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1 Opening items
1.1 Module introduction
Many of the most interesting problems in physics involve motion; the movement of planets and satellites for
example, or the motion of high speed electrons as they are whirled around in a particle accelerator. This module
provides an introduction to the study of motion. Its main aim is to enable you to describe and analyse simple
examples of motion in an exact and concise way.

The module starts with a brief discussion of three-dimensional space and the way in which a Cartesian
coordinate system can be used to fix the location of an object in space. During this discussion position,
displacement and distance are defined and the distinction between a vector and a scalar is explained. Having
established the three-dimensional nature of space and the difficulties of working in three dimensions, Subsection
2.3 introduces the simplifying concept of linear motion, i.e. motion along a straight line. By concentrating in the
rest of the module on examples of linear motion, such as objects falling under gravity or cars accelerating along
straight roads, we are able to explore some of the fundamental features of motion in a one-dimensional context,
without having to make use of vectors. In particular, we show how position–time graphs can be used to describe
linear motion. By considering such graphs we are led, in Section 3, to important concepts such as uniform
motion, average velocity and instantaneous velocity.
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Section 4 continues this graphical approach by using velocity–time graphs to describe examples of linear motion
in which the velocity is changing with time and introduces the concept of acceleration, giving specific
definitions of average acceleration and instantaneous acceleration.

Section 5 shows how the linear motion of a particle may be described algebraically, so that information can be
obtained from the manipulation of equations rather than by drawing graphs. The equations involved in this
process are generally called equations of motion, and special attention is paid to the uniform motion equations
(when the particle has a constant velocity) and the uniform acceleration equations (when the particle has
constant acceleration). By starting in three dimensions and then particularizing to one, we lay a firm foundation
for later studies and avoid many of the pitfalls that open-up when one-dimensional motion is treated in isolation
without due regard to the real world of three-dimensional space.
The mathematical techniques of calculus are not used in this module. However, the notation of the calculus is
introduced so that you will have an opportunity to become familiar with its physical significance before being
called upon to use it in a mathematical context. The following problem illustrates the sort of question you will be
able to answer by the end of this module. (The solution is given in Subsection 5.3.)

According to the Highway Code, a car travelling along a straight road at 301mph (i.e. about 13.31m1s−1,
read as 13.31metres per second) can stop within 231metres of the point at which the driver sees a hazard.
This is known as the stopping distance. If the driver always takes 0.701s to react to a hazard and apply
the brakes, what is the stopping distance at 701mph (i.e. about 31.11m1s−1) assuming the same
deceleration as at 301mph?
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Study comment Having read the introduction you may feel that you are already familiar with the material covered by this
module and that you do not need to study it. If so, try the Fast track questions given in Subsection 1.2. If not, proceed
directly to Ready to study? in Subsection 1.3.
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1.2 Fast track questions

Study comment Can you answer the following Fast track questions?. If you answer the questions successfully you need
only glance through the module before looking at the Module summary (Subsection 6.1) and the Achievements  listed in
Subsection 6.2. If you are sure that you can meet each of these achievements, try the Exit test in Subsection 6.3. If you have
difficulty with only one or two of the questions you should follow the guidance given in the answers and read the relevant
parts of the module. However, if you have difficulty with more than two of the Exit questions you are strongly advised to
study the whole module.

Question F1

A car accelerates uniformly along a straight road, so that its speed increases from 151m1s−1 to 251m1s−1 in 9.01s.
Calculate its acceleration.
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Figure 13See Question F2.

Question F2

The graph in Figure 1 represents the
motion of a parachutist.

(a) For how long did the
parachutist fall before opening
the parachute?

(b) What was the acceleration
during this time?

(c) How far did the parachutist fall
before opening the parachute?

(d) What was the approximate
acceleration one second after
opening the parachute?
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Question F3

What is the difference between a vector and a scalar? What is meant by the magnitude of a vector, and what is
wrong with the statement |1a1| = –3?

Study comment

Having seen the Fast track questions  you may feel that it would be wiser to follow the normal route through the module and
to proceed directly to Ready to study? in Subsection 1.3.

Alternatively, you may still be sufficiently comfortable with the material covered by the module to proceed directly to the
Closing items.
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1.3 Ready to study?

Study comment To begin to study this module you will need to be familiar with the following terms: axes, Cartesian
coordinates, gradient of a line, graph, origin, SI units and tangent. If you are unsure of any of these terms you should refer to
the Glossary, which will also indicate where in FLAP they are developed. The following questions will establish whether you
need to review some of these topics before beginning to work through this module.
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Figure 23See Question R1.

