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1 Opening items

1.1 Module introduction
Whenever you make a measurement, you should always be aware of the error or uncertainty in the result. This
is an important principle for several reasons: first, unless you know how accurate your result is there is little
point in performing the measurement at all; second, you might want to see if your result agrees with a theoretical
prediction — exact agreement is unlikely, so you will usually need to know the extent to which your results are
compatible with the prediction; third, you might want to compare your result with that obtained by another
experimenter to see if the two are consistent, and again you would need to know the range of values which is
compatible with your result.

This module is concerned with two particular aspects of error analysis. Section 2 concerns the uncertainty in a
single quantity due to the random errors that cause repeated measurements of that quantity to differ from one
another. This section is mainly concerned with statistical concepts such as mean, standard deviation and the
standard error in the mean, and with the physical significance of these concepts. Section 3 deals with the errors
that arise in compound quantities obtained by combining several other quantities that have known errors. This
section also contains the rules for combining independent errors in a single quantity and for combining errors in
sums, differences, products, quotients and powers. Section 4 completes the discussion with various hints and tips
about the reduction and estimation of errors.
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Study comment Having read the introduction you may feel that you are already familiar with the material covered by this
module and that you do not need to study it. If so, try the Fast track questions given in Subsection 1.2.  If not, proceed
directly to Ready to study? in Subsection 1.3.
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1.2 Fast track questions

Study comment Can you answer the following Fast track questions?. If you answer the questions successfully you need
only glance through the module before looking at the Module summary (Subsection 5.1) and the Achievements  listed in
Subsection 5.2. If you are sure that you can meet each of these achievements, try the Exit test in Subsection 5.3. If you have
difficulty with only one or two of the questions you should follow the guidance given in the answers and read the relevant
parts of the module. However, if you have difficulty with more than two of the Exit questions you are strongly advised to
study the whole module.

Question F1

Ten measurements of the period of a simple pendulum were as follows:

2.131s32.071s32.241s32.201s32.081s

2.111s32.151s32.191s32.221s32.161s

Calculate the mean (i.e. average) period, the standard deviation and the standard error in the mean. Given that
the length of the pendulum is (1.15 ± 0.01)1m, estimate g, the magnitude of the acceleration due to gravity.
(Hint: For a simple pendulum T = 2π l g  where T is the period and l is the length of the pendulum.)
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Question F2

The electrical resistance R of a piece of wire of length L and diameter d is given by

R = 4ρL/(πd2)

If ρ = 44.2 × 10−6
1Ω1m, L = (527.3 ± 0.1)1cm, and d = (0.620 ± 0.010)1mm, calculate R to three significant figures

and estimate the error in your result.

Study comment

Having seen the Fast track questions  you may feel that it would be wiser to follow the normal route through the module and
to proceed directly to Ready to study? in Subsection 1.3.

Alternatively, you may still be sufficiently comfortable with the material covered by the module to proceed directly to the
Closing items.
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1.3 Ready to study?

Study comment In order to study this module you will need to understand the following terms: modulus (i.e. absolute
value), percentage, subject (of an equation) and significant figures. If you are uncertain of any of these terms you can review
them by referring to the Glossary which will also indicate where in FLAP they are developed. In addition, you should be able
to: rearrange equations, use a calculator to evaluate arithmetic expressions, work in decimal or scientific notation (also
known as powers-of-ten notation or standard form) and use basic SI units. The following Ready to study questions will allow
you to establish whether you need to review some of these topics before embarking on this module.

Question R1

Use your calculator to evaluate:

(a)
0. 690 × 103 + 167

3. 000 × 10−3 + 5. 200
 (to three significant figures)

(b) (63.20 × 7.9600 × 2.400)/[0.6300 + (17.90 × 4.6001000)] (to four significant figures).
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Question R2

Express the following fractions as percentages to the nearest whole number:

(a) 7/100,3(b) 1/10,3(c) 3/20,3(d) 5/8,3(e) 13/12,3(f) 46/15.

Question R3

Rearrange the equation g = 2h/t2 to make (a) h, and (b) t, the subject.

Question R4

Given the equation E = aP(T – t), find the value of a when P = 10, T = 70, t = 30 and E = 0.56.
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Question R5

The magnitude of the acceleration due to gravity, g, is measured in an experiment as 9.71m1s–2, with an error of
±0.21m1s–2.  ☞ Express the absolute value of the error (sometimes called the absolute error) as a fraction of the
measured value and as a percentage of the measured value, thus determining (a) the fractional error, and
(b) the percentage error, respectively.
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2 Repeated measurements

2.1 Means and deviations from the mean
When you measure a particular quantity several times you usually get slightly different answers each time.
Suppose, for example, that you have been measuring the rate at which water flows through a pipe by collecting
the water that emerges in a measuring jug and recording the volume collected over a four-minute interval.

