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1 Opening items

1.1 Module introduction
In this module, we shall give an overview of the properties of solids and how quantum mechanics helps us to
understand these properties.

In the solid state, a material at a given temperature and pressure has a well-defined shape (as opposed, for
example, to a liquid, which takes on the shape of its containing vessel). The forces of interaction between the
atoms in the solid must therefore be strong and the bonds between them stable under the prevailing physical
conditions. In Subsection 2.1, we look at the way in which quantum physics may be used to understand how
these bonds are formed. In Subsection 2.2, we consider crystalline solids, in which the bonds allow the
formation of regular arrays of atoms within the solid. We shall then consider some of the properties of solids that
may be better understood using quantum mechanics. Of these, we shall concentrate on thermal properties and
electrical properties. In Subsection 2.3, we give an introductory treatment of energy bands and the band theory
of solids, which is used in Section 3 to explain electrical conductivity and why some solid elements are
conductors of electricity, whereas others are semiconductors or insulators. We shall see how these properties
depend on the temperature of the solid through the temperature coefficient of resistivity. The electrical properties
depend predominantly on the electrons in the atoms of the solid.
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The thermal properties, such as specific heat capacity and thermal expansivity are discussed in Section 4.
They depend largely on the arrangement of the atoms in the crystalline lattice. We shall see how the values of
these measured parameters give an indication of the behaviour of the forces that hold the lattice together.
A quantum model of the heat capacity is necessary. Here we briefly discuss the Debye model and the
Einstein model. The thermal conductivity of conductors is high, as is their electrical conductivity.
We shall examine the reasons for this.

Study comment Having read the introduction you may feel that you are already familiar with the material covered by this
module and that you do not need to study it. If so, try the Fast track questions given in Subsection 1.2.  If not, proceed
directly to Ready to study? in Subsection 1.3.
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Figure 14The energy band diagram for a
solid element (see Question F1).
(The white box represents empty energy
levels; the hatched boxes represent
occupied energy levels.)

1.2 Fast track questions

Study comment Can you answer the following Fast track questions?.
If you answer the questions successfully you need only glance through the
module before looking at the Module summary (Subsection 5.1) and the
Achievements  listed in Subsection 5.2. If you are sure that you can meet each
of these achievements, try the Exit test in Subsection 5.3. If you have difficulty
with only one or two of the questions you should follow the guidance given in
the answers and read the relevant parts of the module. However, if you have
difficulty with more than two of the Exit questions you are strongly advised to
study the whole module.

Question F1

Figure 1 shows the energy band diagram of a solid element. Say whether the solid is a conductor, an insulator or
a semiconductor of electricity. Explain your answer in terms of the Pauli exclusion principle.
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Question F2

Define the temperature coefficient of resistivity. Explain in terms of the band theory of solids why the coefficient
is positive for conductors but negative for semiconductors.

Question F3

What does the thermal expansivity of a solid tell us about the shape of the graph of energy of interaction against
separation for two neighbouring atoms in a crystal?

Study comment

Having seen the Fast track questions  you may feel that it would be wiser to follow the normal route through the module and
to proceed directly to Ready to study? in Subsection 1.3.

Alternatively, you may still be sufficiently comfortable with the material covered by the module to proceed directly to the
Closing items.
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1.3 Ready to study?

Study comment In order to study this module, you will need to be familiar with the following physics terms:
atom, electron, proton, molecule, Coulomb force, potential and total energy, Planck’s constant h, quantum, the
time-independent Schrödinger equation, wavefunction, probability density, energy level, quantum harmonic oscillator,
quantum numbers, spectroscopic (s, p, d, f) notation, spin (of an electron), Pauli exclusion principle, (atomic) shells,
degeneracy (of atomic energy levels), resistivity, conductivity (thermal and electrical), specific heat capacity. You should
also be familiar with differentiation and integration. If you are uncertain about any of these terms, then you can review them
now by referring to the Glossary, which will also indicate where in FLAP they are discussed. The following Ready to study
questions will allow you to establish whether you need to review some of the topics before embarking on this module.

Question R1

A particular stationary state of a one-dimensional quantum harmonic oscillator is described by the normalized
spatial wavefunction (i.e. energy eigenfunction) ☞

ψ (x) = 2 α π( )1/ 2
x exp − 1

2 αx2( )
where α is a constant. Write down an expression for  the probability that the oscillator will be found between
x and x + ∆x.

Mike Tinker
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Figure 24The energy of interaction between two atoms.

Question R2

The electrons in an atom are in the states denoted by
1s22s22p. How many electrons does the atom have?
What can you say about their spins? Why is 1s3 not a
possible arrangement?

Question R3

Figure 2 shows the energy of interaction between two
atoms as a function of their separation. Does the
equilibrium separation of the atoms correspond to
point w, point x or point y?
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2 General considerations of the solid state

2.1 The formation of bonds between atoms
A solid is made up of interacting atoms (or ions or molecules) in the form of a stable configuration ☞.
The nuclei of the atoms are electrically positive; their electrons are electrically negative. The force that holds the
electrons to the atomic nuclei is electrical. The nuclei are dense concentrations of positive charge, confined
within a region of space of radius of the order 10−15 to 10−141m. The electrons are more widely dispersed,
typically within 10−10 to 10−91m of the nucleus, and so there are much less dense concentrations of negative
charge. A lone atom is electrically neutral; the positive protons in the nucleus have a total positive charge equal
but opposite to the total negative charge of the electrons.

