classically allowed region. They decay
exponentially outside this region. As n → ∞, the quantum probability function becomes comparable with
the classical probability function which is an illustration of the correpondence principle. Some of the
functions Pn(x) are illustrated in Figure 6.
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3.2 Achievements
Having completed this module, you should be able to:

A1 Define the terms that are emboldened and flagged in the margins of the module.

A2 Define simple harmonic motion (SHM) in classical mechanics in terms of the restoring force and the
potential energy function.

A3 Calculate the frequency and period of SHM from the particle mass and the force constant. Relate the
amplitude of the oscillation to the total energy. Sketch the classical probability function.

A4 Decide whether to use classical or quantum mechanics in a particular SHM problem.

A5 Write down the Schrödinger equation for quantum SHM. Verify the first few energy eigenfunctions and
eigenvalues. Recall the general formula En = n + 1

2( )hf , and use it to calculate the energy eigenvalues given

the particle mass and the force constant.

A6 Sketch the shape of the first few energy eigenfunctions, and relate the number of nodes to the quantum
number n. Distinguish the even and odd eigenfunctions.

A7 Understand and use the quantum probability density functions Pn (x) = ψn
2 (x) , and sketch their shapes for

n = 0, 1, 2, 3. Compare the classical probability density distribution with the quantum distributions.
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Study comment  You may now wish to take the Exit test for this module which tests these Achievements.
If you prefer to study the module further before taking this test then return to the Module contents  to review some of the
topics.
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3.3 Exit test

Study comment  Having completed this module, you should be able to answer the following questions each of which tests
one or more of the Achievements.

Question E1

(A2, A3 and A4)4A small mass of 0.0021kg is hung on a light spring producing an extension of 0.011m.
Calculate the spring constant ks. Find the frequency of small vertical oscillations of the mass about its
equilibrium position.

Show that the condition E >> h0f for the validity of the classical approximation is easily satisfied if the amplitude
of the oscillation is 11mm.
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Question E2

(A 5  and A6)4A particle moves in a region where its potential energy is given by U(x) = 1
2 ksx2 .

The wavefunction is the eigenfunction

ψ (x) = A(1 − 2αx2 ) exp(− 1
2 αx2 )

with α  = 5 × 1010 1m−1 , and A  is a normalization constant. Is this an odd or an even function?

Find the positions where ψ0(x) = 0, and sketch the shape of the wavefunction (use the dimensionless variable

α x ). What is the result of measuring the total energy if the particle is an electron? Calculate the result in
electronvolts.

Question E3

(A6 and A7)4Write down an expression for the probability density P(x) for the n = 1 state of a quantum simple
harmonic oscillator in one dimension. (Refer to Equations 13 and 14 for the eigenfunctions.) Find the points
where P(x) is zero, the points where P(x) is a maximum, and the boundaries of the classically allowed region.
Sketch the shape of P(x). What can you say about the result of a measurement of (a) the position of the particle,
(b) the total energy of the particle?
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Question E4

(A3, A4, A5 and A7)4A simple model of the HCl molecule indicates that the hydrogen ion is held in an SHM
potential with force constant ks = 4701N1m−1 ☞ . Calculate the frequency of oscillations in the classical
approximation (neglecting the motion of the chlorine atom) ☞. The amplitude of oscillations is approximately
10−111m, or one-tenth of the interatomic spacing. Is the classical approximation valid? Obtain an expression for
the vibrational energy levels using quantum theory. Where is the boundary of the classically allowed region
when n = 0? Calculate the frequency and wavelength of electromagnetic radiation emitted when molecules of
HCl jump from one of these energy levels to the one immediately below.

Study comment  This is the final Exit test question. When you have completed the Exit test go back to Subsection 1.2 and
try the Fast track questions if you have not already done so.

If you have completed both the Fast track questions and the Exit test, then you have finished the module and may leave it
here.
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