The results of five such measurements might be: 436.51cm3, 437.31cm3, 435.91cm3, 436.41cm3, 436.91cm3.  ☞

If we assume that there is nothing to choose between these measurements (i.e. they were all taken with the same
care and skill, and with the same measuring instruments), then the best estimate they provide of the volume V
collected over four minutes will be given by their average or mean. This is obtained by adding the measured
values together and dividing the resulting sum by the number of measurements. Thus, denoting the mean of V by
〈 1V1〉  ☞ we find

〈 1V1〉  = 
436. 5 + 437. 3 + 435. 9 + 436. 4 + 436. 9

5
1cm3 = 436.61cm3
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More generally we can define the mean of a set of repeated measurements as follows:

The mean of n values of a quantity x (i.e. the mean of x1, x2, x3, x4, … xn1−12, xn1−11, xn) is:

x = x1 + x2 + x3 + x4 +. . . xn−2 + xn−1 + xn

n
= 1

n
xi

i=1

n

∑ (1)  ☞

Given a set of repeated measurements and their mean it is interesting to know how far each individual
measurement departs from the mean. The difference between any particular measurement and the mean is
usually called the deviation of that measurement. In the case of the water flow experiment:

o the deviation of the first measurement (436.51cm3) from the mean is

436.51cm3 − 〈 1V1〉  = 436.51cm3 − 436.61cm3 = −0.11cm3

o and the deviation of the fifth measurement (436.91cm3) from the mean is 436.91cm3 − 〈 1V1〉  
= 436.91cm3 − 436.61cm3 = 0.31cm3
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On the basis of the available evidence, our best estimate of the volume V appears to be 〈 1V1〉  = 436.61cm3, but in
view of the various deviations of the individual measurements this is unlikely to be exactly the ‘true value’ of V.
It would therefore be sensible to use the available data to determine the range of values within which we might
reasonably expect to find the true value. This can be done by determining the largest positive and negative
deviations from the mean. The measurements are spread out between 435.91cm3 and 437.31cm3; that is from
(436.6 − 0.7)1cm3 to (436.6 + 0.7)1cm3. So our first guess might be that the true value of V is within about 0.71cm3

of the mean value, i.e. somewhere in the range 436.6 ± 0.71cm3. However, the volume is unlikely to lie right at
the ends of this range, so quoting a spread of ±0.71cm3 would be unduly pessimistic. As a rough rule of thumb,
we can take 2/3 of this spread as a more realistic estimate of the true value. So in this case the data indicate that
the true value of V is probably in the range 436.6 ± 0.51cm3. ☞
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In view of the above discussion, if you were asked the value of V you might well say V = 436.6 ± 0.51cm3.
In making such a statement you are clearly indicating that there is some degree of uncertainty in your answer, as
is appropriate in these circumstances. In fact, in this context the quantity ±0.51cm3 is called the uncertainty or
error in the measurement. We can summarize this in the following way:

Several repeated measurements of a single quantity x may be used to calculate the mean, 〈 1x1〉,  of that
quantity and to estimate the error or uncertainty ±∆x in that mean. The final result may therefore be written
〈 1x1〉 ± ∆x.

Much of the remainder of this section will be devoted to finding a more reliable estimate of the error in the mean
than that provided by the crude ‘rule of thumb’ introduced above. First though, we consider the problem of
combining your results with those obtained in another experiment.
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Combining results

Suppose a fellow student has made an independent determination of V and has found the value 436.01cm3.
Naturally you would both want to make the best possible estimate of V, so it would make sense to combine this
new piece of information with your original data, but how should this be done? Should you take the mean of the
two results? i.e.

(436.61cm3 + 436.01cm3)/2 = 436.31cm3

If your fellow student had taken only one reading, of 436.01cm3, you might naturally feel upset that a single
reading taken by somebody else should carry as much weight as the mean of your five measurements. Clearly, as
it stands, this would not be a sensible way of using the new information.

If the single new reading had the same reliability as any one of the readings you took, then the fairest result
would obviously be obtained by treating the additional single reading as being of equal weight to any one of
yours and then 〈V1〉 would be given by

V = 436. 5 + 437. 3 + 435. 9 + 436. 4 + 436. 9 + 436. 0
6

cm3 = 436. 5 cm3

Alternatively, of course, the result obtained by your fellow student might have been the average of many
readings, possibly more than you took.
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(a)

(b)

435.5 436.0 436.5 437.0 437.5

435.5 436.0 436.5 437.0 437.5

cm3

cm3

Figure 13A set of five measurements of
volume: (a) with a wide spread, (b) with a
narrow spread.

✦ If your colleague’s value of 436.01cm3 was the mean of 20
readings of the same reliability as yours, what would be the best
estimate of 〈 1V1〉?

It is reasonable to trust the value of 436.11cm3 more than the values of
436.01cm3 or 436.61cm3, because it is based on a greater number of
equally reliable readings, but what if the readings were not equally
reliable? You might well attach greater weight to more reliable
readings, but how can you recognize one set of readings as more
deserving of extra weight than another?

Figure 1a shows the five readings that gave the original mean value of
436.61cm3. In Figure 1b are five other possible readings giving a mean
value of 436.01cm3. If the number of readings were the sole criterion
for judging the precision of a result, the two values1—1436.61cm3 and 436.01cm3

1—1would carry the same weight.
Does it look from Figure 1 as though they ought to? It would seem not. The measurements in the second set
agree with each other more closely. Perhaps the second experimenter had a better means of cutting off the water
flow at the end of the given time period than you. Whatever the cause, in seems only fair that the greater
consistency of the new readings should be taken into account when combining the available data.
Thus, the extent to which the readings are spread about the mean also has to be taken into account.
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✦ You might feel that a way of assessing the relative spreads of two sets of readings would be to find the
average deviation for each set and then compare these. Work out the average deviation for the five
measurements taken for the volumes collected in the experiment described at the start of this subsection.

(436.51cm3, 437.31cm3, 435.91cm3, 436.41cm3, 436.91cm3.)