Question R1

Write down the (Cartesian) coordinates of the points A and B on 
Figure 2 and mark the origin with an O.
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Figure 33See Question R2.

Question R2

What are the gradients
(including the appropriate
units) of the two lines in
Figure 3?

Question R3

What are the SI units of mass,
length and time?
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2 Position, displacement and motion

origin

z

y

x

2.1 Positions and position vectors
It is a basic fact of life that we can only move in three independent
directions: to the left and right, up and down, back and forward. Any other
movement can always be produced by a suitable combination of these
three. We describe this state of affairs by saying that space1—1which
consists of all the possible positions that an object might have—1is three
dimensional.  It follows from this that if you want to describe the position
of an object fully you must specify its location with respect to three
independent directions. The most common way of doing this uses a three-
dimensional Cartesian coordinate system, like that shown in Figure 4.

Figure 43A three-dimensional Cartesian coordinate system. (It should be noted that the z-axis of a three-dimensional
coordinate system may be oriented in one of two ways (up or down) relative to the x and y-axes. The orientation shown in
this figure is the most conventional and constitutes what is known as a right-handed coordinate system. Reversing the
direction of the z-axis would produce an unconventional left-handed coordinate system.)
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Figure 53Determining the position
coordinates of a point P.

Such a system is obtained quite simply by adding a third axis (the z-
axis) at right angles to the x and y-axes that make up the two-
dimensional Cartesian coordinate systems with which you are already
familiar. As in the two-dimensional case, the point at which the axes
intersect continues to be called the origin.

Both the point in space at which the origin of a particular coordinate
system is located, and the orientation of that system (i.e. which way the
mutually perpendicular axes point) can be chosen arbitrarily. However,
once such choices have been made it is important to stick to them so that
the location of any point in space can be specified by its three position
coordinates with respect to that coordinate system. The way in which
the position coordinates of a point are determined is probably familiar to
you1—1the process is illustrated in Figure 5 for the sake of completeness.

The position coordinates of a point are usually written in the order x, y, z
and enclosed in brackets (parentheses) to avoid confusing them. Thus
the coordinates of point P in Figure 5 would normally be written

(xP, yP, zP) = (21m, −31m, 11m)
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Figure 63The position vector rP of a
point P.

Note that each position coordinate may be positive or negative according
to which side of the origin the relevant perpendicular intersects the
corresponding axis.

An alternative way of describing the three-dimensional position of a point
such as P is in terms of its position vector. This can be thought of as an
arrow ☞ stretching from the origin of the coordinate system to the point
in question (Figure 6). Now arrows have length and direction, so they are
quite different from physical quantities such as mass and energy that have
no particular direction associated with them. For this reason it makes good
sense to use a special symbol to distinguish a position vector (or any other
directed quantity) from quantities that have no direction. It is conventional
to emphasize the special nature of directed quantities1—1which are
generally called vectors1—1by using bold letters to represent them . Thus
the position vector of point P might be denoted rP.

rP = position vector of point P

Quantities such as mass and energy that have no direction are called
scalars and are usually represented by ordinary (non-bold) letters such as
m and E.
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Since a position vector is an alternative way of specifying the location of a point with respect to a given
coordinate system there must be an intimate relationship between the position vector of a point and the position
coordinates of that point. In fact, a position vector r  of a point with position coordinates (x, y, z) is often
specified by an equation of the following form

r = (x, y, z) (1)

In this context x, y and z, the position coordinates of the point in question, are referred to as the x, y and z
components of the position vector r. Note that each of the components is a scalar quantity which may be
positive or negative. The vector r may therefore be represented by an ordered arrangement of three scalar
quantities, its three components.

Aside Distinguishing vectors by a bold typeface is fine in print, but it presents a problem for those using pens or pencils.
How are you going to show that r is a vector when you write it down? Fortunately there is a simple way of indicating vectors
in handwritten work. When authors are preparing material to be printed they show that an item should be set in boldface type
by putting a wavy underline beneath it. What is written as ~r  will be read and printed as r. Unless you have been instructed to
distinguish vectors from scalars in some other way, you should adopt this convention in all your written work.
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2.2 Displacement and distance
It should be clear from Figure 6 that the distance from the origin of the coordinate system to the point P is
nothing other than the length of the position vector r P. When dealing with vectors of any kind, including
position vectors, it is customary to use the term magnitude when referring to their length, so we can say, quite
generally:

The distance from the origin of a coordinate system to any particular point is given by the magnitude of the
position vector of that point.