Consider two atoms being brought closer and closer together. At a large distance apart, where the nuclei are well
separated and the electron clouds ☞ around them do not overlap, the atoms will exert no appreciable force on
each other. Each atom appears neutral to the other. At the other extreme, when the nuclei are much closer than
the atomic radius, there will be a strong force of repulsion between the nuclei. Between these two extremes,
there may be a force of attraction between the two atoms1—1with the electrons shielding the nuclei from each
other to some extent.
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Figure 34A negative electron cloud
provides shielding ‘glue’ between the
positive nuclei.

The presence of the electrons between the nuclei will ‘mediate’ a force
of attraction between the nuclei (see Figure 3). The electrons will of
course repel each other, but their lower density will make this less
effective, and the balance of the force between the atoms as a whole will
be one of attraction. It is not obvious from classical physics that the
energy is lower when the two nuclei have electrons distributed over a
region (bond) between them but quantum mechanics provides this result
convincingly.
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Figure 44(a) The spatial wavefunctions of well-separated
hydrogen atoms. (b) When the nuclei are closer together, the spatial
wavefunctions start to overlap significantly.

How does quantum mechanics affect the
situation? We shall start by looking at the
simplest case, in which two hydrogen atoms1—
1each consisting of one proton and one
electron1—1come together. Each atom has an
electron cloud described by a spatial
wavefunction ψ1(x). When far apart, these do not
overlap1—1Figure 4a. Suppose that the nuclei are
brought closer together so that the spatial
wavefunctions of the individual electrons do
overlap1— 1Figure 4b. The situation is now
changed. The electron from each atom has a
finite probability of being in the ‘space’ of the
other atom. Also, since electrons are identical
particles, we may not assign them uniquely to
one atom or the other1—1we must treat the two
atom system as an entity and solve the
Schrödinger equation for the two atom system.
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The spatial wavefunction of the new two-nucleus
molecule may be constructed from the spatial
wavefunctions of the individual electrons1—either
constructively as shown in Figure 5a or
destructively as shown in Figure 5b. ☞

Figure 54(a) A possible combined spatial wavefunction
(shown by the solid line) of the hydrogen molecule. The
wavefunctions have interfered constructively to give a
spatial wavefunction ψs that is symmetric. (b) In the case
where the interference is destructive an antisymmetric
spatial wavefunction ψa is formed.
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From these possible spatial wavefunctions, we may calculate the
probability densities: these are shown in Figures 6a and 6b.

What do these tell us? Figure 6a indicates an enhanced probability of
finding negative charge between the two protons, whereas Figure 6b
indicates a reduced probability (even zero at the half-way point).

Figure 64(a) The probability density function for the symmetric spatial

wavefunction ψs. (b) The probability density function for the antisymmetric

spatial wavefunction ψa.
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In Figure 6a we see that the electrons spend more time within the
region of negative potential energy, between the positive nuclei; this
reduces the energy of the symmetric (bonding) state as compared to
that of the antisymmetric (non-bonding) state and makes the bonding
state energetically favoured. Also, in terms of the Heisenberg
uncertainty principle, the electrons are rather more confined around the
positive ion locations in the antisymmetric state and this also tends to
increase the energy.

Figure 64(a) The probability density function for the symmetric spatial

wavefunction ψs. (b) The probability density function for the antisymmetric

spatial wavefunction ψa.
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Figure 74The energy of the symmetric state of the molecule
depends on the separation of the protons. The equilibrium state
corresponds to the minimum value of this energy. The anti-
symmetric state has higher energy at all separations.

So the two atoms are bound together. What is the
stable configuration? It is the one with the lowest
energy. We can calculate the energy as a function
of the separation of the protons. The separation
that gives the lowest energy will be the
equilibrium state. This, as shown in Figure 7,
corresponds to a proton separation of 0.0741nm
and an equilibrium energy of the molecule of
−321eV.
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Figure 54(a) A possible combined spatial wavefunction (shown by the solid line) of the hydrogen molecule.

The wavefunctions have interfered constructively to give a spatial wavefunction ψs that is symmetric. (b) In the case where

the interference is destructive an antisymmetric spatial wavefunction ψa is formed.

We have illustrated the way in which the binding together of two atoms
can be accounted for by quantum theory. The case we have considered
is, of course, a special one. The two hydrogen atoms, each with a single
1s electron, bond to form the H2 molecule. We cannot add a third atom
to form an H3 molecule because there is no 3 electron state of
sufficiently low energy to favour bonding. ☞ The H–H bond is said to
be saturated. As shown in Figure 5a, it is a bond characterized by an
increased electron density between the nuclei. Such a bond, whether
saturated or not, is called a covalent bond.
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Other types of bond are possible for more complicated atoms. We shall give one simple example.