You might next suggest comparing the magnitude of the two average deviations (disregarding the sign). This
would be one way of proceeding, but it is not the preferred approach1—1which is to use the standard deviation,
as is described in the next subsection.
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2.2 Standard deviation

An objective measure of the extent to which n readings of a certain quantity are spread about their mean is given
by the standard deviation, σn, of those readings ☞ .  This subsection gives the procedure for calculating the
standard deviation of a set of readings and then explains the significance of that quantity.

To calculate σn, you need to know the total number of readings, n, and the individual readings, x1, x2, x3, x4, x5
… xn. From these you can calculate the mean of the readings, 〈 1x1〉 , and the deviation between each reading and
the mean (as discussed in Subsection 2.1). If these deviations are denoted d1, d 2 , d 3  … d n , then:
d1 = x1 − 〈 1x1〉, d2 = x2 − 〈 1x1〉 and so on, up to dn = xn − 〈 1x1〉. Given the deviations, the standard deviation can be
calculated as follows:

1 take the square of each deviation;

2 divide the sum of these values by the total number of readings;

3 take the square root of the result.
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We can summarize the whole procedure in the following way:

Given n measurements, x1, x2, x3, x4, x5 … xn, of a quantity x, with mean 〈 1x1〉 , the deviation of the ith
reading is di = xi – 〈 1x1〉 , and the standard deviation σn is defined by

  

σn = d1
2 + d2

2 +K+ dn
2

n
= 1

n i
2d

i=1

n

∑






1 2

(2)  ☞

✦ What is the standard deviation of the five measurements of volume given at the beginning of Subsection
2.1?

(436.51cm3, 437.31cm3, 435.91cm3, 436.41cm3, 436.91cm3. )
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Figure 23Histogram of measurements of water volume.

When faced with many readings of the same
quantity, it is difficult to make a quick
assessment of the precision of an experiment
and the likely mean value by examining a
long list of numbers displayed in a table.
In such circumstances it is more convenient
to plot the readings in the form of a
histogram1—1a graph composed of
rectangular blocks, designed to show how
often particular readings (or readings in a
particular range) occur in a set of
measurements.

Figure 2 shows a histogram of 127 volume
readings in our water flow experiment.
The horizontal (volume) axis has been
divided into equal intervals, representing
0.21cm3, and the number of measurements in
each interval has been used to determine the
height of the block for that interval.
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Figure 23Histogram of measurements of water volume.

For instance, there are ten readings between
436.11cm3 and 436.31cm3. You can see at a
glance from this histogram that the mean
value is about 436.61cm3 and the total spread
is about ±1.21cm3. Using the ‘rule of thumb’
introduced earlier, you might quote the result
as (436.6 ± 0.7)1cm3. However, the standard
deviation calculated from the data works out
to be ±0.51cm3 which is somewhat less than
the rule of thumb indicates. So, what is the
significance of the standard deviation in this
case? What feature of the spread of data does
it represent?
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Figure 33Distribution of a large number of readings about an average value.

Rather than answering these
questions immediately, consider what
would happen to the histogram if we
took even more readings. As the
number of readings is increased you
can take smaller and smaller intervals
and still have a reasonable number of
readings in each. Eventually, the
‘step-like’ character of the histogram
will no longer be noticeable and you
will be left with a smooth curve as in
Figure 3.

The distribution of readings
represented by the bell-shaped curve
in Figure 3 is actually of great
importance and is called a Gaussian or normal distribution.  It is quite possible for a large number of readings
of a quantity to be distributed in some other way, but in practice normal distributions (or at least close
approximations to normal distributions) are a very common outcome of repeated measurements of a single
quantity. ☞
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In the rest of this module we will assume that a histogram showing the outcome of a large number of
measurements of any quantity approaches a normal distribution. In other words we shall only consider normally
distributed measurements.
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Figure 33Distribution of a large number of readings about an average value.

The significance of the standard
deviation of a large set of (normally
distributed) readings is easy to
explain: σn gives a measure of how
far a typical reading is likely to be
from the mean. In particular:

It can be shown that about 68%
of the readings will lie within
±σn of the mean value, 95%
within ± 2σn, and 99.7% within
 ± 3σn. ☞

The first two of these values are
indicated in Figure 3.
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Of course, in practice we often have to work with a very limited number of measurements where the precise
percentages quoted above (for large samples) will not apply. Even so, the standard deviation continues to be
used as a simple but effective indicator of the spread of the readings.

Question T1

Repeated measurements of the height of a building gave the following results, corrected to two decimal places
(all these values are in metres):

33.48, 33.46, 33.49, 33.50, 33.49, 33.51, 33.48, 33.50,

33.47, 33.48, 33.49, 33.50, 33.47, 33.51, 33.50, 33.48

Calculate the mean and standard deviation of this set of measurements.3❏

The standard deviation of a set of readings provides insight into the likelihood that any particular reading will
have a given deviation from the mean. However, when evaluating the error or uncertainty in a quantity, what we
are really interested in is the likely separation between the mean of the readings and the true value of the
quantity we are trying to measure. This is the subject of the next subsection.
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2.3 Standard error in the mean
Experimental measurements are generally subject to two kinds of error: random errors which are mainly
responsible for the spread of the individual readings about the true value, and systematic errors which generally
cause the mean to be consistently displaced above or below the true value. Systematic errors often arise from the
failings in experimental design; consistently low temperatures obtained by using a wrongly calibrated
thermometer would come into this category.