It is worth noting that the magnitude of a vector cannot be negative. (A length may be positive or zero, but it
can’t possibly be less than zero!) Because of this it is usual to denote the magnitude of any position vector r by
|1r1|, since mathematicians use a similar notation to indicate the non-negative value they call the modulus or
absolute value of any ordinary number. Of course, |1r1| is just a scalar quantity so it is also common to see it
represented by the usual scalar symbol r. Using these notations for the magnitude of a vector we can say

r = |1r1|, the magnitude of the position vector r of a point, represents the distance from the origin of a
coordinate system to that point. ☞
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Figure 73The displacement sPQ from
P to Q.

Positions are always measured with respect to the origin of a coordinate
system, but quite often we are more interested in the location of one point
relative to another rather than in the location of either relative to the origin.
For instance, if an object moves from a point P to a point Q so that its
position vector changes from rP to rQ (see Figure 7), we may be more
interested in knowing the distance and direction from P to Q than in
specifying the position of either P or Q relative to the origin. The quantity
that describes the difference in the two positions is called the
displacement from P to Q and may be denoted sPQ. As its bold symbol
indicates, the displacement sPQ is another vector quantity since both a
magnitude and  a direction are required for its specification. This
information is often provided by expressing the displacement in terms of
its scalar components, as in the case of a position vector. Thus you will
often see a general displacement s defined by an equation of the form:

s = (sx, sy, sz1)

where sx, sy and sz are, respectively, called the x, y and z-components of the displacement.



FLAP P2.1 Introducing motion
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

We shall have more to say about the determination of these components later but for the present we shall just
note two important properties of displacement:

o Position vectors are a special class of displacements1—1they are displacements from the origin to the points
in question.

o The magnitude of the displacement from one point to another represents the distance between those two
points. Thus, in general:

s = |1s1|, the magnitude of the displacement from one point to another, is the distance between those two
points.

✦ If s is the displacement from one point to another, what is wrong with the statement |1s1| = −31m?
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2.3 Linear motion1—1from three dimensions to one
So far our discussion has been fully three-dimensional, just as much of physics has to be. However, in the rest of
this module we shall be mainly concerned with linear motion1—1i.e. the motion of an object along a straight
line. Although the line may point along any direction in three-dimensional space, the motion itself is really one-
dimensional. If we choose to locate the origin of a coordinate system on the line and to orientate one of the axes,
the x-axis say, along the line, then all the possible positions of the moving object can be specified by values of
the single position coordinate x 1—1and that’s what characterizes one-dimensional motion. By confining our
attention to one dimension we will be able to explore some of the basic features of motion without having to
make much use of vector notation. On the other hand, because we have started from a fully three-dimensional
(vector) point of view the results we obtain will be easy to generalize to three dimensions.
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As a definite example, consider Figure 8 which shows a car moving along a straight line away from a pedestrian.
The line has been designated as the x-axis of some coordinate system and the origin located at a fixed point
between the car and the pedestrian. The position of the car at any instant is completely specified by a single
position coordinate x, which may be positive or negative according to whether the car is to the right or the left of
the origin. Similarly, the displacement from one point on the line (the position of the pedestrian, x1, say) to any
other point on the line (such as the position of the car, x2) can be specified by a single positive or negative
quantity1—1the x-component of displacement sx given by

sx = x2 – x1 (2)

−20 m −10 m 0 m 10 m 20 m 30 m

origin

x-axis

Figure 83An example of one-dimensional (linear) motion.
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In the rest of this module, when dealing with one-dimensional motion along the x-axis, we shall usually refer to
the position and displacement components x and sx simply as ‘the position’ and ‘the displacement’, respectively,
since each effectively specifies the corresponding vector quantity even though each is, in reality, only one
component of that vector. Of course it’s still the case that the magnitude of a displacement is a distance but even
this is simplified in a one-dimensional problem since all you have to do to work out the distance from one point
to another is to subtract the lesser value of x from the greater so that you get a positive result.

✦ In Figure 8, what is the displacement from the car to the pedestrian? What is the distance from the car to the
pedestrian?

−20 m −10 m 0 m 10 m 20 m 30 m

origin

x-axis

Figure 83An example of one-dimensional (linear) motion.
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Table 1  The position coordinate of
the car at various times.