Consider the interaction of two atoms of lithium in their ground state. Lithium has three electrons1—1two 1s
electrons (with opposite spins to satisfy the Pauli principle) plus one 2s electron in the n = 2 shell. The electron
configuration is denoted 1s22s. If these two atoms are brought together, there will again be the possibility of a
covalent bond involving, in this case, the 2s electrons. However, unlike the hydrogen case, there are not just two
states involved. This is because for n = 2, there are both 2s and 2p levels all at about the same energy. For the 2p
states, there are a further six electron states available (ms = ±1/2 for ml = −1, 0 or +1). Therefore, following the
formation of the Li2 molecule, the bond is not saturated and it will still be possible to form Li3, Li4, and so on.
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Lithium at room temperature is a solid; it is also an electrical conductor.
Why should that be so? To answer this question we must take a more
detailed look at the atomic interaction. Since a lithium atom can bond with
more than one other lithium atom, the stable arrangement of lithium atoms
that has the lowest energy is a crystalline structure in which the atoms form
a regular three-dimensional array. This is characterized by a lattice made up
of a typical unit cell which repeats itself in all directions. The unit cell for
lithium, and the way in which several cells stack together, are illustrated in
Figure 8. The cell has a lithium atom at each of the eight corners of a cube
plus one at the centre of the cube. Each lithium atom therefore has eight
nearest neighbours and it forms a bond with each of them. So with one
(the 2s) electron per atom contributing to the bond, each bond involves one
quarter of an electron, on average, rather than the two in the ordinary
covalent bond such as that which holds together the hydrogen molecule.

Figure 84The body-centred cubic structure of lithium. (a) Each cell has an atom at
each corner of an imaginary cube and one at its centre. There are eight nearest
neighbour bonds shown by bold lines. (b) The cells occur repetitively throughout
space.
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This bond is therefore by no means saturated. Indeed, in the case of the lithium lattice, it does not even involve
the localization of a particular electron with a particular atom. The electrons are effectively free to move through
the lattice1—1an effect that contributes to the electrical conductivity of the solid. This type of bond is known as a
metallic bond.

We shall not go on to consider any further types of bond. The two we have mentioned1—1the covalent and the
metallic1—1will be adequate as illustrations.
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2.2 The lattice structure of solids
We have considered an example1—1lithium1— 1which has a body-centred structure held
together by metallic bonds. There are other possible lattice structures; the other cubic ones
are shown in Figure 9. Which one a particular element will adopt depends on the detail of
its atomic structure.

So far, we have considered the properties of the electrons in the atoms. But what of the
nuclei? We have looked at the situation as if the nuclei remained fixed. Over a short time
span, this would be a good approximation, since the nucleus is so much heavier than an
electron. However, over the time span of a macroscopic measurement, this would not be
the case. For example, the nuclei in the lattice will be subject to thermal agitation.
We may construct a simple model in which these vibrations are harmonic in nature.
We can suppose that a lattice behaves as if the bonds act like springs offering resistance to
any changes from their natural length.

Figure 94(a) The simple cubic lattice. (b) The face-centred cubic lattice. For clarity only visible faces are shown. It should
be noted that these lattices are actually arrangements of points in space, not of atoms. There may be one, two or many atoms
associated wth each lattice1—1it doesn’t matter as long as the arrangement is the same at every lattice point in a particular
structure.
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Figure 74The energy of the symmetric state of the molecule
depends on the separation of the protons. The equilibrium state
corresponds to the minimum value of this energy. The anti-
symmetric state has higher energy at all separations.

The potential that a nucleus would experience due
to a neighbour would, near the equilibrium
position, have the shape shown in Figure 7.

In this model, the nuclei would behave as coupled
harmonic oscillators. If energy were added to the
system, by heating for instance, then the energy of
these oscillators would be changed. Quantum
theory can be used to predict what these changes
might be. We shall look at this in more detail in
Section 4.
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2.3 The band theory of solids
Let us now consider what happens to electron energy levels when atoms are brought together to form a crystal.

✦ What happens to the lowest energy levels of a pair of hydrogen atoms as they are brought together?
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Figure 104The energy levels of sodium atoms as
a function of the internuclear distance.

In the same way, the electron energy levels of the atoms in a
crystal, which would have been the same for each atom when
the atoms were well separated, will spread out, and since there
are so many of them1—1several for each atom when there are of
the order of 1023 atoms1—1they will be so close together that
they will appear to form a continuous energy band. The closer
the atoms are to one another, the more marked this effect
becomes.

For example, in Figure 10, we show the electronic energy
levels of sodium as a function of the internuclear distance in a
lattice, a typical band theory calculation. Sodium has eleven
electrons, so the 1s, 2s and 2p levels are full. The remaining
electron is in the 3s state. The 3p, 3d, 4s etc. levels are empty.
As may be seen, at a separation of 1.51nm, the empty levels are
already broadened into bands. The 3d and 4s bands are so
broad that they overlap. At about 11nm, the 3s level starts to
broaden. A single electron always goes into the lowest energy
level available, to give the most stable configuration.
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Figure 104The energy levels of sodium atoms as
a function of the internuclear distance.

By the time the internuclear separation is 0.3671nm, the
observed value for solid sodium, the bands are all overlapping,
giving a continuous range of energies for the outer electrons
ranging from about −81eV upwards. The last of the inner levels,
the 2p level, is still not split.
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Figure 114The energy levels of the
sodium atom and the corresponding
situation in solid sodium. (The
diagrams are not drawn to scale.)