In the absence of systematic errors, we expect the mean of a set of readings to get closer and closer to the ‘true’
value as the number of measurements increases. We also expect that increasing the number of measurements
will reduce the uncertainty in the result. This latter expectation is quite reasonable, but it is not a property of the
standard deviation since σn tends towards a fixed value as the number of readings increases. The lesson to be
drawn from this is that the standard deviation itself does not generally provide a good estimate of the uncertainty
in the quoted mean result even though it describes the spread of the readings. A better indicator of the
uncertainty, and the one generally adopted for scientific use is the standard error in the mean, sm. Unlike the
standard deviation, this does decrease as the number of readings increases. The following procedure is used to
estimate the standard error in the mean from the available data.
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�
Given n readings of a quantity, with standard deviation σn, an estimate of the standard error in the mean,
sm, is given by

sm = σn

n − 1
(3)  ☞

What is the significance of sm? Well, suppose you have a large number of (normally distributed) measurements
of the quantity x, and that the mean of those measurements is 〈 1x1〉 . In the absence of systematic errors, this mean
value has a 68% chance of lying within ±sm of the true value, a 95% chance of lying within ±2sm, and a 99.7%
chance of lying within ±3sm. Thus, sm is a measure of how close the mean value of the readings, 〈 1x1〉, is likely to
be to the (unknown) true value which would be found from an infinite set of readings. Note the distinction
between the standard error in the mean sm and the standard deviation σn which provides a measure of how close
an individual reading is likely to be to the mean.

It should be noted from Equation 3 that as the number of readings n increases, the quantity n − 1  also
increases and sm gets smaller. However, it does so relatively slowly as it is dependent on the square root of
(n − 1). Thus, if you quadruple the number of readings, you halve the uncertainty sm; but a tenfold increase in the
number of readings only reduces the uncertainty by a factor of 3.
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A large number of inaccurate readings is therefore a rather poor substitute for taking care, and so keeping the
spread of the individual readings, and hence σn, as small as possible.

✦ In the water flow experiment discussed earlier, we considered the mean of the original five measurements to
be 436.61cm3. Now calculate the standard error of this mean, using the value we have already calculated for σn,
i.e. 0.51cm3.

Question T2

Calculate the standard error in the mean of the measurements given in Question T1.

[Repeated measurements of the height of a building gave the following results, corrected to two decimal places
(all these values are in metres):

33.48, 33.46, 33.49, 33.50, 33.49, 33.51, 33.48, 33.50,

33.47, 33.48, 33.49, 33.50, 33.47, 33.51, 33.50, 33.48]

How would you write the final result of the measurements?3❏
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Just because one assigns a standard error sm to a result (for example, ±0.31cm3 on a mean value of 436.61cm3), it
does not follow that the true value necessarily lies within the specified range, i.e. within the range 436.31cm3 to
436.91cm3. Quoting a standard error is understood by all scientists to mean that roughly speaking there is a 68%
chance of the true value lying within ±sm of the mean value, and a 95% chance of the true value lying within
±12sm of the mean value.

Consequently, one important use of the standard error in the mean is in deciding on the significance of an
experimental result. For instance, suppose that a new theory suggests that a particular physical quantity should
have the value 100 units with an uncertainty of less than one unit, and an experiment is done in which a large
number of measurements are made of this quantity. If the mean value of the measurements is found to be 90
units and the standard error in the mean ±11 units, what does this result tell us about the theory?
Does the experiment refute the theory?

It is not possible to give a simple yes or no answer to this question but it is possible to gauge the likelihood of a
prediction of 100 units being compatible with the experimental result. In order to do this note that the following
two statements are equivalent:

1 The true value has a 68% chance of lying within ±sm of the mean value.

2 The mean value has a 68% chance of lying within ±sm of the true value.
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If the true value actually is 100 units, then there is an approximately 68% chance that the mean will lie between
89 units and 111 units, i.e. within ±sm of the true value. Since the measured mean (90 units) is within this range
there is a good chance that further measurements will continue to be compatible with the theory, and certainly no
grounds for saying that the theory is wrong.

On the other hand, if the experimental result had been (90 ± 4) units, a true value of 100 units would differ from
the mean by more than twice the standard error. Since the likelihood of this happening by chance is less than 5%
it seems rather improbable that further measurement will support the theory, though it is still possible that it will
do so.
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A note of caution

You must use common sense when dealing with errors. It is tempting, when presented with a formula1—1such as
that for the standard error in the mean1—1to just rush ahead without thinking, hoping that the formula will always
be applicable and will always give the right answer. However, this attitude is never the right one to adopt and is
especially dangerous in the context of errors. For instance, if you make several length measurements using a
ruler you might feel that you can only read the ruler reliably to half of a scale division, 0.5 1mm say, and you
might record a set of repeated readings as 22.01mm, 22.01mm, 22.01mm, 22.01mm and 22.01mm. If you apply the
formulae for the mean and the standard error in the mean to these measurements you can easily see that they
seem to imply a final result of (22.0 ± 0.0)1mm. However, a little thought will show that all you have really done
is to demonstrate convincingly that the measured length is closer to 22.01mm than it is to 21.51mm or 22.51mm.
Given the lack of variability in the results it makes no sense to use sophisticated statistical methods to analyse
them. Similarly, there is seldom any point in carrying out a detailed investigation of random errors if they are
swamped by systematic errors that are beyond your control.
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3 Combining errors