Time t/s Position
coordinate x1/m

0 0

5 1.7

10 6.8

15 15

20 26

25 39

30 53

35 68

40 84

45 99

50 115

55 131

60 146

2.4 Position–time and displacement–time graphs

To describe the motion of the car in Figure 8, we can determine its position
at various times and then display the results in a suitable way. For example,
we could choose the origin of time1— 1the moment at which we start the
clock and record time t2=201—1to be when the car passes the origin.
We might then choose to measure the car’s position (i.e. its displacement
from the origin) at 5-second intervals for 11minute. The results are shown in
Table 1.

Note how the units are shown in such tables. The oblique slash (/) denotes a
ratio, thus

x/m = 
position coordinate in metres

1 metre
(3)

so the units cancel and the entries in the table are just numbers.

These data could also be displayed visually by plotting them as points on a
graph. Of course, there are conventions to bear in mind when drawing such
a graph:
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o Time, the independent variable, should be plotted along the horizontal axis and position, the dependent
variable, along the vertical axis. ☞

o The axes should be labelled to show what is being plotted and the label should include an oblique slash (/)
followed by the appropriate units, as in the table headings.

o SI units should be used unless there are good reasons to do otherwise.
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Table 1  The position coordinate of
the car at various times.

Time t/s Position
coordinate x1/m

0 0

5 1.7

10 6.8

15 15

20 26

25 39

30 53

35 68

40 84

45 99

50 115

55 131

60 146

Question T1

Plot the values in Table 1 as points on a graph and draw a smooth curve
through the points ☞. Label the axes as described above.3❏

The graph you have just drawn in response to Question T1 is known as a
position–time graph. Using the graph, you can read off the position of the
car at any given time, or the time at which the car reaches a given position.

Question T2

Use your graph (from Question T1) to estimate the position of the car after
321s and the time it takes to travel the first 1001m.3❏
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Figure 93The position–time graph
resulting from a change of origin.

The position–time graph of any linear motion provides a very simple
description of that motion. It enables you to see the way in which x
changes throughout the motion and helps you to appreciate the precise
way in which x is determined by t. As a mathematician would say, it
shows x as a function of t.

It is important to realize that the precise form of a position–time graph
depends on the choice of origin and orientation of the x-axis. For example,
Figure 9 shows a position–time graph for the moving car described above,
but this time the motion is described in terms of a different coordinate
system in which the origin has a different location.

✦ Where is the new origin?
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Figure 113Another position–time
graph for the moving car.

Figure 11 represents the same motion again, but an even more radical
change of coordinate system has taken place.

Question T3

How is the coordinate system used to produce Figure 11 related to the
original system shown in Figure 8?3❏
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In addition to position–time graphs, we should also consider displacement–time and distance–time graphs as
means of representing linear motion.

The displacement–time graph for linear motion1—1a plot of the displacement sx from some chosen reference
point against time t1—1is often used in preference to the position–time graph. (Indeed, position–time graphs are
just a special class of displacement–time graphs in which the reference point from which displacements are
measured is the origin.) One of the potential advantages of a displacement–time graph is that the reference point
does not have to be fixed.

In the context of Figure 8, for example, it would be quite possible (and of interest to the pedestrian) to represent
the motion of the car in terms of its changing displacement from the pedestrian even though both the car and the
pedestrian are in motion. However, the distance–time graph of linear motion1—1a plot of the distance s from
some reference point against time t1—is generally less useful because it carries less information. Two different
linear motions in opposite directions might well have the same distance–time graph even though their position–
time graphs would be very different.

−20 m −10 m 0 m 10 m 20 m 30 m

origin

x-axis

Figure 83An example of one-dimensional (linear) motion.
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3 Velocity and speed
When describing the three-dimensional motion of an object relative to a coordinate system we often want to
know how fast the object is travelling and in which direction. This information is given by the velocity of the
object, which is simply the rate of change of the object’s position vector with time. Since changes in position
involve both a direction and a magnitude it follows that velocity must also be a vector quantity that requires both
a magnitude and a direction for its complete specification. For this reason velocity is usually denoted by the bold
symbol v. The magnitude of an object’s velocity is called its speed and is denoted |1v1|, though often it is simply
written as v. Note that speed, like distance, can never be negative since it is the magnitude of a vector and
magnitudes are never negative. Indeed, you can think of speed as the rate at which distance along the path of
motion is being covered, so it can always be described by a value, such as 301mph (or 13.31m1s–1), that can’t
possibly be less than zero. Velocity on the other hand, since it is a vector quantity and involves direction, is
generally specified by an equation of the form

v = (vx, vy, vz1)

where the three components along the x, y and z-axes are each scalar quantities that may be positive or negative.
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In what follows we shall once again avoid the difficulties of dealing with velocities in their fully three-
dimensional form by restricting our attention to (one-dimensional) linear motion along the x-axis of a coordinate
system. Under such circumstances the velocity of an object is entirely specified by the x-component of its
velocity, vx, and the speed of such an object is given by

v = |1vx1| (4) ☞
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Figure 123Expanded version of the linear
part of the position–time graph for Question
T1 (i.e. Figure 21).