The electronic configuration of an isolated sodium atom and of sodium
atoms in the solid state are compared in Figure 11. In the isolated sodium
atom there is a single electron in the 3s outer subshell; this subshell is
capable of holding two such electrons and so is half-filled. When sodium
atoms are brought together to form solid sodium these 3s levels become
the 3s band, which is then half-filled, as shown hatched in in Figure 11.
The effect of the proximity of the nuclei on the electron energy levels is
the basis of the band theory of solids.

You should not think of a 3s band electron as belonging to any particular
sodium atom; as each atom is bound to all its neighbours, a 3s electron can
wander over the whole crystal, and can be thought of as being ‘free’ to a
first approximation. Furthermore, all electrons are identical, and it is not
possible to label one as having come from a particular source. We will not
pursue this any further here.
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Figure 124The 4s wavefunction for an isolated nickel atom
compared with the distance r1 between any given atom and its
nearest neighbour in solid nickel. r2 and r3 are the distances to
the second and third nearest neighbours, respectively.

We have simplified the picture so far, to illustrate
the ideas involved, by considering only the effect
of nearest-neighbour atoms on each other.

In practice, the electrons of one atom will
experience the presence of several atoms in its
neighbourhood. This is illustrated in Figure 12, in
which the 4s spatial wavefunction of an electron
in an isolated nickel atom is plotted. It will be
seen that the electron’s spatial wavefunction
extends so that there is a significant probability of
interaction with three nearest neighbour atoms
which would be at distances r1, r2, r3 in a nickel
crystal. This does not affect the formation of
bands of energy levels, but does add to the
complexity of deriving them from the appropriate
Schrödinger equation.
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3 Electrical properties of solids
In this section we look initially at classical accounts of electrical conductivity. We shall then see how quantum
mechanics, in the form of band theory, helps us to understand why some solids are conductors and others are
not. We shall take as an example the case of a metal. The classical picture of the conduction of electricity in a
metal has electrons as carriers of charge. These move in the lattice made up of the positive ions that are left
when the carrier electrons are removed. When a potential difference is applied across the solid, the negative
electrons are attracted in one direction, the positive ions in the opposite direction. The positive ions are however
heavy and bound in the lattice whereas the carrier electrons are light and relatively free. Consequently, only
negative charges move; this is the origin of the current that flows. The flow of charge is associated with a change
in the average velocity of the electrons.



FLAP P11.4 Quantum physics of solids
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

The flow of electrons is not, however, unimpeded1—1the electrons will, in the classical picture, collide with the
positive ions in the lattice. The electrons will not therefore accelerate indefinitely under the influence of the
potential difference. There will be many collisions of different kinds, but there will be an average velocity of
progression of the electrons1— 1this is usually called the drift velocity. Thus a steady current is caused.
The quantum-mechanical picture includes the wave nature of matter, but it is still the interaction between the
electrons and the lattice that is the source of electrical resistance. There is an astonishing feature of the wave
nature of matter. If the crystal lattice were perfectly regular, the Schrödinger equation would have a travelling
wave solution for the conduction electrons. It is the lattice vibrations that spoil this perfect regularity.
This lack of regularity is the origin of electrical resistance.



FLAP P11.4 Quantum physics of solids
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

3.1 Localized and non-localized electrons
The brief outline above shows that the model of conductivity in metals depends on the existence of ‘free’
electrons1—1or, put another way, electrons that can be given the kinetic energy to move to another part of the
solid. In the last section, we looked at the mechanisms whereby atoms are bound together to form a solid.
We saw how, in the two instances we looked at, the electronic structure of the atom led to a particular sort of
bond.

In the covalent bond, the electrons1—1in picturesque language1—1are shared between atoms. These electrons
cannot easily be detached from the participating atoms without breaking the bonds and disrupting the lattice.
They are localized and cannot contribute to a current. Where the bonds are strong, therefore, such a solid would
not be expected to conduct electricity.

With the metallic bond, on the other hand, the highest energy electron is attached only very weakly to any
particular atom. These electrons are non-localized. They may be regarded as being shared by all the ions in the
lattice. In the absence of a potential difference, however, they move randomly, and there is no a net movement
of charge in any direction. However, in the presence of a potential difference, they would be available to
contribute to a current. Of course, the lower energy electrons will be localized to the parent atom 1—1for example,
the 2p electrons of the metal sodium considered in Section 2.3. The electrons contributing to the current1—1the
conduction electrons1—1will be relatively small in number compared with the other electrons in the inner shells.
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3.2 Electron energy bands and band gaps
We have seen in Section 2 that a characteristic of the energy levels in a solid is that they occur in bands.

Energy bands

The energy levels in a solid form bands of very closely spaced levels. The bands may be separated by
relatively large gaps.

Because electrons are governed by the Pauli exclusion principle, they cannot all have the lowest energy. They
progressively fill the bands, occupying the lowest energy levels available. We will call the highest of the bands
that is filled, or substantially filled, the valence band. Higher, but unoccupied, bands are called
conduction bands. It is this band structure that determines whether a solid is a conductor, an insulator or a
semiconductor. ☞

For electrical conduction it is necessary for some electrons to be able to gain energy easily from an applied
electric field. This cannot happen for the vast majority of electrons, since they are embedded in bands of levels
which are completely filled. It is only electrons near the top of the filled levels which may be able to move into
unoccupied levels and may therefore contribute to electrical conduction. The electrical properties of a material
are thus determined by the band structure near the top of the filled levels.
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Figure 134The probability of an
electron energy level being filled. (a) The
situation at 01K, (b) at a higher
temperature. This distribution is known
as the Fermi function.