3.1 Independent errors in a single quantity

Errors in a single measured quantity

In the majority of experiments, there will be more than one source of error. For instance, measurements of a
single quantity may contain systematic errors (which we have largely ignored so far) in addition to the random
errors that have been our main concern. We have already stressed the need to make a series of measurements,
each as precise as possible, in order to determine and reduce the random errors, but the systematic errors are
generally more difficult to deal with. Even so, it is important to distinguish between those systematic errors that
can be measured and allowed for1—1and which, therefore, will not contribute to the error in the final result1—1

and those systematic errors which cannot be eliminated from an experiment. In the latter case the best you can
hope to do is to recognize their presence and estimate their effect. As an example of this let us return to the water
flow experiment discussed in Subsection 2.1, and consider two different kinds of systematic error that might
occur in timing each four-minute measurement interval.
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o It could be that the stopwatch runs slow; comparing it with the telephone talking clock might show that it
lost 101s every hour, which is equivalent to (10/15)1s lost in (60/15)1min (i.e. 41min) which is equal to 2401s.

To allow for this, you could multiply the volumes collected by the factor 
240 − (10 15)

240
≈ 0. 997, and this

would mean that the slow running of the stopwatch did not contribute an error to the final modified result.

☞

o On the other hand you might have a tendency to start the stopwatch too early or too late each time.
You might not be sure that you were making such a systematic error but you might feel it was sufficiently
likely that it should be taken into account even though you didn’t know whether it was leading to readings
that were systematically too long or systematically too short. (Note that we are imagining this systematic
error to be quite independent of the random errors you will inevitably make in reading the stopwatch.)
A reasonable estimate for the possible size of such a systematic error might be ±0.21s1—anything longer
would probably be detected. This error of ±0.21s in 2401s, or ±1 part in 1200, would lead to an error of ±1
part in 1200 in the volume of water collected. As the average volume of water collected was 436.61cm3, this
would lead to a final systematic error of ±1436.61cm3/1200 = ±0.41cm3.
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So the difference between these two types of systematic error is that we know that one is definitely present, and
we can measure and correct for its effect, whereas the other may or may not be present, and we can only make
an educated guess at its possible magnitude. Essentially, once we have identified, measured and corrected for the
first type of error, it ceases to be a source of error in the final result. But the second type of error remains, and
even when we have estimated its size we are left with the problem of working out its effect on the final result.
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Combining errors in a single quantity

The example we have just considered raises a general question about the errors in a single quantity1—1whatever
their cause. In every experiment there will be errors in the quantities that we measure, and those errors may have
several contributory causes. Supposing that we can estimate the likely error from each cause, how should we
combine those estimates in order to gauge their overall affect on the final result for any particular quantity we
are attempting to measure?

In the particular case of the water flow experiment we have just estimated a systematic error of ±0.41cm3, arising
from the timing, and a random error of ±0.31cm3. How should we combine those particular errors? The obvious
answer would seem to be to add them directly to get a total error of ±0.71cm3, but this is really being unduly
pessimistic. Any systematic error in measuring time has nothing to do with the random error in this
experiment1— 1the two errors are independent. It is therefore highly unlikely (though possible, of course) that
both errors will have their maximum positive value or their maximum negative value. There will generally be a
partial cancellation of the errors, and this should be allowed for in any estimate of the total error in the final
result. The rule for combining two independent errors in the same quantity, and we stress that it only applies if
the errors are independent, is:

E = e1
2 + e2

2 (4)

where ±E is the overall error, ☞  and ±e1 and ±e2 are the individual errors that are to be combined.
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Thus, in the water flow example,

E = (0. 4  cm3 )2 + (0. 3 cm3 )2 = (0.16  cm6 ) + (0. 09  cm6 )

= 0. 25 cm6 = 0. 5 cm3

This is obviously larger than either of the contributing errors, but considerably smaller
than their sum. This calculated error is often referred to as a probable error.

(a)

0.3

0.4
(b)

0.30.4

Figure 43Adding
directed lines: (a) in the
same direction, and
(b) at right angles.

You may find that the following argument which justifies this procedure helps you to
remember the result. We can represent the individual errors by lines that have lengths
proportional to the magnitude of the error. Direct addition can then be represented by
putting the two lines together as illustrated in Figure 4a to produce a line equal to their
sum. However, since the errors are independent, we need to add these lines in some way
that shows their independence. This can be done if we arrange the lines at right angles,
as in Figure 4b, and take their sum as being the diagonal of the rectangle. 
(This is, in fact, the way we add forces that are acting in different directions.)
The length of the diagonal is just given by Pythagoras’s theorem,

i.e. (diagonal)2 = (0.41cm3)2 + (0.31cm3)2

so, diagonal = 0.16 + 0. 09 1cm3 = 0.51cm3
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If more than two errors are involved, the method is still the same in principle. Suppose that, in addition to the
above errors, we think that there may be another systematic error of ±0.51cm3 in measuring the volume of water
collected due to an error in the manufacture of the measuring device. Then the overall error is ±E, where

E = (0. 5 cm3 )2 + (0. 4 cm3 )2 + (0. 3 cm3 )2

= 0. 7 cm3

which is, again, larger than the individual errors, but smaller than their sum.

Independent errors ±e1, ±e2, ±e3 … ±en in a measured quantity will give rise to an overall error ±E of:

E = e1
2 + e2

2 + e3
2 +… +en

2  = (e1
2 + e2

2 + e3
2 + … en

2)1/2 (5)

Question T3

A student measures the current through an electrical circuit using an ammeter, and obtains a value of 3.11A.
He thinks that the random error in reading the scale is about ±0.11A. He is then told that there is a systematic
error in the ammeter of ±14%. What is the total error?3❏
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3.2 Errors in sums, differences, products, quotients and powers
In Subsection 3.1, we were concerned with combining errors in a single measured quantity to find the total error
in that quantity. Suppose now that you are conducting an investigation which involves measuring several
different independent quantities. Naturally you would attempt to estimate the error in each of those quantities
using the above method.