3.1 Constant velocity and constant speed
The simplest case of linear motion is that of an object moving in a
fixed direction and covering distance at a constant rate. Such an
object is said to be moving with constant velocity and it is
inevitable that such an object must also move with constant speed.
Constant velocity motion is also known as uniform motion and we
say that in such motion objects have uniform velocity and uniform
speed. You have already dealt with an object that moves in this way;
to see this look again at the graph you drew in response to Question
T1. You will notice that after about 301s the graph appears to be a
straight line, i.e. to be linear (see Figure 12). Equal changes in
position coordinate are therefore occurring in equal intervals of time.
This implies that the car is moving with constant velocity and
consequently with constant speed.
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Figure 123Expanded version of the linear
part of the position–time graph for Question
T1 (i.e. Figure 21).

If you look at the interval between 401s and 501s you can see that the
position coordinate of the car changes from 841m to 1151m at a
uniform rate. This uniform rate of change of position is

vx = 
115 − 84( ) m

50 − 40( ) s
 = 3.11m1s−1

Thus the constant velocity of the car during this part of its journey is
3.11m1s−1.

The same value of the velocity is found by considering the change of
position in any other interval of time on the same linear part of the
graph.

✦ Calculate the velocity of the car in the above example by
repeating the calculation over a different time interval, e.g. 501s to
601s.
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✦ In what way does the velocity of 3.11m1s−1 that has just been calculated differ from a speed of 3.11m1s−1?

✦ Two cars are moving along the same line at the same speed but they have different velocities vx1 and vx2.
How are the velocities related?

✦ In the case of linear motion, how can you tell by looking at a position−time graph that an object is moving
at a constant velocity?
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Figure 133See Question T4.

Question T4

Figure 13 shows the
position−time graphs for
four different bodies,
each moving with a
d i f f e r en t  cons t an t
velocity. If you assume
the position and time
scales are the same in

each case, arrange the bodies in order of increasing speed, indicate which have positive velocities, and arrange
the bodies in order of increasing velocity.3❏

The point to remember about Question T4 is that in the case of uniform motion it is the steepness or gradient of
the position–time graph that represents the velocity.

Note Gradient is a concept of crucial importance in this module. If you are in any doubt at all about how to evaluate a
gradient go back and reread Question R2 (in Subsection 1.3) and its answer. Some authors use the term ‘slope’ in place of the
term ‘gradient’.
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Figure 143Expanded version of the curved
part of the position–time graph for Question
T1 (Figure 21).

3.2 Average velocity
If you look again at your graph for Question T1, you will see that in
the interval from 01s to 201s the graph is curved. This indicates that the
velocity is changing throughout that interval. Figure 14 is an
expanded version of this part of the graph.

In this case the velocity is certainly not constant, but we can calculate
the average velocity of the car during any specified interval of time,
such as that from t1 to t2 which is of duration ∆t2=2(t22−2t1).
To determine the average velocity we use the same method as we
employed to find the constant velocity in Subsection 3.1. The average
velocity 〈 1vx1〉  over the specified time interval is obtained by dividing
the change in position coordinate ∆x = (x22−2x1) by the time interval
∆t = (t22−2t1).

  
vx = ∆x

∆t
= x2 − x1

t2 − t1
(5) ☞
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Figure 143Expanded version of the curved
part of the position–time graph for Question
T1 (Figure 21).

In Figure 14, the position changes from x12=221m to x22=2261m over
the interval from t12=251s to t22=2201s. This means that the change in
the car’s position is ∆x2=2x22−2x12=2241m over a time interval of
duration ∆t2=2t22−2t12=2151s. Using Equation 5 the average velocity
over the specified interval is 241m/151s = 1.61m1s−1.