We can extend this a little by considering the probability f1(E) of an
electron energy level being filled. Figure 13 shows this probability
which depends on temperature. In Figure 13a the situation at 01K is
shown and the highest occupied level is EF, the Fermi level.
The probability of a level being filled is unity up to this level and zero
above it. As the temperature is raised (Figure 13b) some electrons near
the top of the distribution move into unoccupied levels above EF,
allowing vacancies below EF. It is only these electrons with energy
close to EF, which contribute to electron conduction.
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The characteristics of a conductor
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Figure 144(a) In a metallic conductor, the valence band is only partially
filled. (b) In an insulator, the valence band is completely filled. The gap
between the valence band and the conduction band is relatively large.
(c) In a semiconductor, the valence band resembles that of the insulator but the
gap between the valence band and the conduction band is relatively small.
(The white boxes represent empty energy levels; the hatched boxes represent
occupied energy levels.)

Figure 14a shows the band structure in
a conductor . The electrons in a
conductor do not fill the valence band
but the Fermi level lies within the
valence band. In consequence, for the
higher energy electrons, there are
unfilled energy levels close to the
Fermi level that are available to them
and to which they can move without
violating the Pauli exclusion principle.
As a result, when the metal is
subjected to a potential difference, the
electrons can acquire the kinetic
energy associated with a current flow
and thus increase their energy. A solid
with this band structure will therefore
be a conductor.
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The characteristics of an insulator
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Figure 144(a) In a metallic conductor, the valence band is only partially
filled. (b) In an insulator, the valence band is completely filled. The gap
between the valence band and the conduction band is relatively large. (c) In a
semiconductor, the valence band resembles that of the insulator but the gap
between the valence band and the conduction band is relatively small. (The
white boxes represent empty energy levels; the hatched boxes represent
occupied energy levels.)

If, on the other hand, we look at
Figure 14b, we see that, in this case,
the valence band is full. Electrons at
the top of the valence band do not
have adjacent energy levels. There is a
gap (in which there are no allowed
energy levels) between the valence
band and the next available energy
levels in the conduction band.
The electrons in a solid with this band
occupancy, if subjected to a potential
difference, will not be able to increase
their energy1—1there will be no higher
energy levels available. The solid can
only be an insulator. A typical band
gap for an insulator is of the order of
51eV.
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The characteristics of a semi-conductor

conduction band conduction band
conduction band

(b) Insulator (c) Semiconductor(a) Conductor

energy

valence band valence band valence band

gap
band

Figure 144(a) In a metallic conductor, the valence band is only partially
filled. (b) In an insulator, the valence band is completely filled. The gap
between the valence band and the conduction band is relatively large.
(c) In a semiconductor, the valence band resembles that of the insulator but the
gap between the valence band and the conduction band is relatively small.
(The white boxes represent empty energy levels; the hatched boxes represent
occupied energy levels.)

Figure 14c shows an intermediate
band structure. In this case, the
valence band is full1— 1as with the
insulator1— 1but now the band gap is
much smaller than it was for the
insulator. (In silicon, for example, the
gap is 1.11eV.) There will now be a
small, but significant, probability that
an electron in the valence band will be
able to jump to a higher level in the
conduction band by thermal agitation.
So, in this case, some electrons will be
available in the conduction band to
take part in a conduction current. ☞
The name semiconductor has been
adopted for materials with this band
structure. Compared with the metal, however, the number of electrons that can be excited by thermal means will
be very small, so that the conductivity will also be correspondingly very much lower than is typical for a metal.
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Table 14The contrasting electrical properties of a conductor and a semiconductor.

density of charge
carriers, n/m−3

resistivity,
ρ/Ω1m

conductivity = ρ−1/(Ω1m)−1

copper (conductor) 9 × 1028 2 × 10−8 0.5 × 108

silicon (semiconductor) 1 × 1016 3 × 103 0.3 × 10−3

T a b l e  1  g i v e s
comparative figures for
two examples, copper
and silicon. The Table
illustrates the very large
difference between the
ability to conduct of the
two types of material.

The conductivity of the material as described above is a property of the material in its pure form and it is called
intrinsic conduction of the semiconductor.

In practice, the properties of semiconductors are usually controlled by introducing minute quantities of impurity
atoms. These will have either one more or one less outer electron than the atoms of the bulk material, and
therefore will provide either extra free electrons or leave some levels unfilled creating so-called holes, which can
enhance the conductivity of the material. This is known as impurity conduction. Where the impurity added is
an electron donor the conduction process takes place effectively with negative charge carriers and the material is
said to be an n-type semiconductor. If the impurity added is an electron acceptor the conduction effectively
involves the absence of electrons1— 1i.e. the presence of positive holes1—and the material is said to be a
p-type semiconductor.
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Figure 154Some of the energy levels of
the atoms of an element as a function of the
internuclear separation of the atoms. The
labels full, occupied and empty refer to the
outer electron states in the isolated atoms.