The next stage of your investigation might well involve the substitution of these measured quantities into a
formula in order to obtain a final result. You know the errors in the individual quantities, but how can you
determine the error in this final calculated result? How do errors propagate through a calculation using a
formula? We will answer this question by considering in turn the behaviour of errors in sums, differences,
products, quotients and powers; you should then be able to work out for yourself the effect of combining errors
in a wide range of formulae.
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Sums

As an example, suppose we want to evaluate X = A + B, where A and B are independent quantities though they
must have the same dimensions since they are being added together. How is the error in X related to the separate
errors in A and B?

The reasoning here is exactly the same as given in the previous section on combining independent errors in a
single quantity. The error in X is equal to the square root of the sum of the squares of the errors in A and B.
We can represent this symbolically in the following way

∆X = (∆A)2 + (∆B)2 (6)    ☞

✦ An object is made from two parts. One part has mass M1 = (120 ± 5)1kg and the other has mass 
M2 = (90 ± 3)1kg. What is the total mass M, and the error ∆M in this mass?
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Differences

Suppose we now want the error in the difference between two quantities, say X = A − B.  ☞ 

The error in the difference is not equal to the difference between the errors, or even to the square root of the
difference between the squares of the two errors. Even when subtracting two quantities the resulting error must
be larger than either of the individual errors. In fact the same rule applies, so:

If X = A + B, or X = A − B, the error in X is given by:

∆X = (∆A)2 + (∆B)2 (Eqn 6)

✦ The temperature in a room before a heater is switched on is (16.2 ± 0.4)1°C, and one hour after the heater is
switched on it is (22.7 ± 0.4)1°C. What is the temperature rise T?
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In error analysis it is common to use fractional errors or percentage errors in assessing the reliability of a

measurement. If ∆A is the absolute error in A then the fractional error is defined as 
∆A

A
 and the percentage error

as 
∆A

A
 × 100.

When calculating differences between two quantities of similar size you should be alert to the very large
percentage effect that errors in A and B can have on the difference quantity X. For example, in the example given

here the percentage error in A is 100 × 0. 4
22. 7





  = 1.8% and that in B  is 100 × 0. 4

16. 2




  = 2.5%, yet the

percentage error in X is 100 × 0. 6
6. 5





  = 9.2%. This scaling of the percentage error effect becomes very large as

A and B approach the same size.

When dealing with sums and differences it is the numerical size of the errors that is relevant, not their sign, and
so we use their absolute values (i.e. the values ignoring signs), these are called the absolute errors.
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Question T4

Two objects have masses (100 ± 0.4)1g and (98 ± 0.3)1g. What is (i) the absolute error and 
(ii) the percentage error:

(a) on the sum of their masses, and

(b) on the difference between their masses?3❏
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Products and quotients

When estimating the errors arising from products and quotients it turns out that our computations involve the
fractional errors, ∆A/A and ∆B/B, rather than the absolute errors, ∆A and ∆B.

Study comment We are here combining errors in quantities A and B which in general will have different dimensions, for
example A could be a length and B a time. When we combine the errors we can only add quantities of the same dimension1—
1it makes no sense to produce something which claims to add metres to seconds! So, when we combine the errors we must
use dimensionless errors, either fractional errors or percentage errors, and never absolute errors (unless A and B happen to
have the same dimensions).

If X = AB, or X = A/B, the error in X is given by:

∆X/X= (∆A A)2 + (∆B B)2 (7)

✦ The speed v  of a train is measured as (80 ± 5)1km1h−1 over a measured time t of (0.20 ± 0.02)1h.
What distance s does the train travel in this time?
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Question T5

A motorist drives at a constant speed such that the reading on the speedometer is 40 miles per hour (i.e. 401mph).
The speedometer is assumed to be accurate to ±21mph. At the end of the morning, he would like to know how far
he has travelled but unfortunately he forgot to look at the mileage indicator when he set out. He reckoned that he
had been driving for 41h, give or take a quarter of an hour. Estimate how far he has travelled and assign an error
to your result.3❏

What about products (or quotients) that involve constants?

If a constant k, which has no error associated with it, is involved,

and X = kA

then ∆X = k∆A (8)

and ∆X/X = ∆A/A (9)

So the constant has no effect on the fractional error.
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Powers

The final important case to consider is when a measured quantity is raised to a power.

If X = An, the error in X is given by:

∆X/X = n(∆A/A) (10)

Equation 10 can be derived using calculus, which is not required for the module. However, you can see that it is
reasonable with the following example.

✦ The diameter of a sphere is measured as (7.2 ± 0.5)1cm. What is its volume?
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If we now compare the fractional errors in V with that for d we find:

Fractional error in d is ± 0. 5 cm
7. 2 cm







 ≈ 0.07

The maximum value for V is thus 
π
6

dmax
3 = π

6
(7. 7 cm)3  = 2.39 × 102

1cm3

So ∆V = (2.39 × 102 – 1.95 × 102)1cm3 = 441cm3

Therefore, the fractional error in V for the maximum departure from the mean is

± 44 cm3

195 cm3







 ≈ 0.23

We note that the fractional error in V is approximately three times greater than that for d, in agreement with
Equation 10.