Question T1

Some of the energy levels for the atoms of an element are shown in
Figure 15 as a function of the internuclear distance of the atoms.
What would you expect the electrical category of the element to be if
the equilibrium separation in the solid state were (a) s1, (b) s2 and
(c) s3?4❏
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Figure 164The band diagram for a solid
element. The hatched portion corresponds
to levels containing electrons.

Question T2

The band structure of a solid is shown in Figure 16.

Explain what happens when a potential difference is applied across a
specimen of the solid. Explain your answer with reference to the Pauli
exclusion principle.4❏
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0.074 nm

energy

−32eV

Figure 74The energy of the symmetric state of the molecule
depends on the separation of the protons. The equilibrium state
corresponds to the minimum value of this energy. The anti-
symmetric state has higher energy at all separations.

4 Thermal properties of solids
So far, we have concentrated largely on the
properties of the electrons in a solid. We shall now
turn to the properties that depend predominantly
on the state of the atoms of the solid in the lattice.
Let us look first at the effect of temperature on the
lattice. In Section 2, we considered the energy of
the interaction between atoms in the lattice.

Figure 7 shows the energy function for the protons
in the hydrogen molecule. This is the typical shape
of the energy graph of the interaction of
neighbouring atoms in a lattice. The separation of
the atoms where the potential energy function has
its minimum value corresponds to stable
equilibrium. However, this ignores thermal
energy. Even at room temperature, the atoms will
have some thermal energy, so that they will
oscillate about the position of equilibrium.
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Figure 174The energy function for the interaction
of neighbouring atoms in a crystal lattice. The
extent of the oscillation due to thermal energy is
shown by x+ and x−.

The extent of the oscillation is shown by the range x+ to x− in
Figure 17. (The extent of the oscillation is greatly exaggerated,
for clarity, in the Figure.) If the temperature is now raised, the
thermal energy will increase and as is clear from Figure 17, the
amplitude of the oscillation will increase. This is the basic
background for a discussion of the effect of temperature on a
solid. We shall look at the following: the dependence of
electrical conductivity on temperature for conductors and for
semiconductors, the specific heat capacity , the
thermal expansivity and the thermal conductivity of solids.
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4.1 The effect of temperature on electrical conductivity
As we noted in the introduction to Section 3, the resistance to the conduction of electricity in a conductor results
from the interaction of the carrier electrons with the atoms in the lattice. As we now see, at a given temperature,
the atoms in the lattice are not stationary, but oscillate about their equilibrium positions. When the temperature
of the solid is increased, more energy is transferred to the lattice and the amplitude of the oscillation increases.
The larger oscillation will mean that the chance of a collision of a conduction electron with a lattice atom must
be increased. Consequently, it would be expected that the value of the resistivity should increase with
temperature. This is indeed the case for conductors. The increase in resistivity for small increases in temperature
is approximately linear. The resistivity, ρ, at temperature T is related to ρ0, the resistivity at temperature T0, by:

ρ = ρ0[1 + α(T − T0)]

The coefficient α is called the temperature coefficient of resistivity. For conductors, this has a positive value
which agrees with the model we have proposed above. For copper, it has a value of + 4 × 10−31K−1 in the region
of room temperature. For conductors, the effect of an increase in temperature on the number of conduction
electrons is very small. So we ignore this entirely.
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Table 214The relative sizes and  signs of
carrier density n, resistivity ρ, and
temperature coefficient α for conductors and
semiconductors.

n ρ α

conductor high low positive

semiconductor low high negative

However, for intrinsic conduction semiconductors, the situation is
very different. The existence of this conductivity depends on the
thermal agitation, which causes electrons in the valence band to jump
in energy into the conduction band. When the temperature is raised,
therefore, and the thermal energy available is increased, the number
of electrons reaching the conduction band will be greater. So, with
the increase in the number of charge carriers, the resistivity of the
semiconductor will decrease. Opposing this will be the effect of the
increased lattice vibrations1—1as for the metal1— 1but this is a
relatively small effect; the coefficient α  for a semiconductor is
therefore negative. The value for silicon, for instance, is −70 × 10−
31K−1 in the region of room temperature (the effect is not linear over a
large temperature range). Table 2 highlights the very distinctive
properties of conductors relative to semiconductors.
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4.2 The specific heat capacity of a solid
The specific heat capacity of a material is a measure of the heat required to raise its temperature.
More precisely, it is the heat required to raise one mole through one kelvin. In SI units, it is therefore measured
in J1mol−11K− 1 ☞. At the atomic level, the heat is communicated as energy to the atoms in the lattice, and in the
case of a conductor, to the ‘free’ electrons. Except for conductors at very low temperatures, the thermal energy
stored within a solid is predominantly in the oscillations in the lattice.

Classical theory predicts that the specific heat capacity of a crystal should be the same at all temperatures.
However, experimentally it is found that for all solids, the specific heat tends to zero as the temperature
approaches absolute zero, although the classical value is correct at high temperatures. Einstein proposed a
quantum mechanical model to explain this behaviour, based on two simple assumptions:

o The atoms behave as quantum harmonic oscillators. ☞
o Although the lattice is in fact many oscillators coupled together, there is effectively a single frequency of

oscillation fE, that applies to each oscillator independently.