∆X/X = n(∆A/A) (Eqn 10)
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Note As you have just seen, the fractional error in a spherical volume is three times larger than the fractional error in the
measured diameter. Because errors increase so rapidly when powers are involved, you should always take particular care to
reduce errors when measuring quantities that will be raised to a power. Note also that it would be wrong to reason that

V = (π/6) × d × d × d

therefore ∆V V = ( ∆d d )2 + ( ∆d d )2 + ( ∆d d )2 = 3 ∆d d( )

The equation for the error in a product cannot be used in this case, because the three terms that have to be multiplied are
exactly the same1—1and therefore are certainly not independent .

Question T6

The area of a circle is given by: A = πr12, where r is the radius. What is the error in the value of the area of a
circle the radius of which is determined as (14.6 ± 0.5)1cm?3❏
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More than two quantities

When more than two quantities are involved in products and sums, the equations are extended in a
straightforward way. The general results are given in the summary to this module, but you should not find it hard
to see how the results should be extended from two to three quantities.

Question T7

Three objects have masses (100.0 ± 0.4)1g, (50.0 ± 0.3)1g and (200.0 ± 0.5)1g. What is the error in their sum?3❏

Question T8

The volume of a rectangular block is calculated from the following measurements of its dimensions:
(10.00 ± 0.10)1cm, (5.00 ± 0.05)1cm, and (4.00 ± 0.04)1cm. What is the error in the value of the volume of the
block assuming that the errors are independent?3❏
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Basic functions

For the sake of completeness we note the following expressions for errors in functions:

 If  X = loge1A    then    ∆X = ∆A/A

 If  X = exp1A    then    ∆X/X = ∆A

If X = sin A then ∆X = cos A∆A

If X = cos A then ∆X = − sin A∆A




where A is in radians and ∆A is small
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3.3 Treatment of dependent errors
In the discussion up to now we have assumed that the errors we are combining are completely independent.
For example, in the case of the water flow measurements (first introduced in Subsection 2.1), we assume that
systematic errors in the measurements of time will not be related in any way to the random errors in the
measurements of volume. However, it is by no means always true that errors are independent in this way.
For example, suppose we are measuring the length and breadth of a piece of paper with a ruler in order to obtain
the area (= length × breadth), and we know that there is a systematic error in the ruler. In this case the errors in
both measurements will be in the same direction; if one is too high the other will also be too high. So when we
come to combine the errors in length and breadth, we cannot assume that they are independent. In this case the
overall error is more like the sum of the individual errors. In some situations it can happen that a large positive
error in one quantity results in a large negative error in another quantity, thus causing cancellation and an overall
error that is much smaller than the individual errors.

No precise rules can be given for dealing with dependent errors (except of course for the simple case of a
number raised to a power, discussed above). You will have to consider each case on its merits using the general
principles that have been introduced.
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4 Miscellaneous tips about errors
4.1 Taking measurements so as to reduce errors
It has already been stressed that a few precise measurements are generally of more value than many imprecise
measurements. Here are a few general points about how to achieve such measurements.

Concentrate on reducing the dominant errors3As we have just shown, the largest errors will dominate the
error in the final result, and small errors can often be neglected. This is particularly true since combining errors
involves squaring and adding the squares. It is therefore, very important when doing experiments not to waste a
lot of time reducing small errors when much larger errors are also present.

Find out as early as possible in an experiment what are the dominant errors, and then concentrate your time
and effort on reducing them. Often a pilot experiment will achieve this as will a look at the formula to be
used for combining the measurements.

Take care when differences and powers are involved3We saw the results of this in Subsection 3.2.

If calculating the result of an experiment involves taking the difference between two nearly equal measured
quantities, or taking the power of a measured quantity, then pay particular attention to reducing the errors in
those quantities.
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4.2 Tips about error calculations
Don’t worry about errors in the errors3Errors, by their very nature, cannot be precisely quantified.
So a statement such as L = (2.732 ± 0.312)1m is rather silly, an error of 0.312 pretends to be overly precise, and
the result should be quoted as L = (2.7 ± 0.3)1m. As a general rule:

Errors should usually be quoted only to one or (at most) two significant figures.

You should bear this in mind when trying to assess the magnitude of errors, and when doing calculations
involving errors. Don’t be concerned about errors (of say 30%) in your errors1—1they don’t really matter.

Neglecting small errors3The total error in a result may be the combination of several contributing errors, and
these contributing errors may have widely varying sizes. But, because the errors (or fractional errors) combine as
the sum of the squares, the following general rule applies:

When calculating errors in sums and differences, as a rule of thumb, you may ignore any errors that are less
than 1/3 of the largest error, and when calculating errors in products and quotients, ignore any fractional
error that is less than 1/3 of the largest fractional error.
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5 Closing items

5.1 Module summary
1 Measured values of physical quantities are generally subject to error or uncertainty.
2 Sources of error may be divided into two kinds: random and systematic. Random errors alone cause the

measured values of a quantity to be distributed around the true value of that quantity and are revealed by
repeated measurement. Systematic errors always affect a given measurement in the same way and are
therefore not revealed by repeated measurement. Systematic errors will generally cause the measurements to
be distributed about some value other than the true value.

3 The mean of n measured values of a quantity x (x1, x2, x3, x4, … xn1−12, xn1−11, xn) is defined by

x = x1 + x2 + x3 + x4 +. . . xn−2 + xn−1 + xn

n
= 1

n
xi

i=1

n

∑ (Eqn 1)
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4 The standard deviation of n measured values of x, with a mean 〈 1x1〉  is defined by

  

σn = d1
2 + d2

2 +K+ dn
2

n
= 1

n i
2d

i=1

n

∑






1 2

(Eqn 2)

where di = xi − 〈 1x1〉  is the deviation of the ith measurement from the mean. For normally distributed readings
σn provides an objective measure of the spread of the readings, in that roughly 68% of the readings would
be expected to be in the range 〈 1x1〉 ± σn for a sufficiently large number of readings.

5 The standard error in the mean s m provides a measure of how close the mean 〈 1x 1〉 of a set of n
measurements of a quantity x, with standard deviation σn is likely to be to the (unknown) true value of x, in
the absence of systematic errors. The value of sm may be estimated from

sm = σn

n − 1
(Eqn 3)

This is often taken as the best estimate of the random error in the repeated measurements. 
For normally distributed readings there is a roughly 68% chance that the true value of the measured quantity
will be in the range 〈 1x1〉 ± sm.
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6 The rule for combining independent errors ±e1, ±e2 … ±en in a single measured quantity to find the overall
probable error ±E is

E = e1
2 + e2

2 +…en
2 (Eqn 5)

7 Assuming that independent measurements A and B , which have total errors ∆A and ∆B associated with
them, are combined to give the result X, which has error ∆X, we find the rules for combining errors in an
algebraic expression to be as follows:

Sums and differences

If X = A + B

or X = A − B




then ∆X = (∆A)2 + (∆B)2

(A and B have the same dimensions)

Products and quotients

If X = AB

or X = A B




then
∆X

X
= ∆A

A






2

+ ∆B

B






2

(A and B may have different dimensions)
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Powers

If X = An then
∆X

X
= n

∆A

A
Constants

When a measurement A is multiplied by a constant k, which has no error associated with it, as in the formula

X = kA,3then3∆X = k∆A3and3
∆X

X
= ∆A

A
If X = kA + B

or X = kA − B




then ∆X = (k∆A)2 + (∆B)2

If X = kAB    

or X = kA B




then
∆X

X
= ∆A

A






2

+ ∆B

B






2

If X = kAn then
∆X

X
= n

∆A

A
(so the constant has no effect on the fractional error)
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8 When more than two quantities are involved, the equations given above are extended in a straightforward
way:

If X = A ± B ± C ± D (e.g. X = A + B − C + D) then

∆X = (∆A)2 + (∆B)2 + (∆C )2 + (∆D)2

(notice that only plus signs appear under the square root)

If X = A × B

C × D
then

∆X

X
= ∆A

A






2

+ ∆B

B






2

+ ∆C

C






2

+ ∆D

D






2

(again notice that only plus signs appear under the square root)
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5.2 Achievements
Having completed this module, you should be able to:

A1 Define the terms that are emboldened and flagged in the margins of the module.

A2 Calculate the mean and standard deviation of a set of measurements.

A3 Calculate the standard error in the mean of a set of measurements.

A4 Combine several independent errors in a single quantity to produce an overall error.

A5 Estimate the total error in a quantity that depends on several measured quantities, each with its own error.

Study comment  You may now wish to take the Exit test for this module which tests these Achievements.
If you prefer to study the module further before taking this test then return to the Module contents  to review some of the
topics.



FLAP P1.2 Errors and uncertainty
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

5.3 Exit test

Study comment  Having completed this module, you should be able to answer the following questions each of which tests
one or more of the Achievements.

Question E1

(A2 and A3)3The masses in grams (g) of 20 copper spheres were as follows: 280, 275, 283, 264, 272, 280, 290,
287, 283, 276, 278, 282, 280, 288, 282, 265, 291, 282, 279, 278.

All measurements were made to the nearest gram. Calculate (a) the mean, (b) the standard deviation, and
(c) the standard error in the mean.
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Question E2

(A5)3The period T of a simple pendulum is given by the expression

T = 2π L g

where L is the length of the pendulum and g is the magnitude of the acceleration due to gravity.

A pendulum of length (0.600 ± 0.002)1m is used to determine the value of g. The value of T was found to be
(1.55 ± 0.01)1s.   Find the percentage error in the value of g.

Question E3

(A5)3Two objects are weighed and each is found to be 2001g with an error of 0.5%. What is the percentage
error in the sum of their masses?
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Question E4

(A5)3(a) Given that  v  =2fλ , what is the value of v if

f = (2.0 ± 0.1)1kHz and λ = (0.15 ± 0.02)1m?

(b) Given that x = L – L0, what is the value of x if

L = (1.10 ± 0.02)1m and L0 = (1.01 ± 0.02)1m?

(c) Given that a = mv2/r, what is the value of a if

m = (1.0 ± 0.1)1kg, v = (100 ± 4)1m1s−1 and r = (200 ± 10)1m?
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Question E5

(A5)3The pressure of a gas is the magnitude of the force exerted per unit area. If the force magnitude is
(20.0 ± 0.5)1N, and the area is rectangular with sides (5.0 ± 0.2)1mm and (10.0 ± 0.5)1mm, what is the fractional
error on the value of the pressure and what is the pressure (in N1m–2)?

Study comment  This is the final Exit test question. When you have completed the Exit test go back to Subsection 1.2 and
try the Fast track questions if you have not already done so.

If you have completed both the Fast track questions and the Exit test, then you have finished the module and may leave it
here.
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