From the quantum theory of the harmonic oscillator it then follows that each atom has the following energy
levels associated with its thermal agitation

En = n + 1
2( )hf E4with n = 0, 1, 2, 3 …
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At very low temperatures, there will not be enough thermal energy to excite any of the oscillators from its lowest
state, so the solid can be heated without any energy being contributed to the excitation of the lattice. In other
words, the specific heat will be very small at low temperatures. Only when one reaches higher temperatures,
when the thermal energy kT is comparable with the separation of the oscillator levels, h0fE, will there be
significant excitation of the oscillators, and a significant amount of energy required to increase the temperature
of the crystal.

This Einstein model was qualitatively correct, but was made quantitatively correct by a modification due to
Debye ☞. Debye dropped the second assumption above, and replaced it with a more realistic distribution of
frequencies arising from the fact that the oscillators are not independent but coupled. This refinement then gives
the correct dependence of the specific heat C on temperature near absolute zero: C ∝  T13. The Debye model,
although very important, is a relatively minor step compared with the revolutionary step taken by Einstein in
using quantized energy levels. The classical model, which has a continuous energy spectrum, leads to a totally
wrong prediction of the behaviour of solids at low temperatures.
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The Debye model is very good for insulators. For conductors at room temperature, it also fits experimental
values well, but falls down near absolute zero.

The reason for this is the neglect of the energy that will be communicated to the conduction electrons. These are
essentially free and do not take part in the lattice vibrations. This is not serious at room temperature when the
lattice energy is very much larger than the free electron energy. However, at very low temperatures, the lattice
energy becomes very much smaller and the electron energy can no longer be neglected.

With its inclusion into the Debye model, a contribution to C proportional to the temperature is added to the
lattice contribution. The new prediction, C = AT 03 + BT, where A and B are constants, closely fits experimental
results for conductors.
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Figure 174The energy function for the interaction
of neighbouring atoms in a crystal lattice. The
extent of the oscillation due to thermal energy is
shown by x+ and x−.

What do these results tell us about the atomic lattice?

Both models assume that the lattice oscillations are harmonic.
The potential energy function for a simple harmonic oscillator
is parabolic: USHO(x) = 1

2 kx2 . For small oscillations near a
minimum in the energy curve, a parabola is a good
approximation to the curve. [Remember that in Figure 17 the
thermal oscillation was greatly exaggerated for visibility on the
graph.]

The success of the Debye model shows that only small
oscillations need be considered in practice.
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Table 34Values of the specific heat
capacity C as a function of temperature
for a solid.

T/K C/mJ1mol−11K−1

5 20.8

10 61.4

15 142

20 281

25 499

Question T3

The specific heat capacity C for a solid depends on temperature T  as
shown in Table 3. Plot a graph of C0/T against T12.

Is the solid a conductor or an insulator?4❏
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Figure 184Thermal oscillation at energy
E1 is centred on X. If the shape of the
energy curve is not symmetrical about the
equilibrium position, the thermal
oscillation at energy E2 is centred on a
different point Y.

4.3 The thermal expansivity of a solid
A property which illustrates another feature of the potential is the
thermal expansivity. When a solid is heated, it expands in volume.
This is wholly a property arising from the effect on the lattice.
The increase in volume arises because the atoms in the lattice move
further apart as the temperature rises. Let us look again at the energy
function to see how this may happen. In Figure 18, we show the
oscillation of the lattice at a given temperature (and energy) E1.
At a higher temperature, the lattice oscillation will have a higher
energy, E2, and consequently a larger amplitude. If the shape of the
potential around the equilibrium point were parabolic1—1that is
symmetrical about the equilibrium position1—1then the centre of
oscillation X would not change. In this case, the solid should not be
expected to expand with increased temperature.

Figure 18 shows, however, a potential that is not symmetrical about
the equilibrium point. In this case, with E1 < E2 and the shape of
potential shown, we see that the new centre of oscillation Y is at an
increased separation at the higher temperature. The solid will expand when heated. Thus, an external observation
gives a clue about the shape of the potential energy of the microscopic interaction.
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Remember, however, that the specific heat capacity was explained, in the simplest theories, by the assumption
that the thermal vibrations of the lattice were simple harmonic. For this to be the case, the potential must be
parabolic1—1the potential energy function of a simple harmonic oscillator is given by: USHO(x) = 1

2 kx2 .

Thus a more complete theory of specific heat capacity should also allow for the so-called anharmonic effects,
however small these might be in practice. We shall not pursue that further here; we only wish to demonstrate the
importance, in the development of any theory (in this case of the solid state), of considering more than one
measurable quantity. Degree courses may be divided up, for convenience of teaching and learning, into
segments labelled electricity, heat, and so forth, but the laws of nature transcend such artificial constraints.
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4.4 The thermal conductivity of a solid
If one end of a solid bar is raised to a higher temperature than the other end, heat will flow from the end at the
higher temperature to the end at the lower temperature. The property of a material which determines the rate of
this process is called its thermal conductivity. On the atomic scale, this can be understood as the transmission
of energy between the atomic oscillators in the lattice. As one end is heated to raise its temperature, the
oscillators at that end will vibrate more vigorously and in doing so will cause their neighbouring atoms to
oscillate more vigorously. This effect of atoms on their interacting neighbours will apply all the way down the
bar.

The thermal conductivity is measured macroscopically by the coefficient of thermal conductivity κ, which we
shall now define. Suppose that a bar of length l and constant cross section A has its ends maintained at
temperatures T1 and T2. The rate of flow of heat H down the bar, assuming no heat escapes laterally is given by:

dQ

dt
= −κ A

T2 − T1

l

The larger the value of κ for a solid, the better the solid conducts heat.
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Table 44Values of the coefficient of the thermal conductivity κ
and electrical conductivity σ for some solids at room temperature.

κ 1/W1m−11K−1 σ0/Ω−11m−1

silver 428 0.62 × 108

copper 401 0.59 × 108

aluminium 235 0.36 × 108

silicon 168 0.3 × 10−3

glass ≈1 ≈10−12

Some values of κ  are given in Table 4.

You will note that there is a marked correlation
between the ability of a substance to conduct
electricity and its ability to conduct heat. This is
an indication that the conduction electrons, as
well as the lattice vibrations, play a role in the
conduction of heat energy. This is noticeable
because, although the energy of the atoms
vibrating in the lattice is relatively large, only
small amounts of this energy are communicated to
neighbours and so contribute to the conduction of
heat. On the other hand, the conduction electrons
have relatively small energies, but especially in
metals, can transmit energy much more easily
since they are mobile.
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5 Closing items
5.1 Module summary
1 The atoms of an element in a solid crystalline solid are arranged in a regular array that may be characterized

by a lattice of points.

2 The atoms are held in the array by interatomic bonds.

3 The nature of the bond depends on the electronic structure of the atom.

4 The energy levels of the electrons in an isolated atom always broaden when atoms are in close proximity.
In the stable crystalline configuration, the energy levels become continuous energy bands with gaps
containing no energy levels between the bands.

5 A solid is a conductor of electricity if its electrons only partly fill an energy band. It is an insulator if the
electrons completely fill a band and there is a large gap to the next empty band above the filled band.

6 If the electrons of a solid completely fill an energy band, but the gap above this band is narrow enough to
allow thermally excited electrons to jump across it, the solid is a semiconductor. Such gaps must be larger
than about 11eV.

7 The temperature coefficient of resistivity α is positive for a conductor but negative for a semiconductor.



FLAP P11.4 Quantum physics of solids
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

8 The specific heat capacity of a solid insulator may be accounted for in terms of the quantum theory of the
harmonic oscillations of the atoms in the lattice.

9 The specific heat capacity of a conductor is explained by the same theory except at very low temperatures,
near absolute zero, where the contribution from the energy of the conduction electrons becomes significant.

10 The thermal expansivity of a solid provides evidence that the curve of interaction energy against separation
for the atoms in the lattice is not quite symmetrical about the minimum.

11 Conduction electrons contribute to the high thermal conductivity of electrical conductors. In an insulator,
only the interaction of the atoms with their neighbours is available as a means of propagating thermal
energy.
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5.2 Achievements
Having completed this module, you should be able to:

A1 Define the terms that are emboldened and flagged in the margins of the module.

A2 Give a qualitative description of the broadening of electronic energy levels when atoms are brought close to
each other.

A3 Given an energy band diagram of a solid, say whether the solid is an insulator, a conductor or a
semiconductor, and justify your choice.

A4 Explain why the density of electrical carriers in a conductor is very much larger than in a semiconductor.

A5 Explain why the temperature coefficient of resistivity of a conductor is positive, while that for a
semiconductor is negative.

A6 Relate the thermal expansivity of a solid to the shape of the interaction energy against separation curve for
the atoms in the crystal lattice.

A7 Explain why good electrical conductors are also good thermal conductors.

Study comment  You may now wish to take the Exit test for this module which tests these Achievements.
If you prefer to study the module further before taking this test then return to the Module contents  to review some of the
topics.
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5.3 Exit test

Study comment  Having completed this module, you should be able to answer the following questions each of which tests
one or more of the Achievements.

energy
conduction band

0.8 eV

gap

band

valence band

Figure 194See Question E2.

Question E1

(A2)4Describe the effect on the energy levels of isolated atoms of
bringing the atoms closer to each other as in a solid element.

Question E2

(A3)4Figure 19 shows the energy band diagram for a solid element.
Is the element a conductor, an insulator or a semiconductor of
electricity? Give the reason for your answer.
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Question E3

(A4 and A5)4The density of electrical carriers in a conductor is very much greater than in a semiconductor.
The temperature coefficient of resistivity of a conductor is positive, while that for a semiconductor is negative.
How are these two statements connected?

Question E4

(A6 and A7)4Sketch the curve for the energy of interaction between neighbouring atoms and their internuclear
separation. If the solid is an insulator, what features of the shape of the curve determine: (a) the quantum model
that will be used to describe the specific heat capacity of the solid, and (b) the thermal expansivity of the solid?

What other factor enters the model of the specific heat capacity if the solid is an electrical conductor?
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Question E5

(A8)4Why are good electrical conductors generally also good thermal conductors?

Study comment  This is the final Exit test question. When you have completed the Exit test go back to Subsection 1.2 and
try the Fast track questions if you have not already done so.

If you have completed both the Fast track questions and the Exit test, then you have finished the module and may leave it
here.
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