We could have obtained this same result from Figure 14 in a slightly
different way. Having identified the two points on the curve that
correspond to the beginning and end of the interval we could have
drawn a straight line between those points and then determined its
gradient. The calculation we carried out above was simply one
particular way of evaluating that gradient, any other way would have
given the same answer. So, once again we see that a velocity1—1in
this case an average velocity1—1is represented by the gradient of a
line on a position–time graph.
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Question T5

A physics student drives at an average speed of 301mph to see a friend, who lives a distance of 601miles away
(you may take the problem as being one-dimensional!). On arrival she discovers that he has misunderstood the
arrangements and has already left to drive to visit her. She returns home, driving at an average speed of 601mph
on the return trip. What is her average velocity for the whole journey? What is her average speed? If each left
originally at the same time and his average speed is 201mph, who arrives first at her house?3❏

3.3 Instantaneous velocity
The average velocity we calculated in Subsection 3.2 does not give us any information about the car’s velocity at
any particular instant, say at a time t2=251s. Such information is provided by another quantity called the
instantaneous velocity, which may change from moment to moment. To obtain the instantaneous velocity at
t2=251s we need to find the average velocity over smaller and smaller time intervals around the instant t2=251s.

Mathematically, this process of finding a better and better approximation to the car’s instantaneous velocity at a
point by shrinking the interval ∆t over which the average is taken is said to be a limiting process; we speak of

finding the limit ☞ of the average velocity as the time interval shrinks to zero.
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If you look at Figure 15 you will see how the average velocities
(which are the gradients of lines passing through the graph at the
time of 51s) come closer to a limiting value as the time intervals
from 51s are made smaller and smaller.

Figure 153The average velocities (given by the gradients of the lines)
approach a limiting value as the time intervals from 51s get smaller and
smaller.
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Mathematically, this limiting value is denoted lim
∆t→0

∆x

∆t
, so we can say:

In linear motion, the instantaneous velocity vx at any particular time is the limit of the average velocity as
the time interval around that particular time is made smaller and smaller, i.e.

  
vx = lim

∆t→0

∆x

∆t
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Figure 163The instantaneous velocity of the car at time
t2=251s is the gradient of the tangent at the time, 51s.

As Figure 16 indicates, the limiting line that is being
approached by the lines in Figure 15, as the interval ∆t
approaches zero, is nothing other than the tangent ☞ to
the position–time graph at t2=251s. So, the limiting
velocity is just the gradient of that tangent, and it is this
gradient that gives the instantaneous velocity of the car
at t2=251s. In the branch of mathematics known as
calculus the limit of the average velocity ∆x/∆t, taken
over the time interval ∆t as the time interval tends to
zero, is written as dx/dt. (This is called the derivative of
x with respect to t and should be read as ‘dee x by
dee t.’)
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Using this piece of calculus notation we can sum up our discussion of instantaneous velocity in the following
way:

In linear motion, the instantaneous velocity vx at any particular time is given by the gradient of the tangent
to the position–time graph at that time, i.e.

  
vx = dx

dt

If you are already familiar with the techniques of calculus you will know that dx/dt is more than a convenient
way of representing the gradient of the tangent to the graph of x against t. In particular, you will be aware that if
we have an equation that allows us to work out the value of x that corresponds to any given value of t, i.e. if we
know an equation that expresses x as a function of t, then we can work out the value of dx/dt at any time
algebraically, without having to go to the trouble of plotting any graphs at all. However, whether you are
familiar with calculus or not, it is vital to remember the graphical interpretation of dx/dt in terms of the gradient
of a tangent1—1the following question should help you to do that.
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Table 233See Question T6.

Time t/s Position x1/m

0.00 0.00

0.10 0.05

0.20 0.20

0.30 0.44

0.40 0.78

0.50 1.24

0.60 1.75

0.70 2.40

0.80 3.15

Question T6
Table 2 shows position and time measurements for a ball falling from rest
under gravity. Plot the points on a position–time graph. Determine the
instantaneous velocity dx/dt at 0.201s by drawing a tangent at 0.201s and
measuring its gradient. Repeat the procedure at 0.601s. Compare these
instantaneous velocities with the average velocities over the intervals from 0.10
to 0.301s and 0.50 to 0.701s.3❏

In Section 2 it was pointed out that position–time graphs are just a special class
of displacement–time graphs. (Position is just displacement from the origin.)
In view of this you may wonder what physical significance can be attached to
dsx1/dt1—1the gradient of a tangent to a general displacement–time graph, in
which the displacement sx may be measured from any specified point. The
interpretation is in fact quite straightforward and of some significance. dsx1/dt represents the instantaneous
velocity relative to the reference point from which the displacement is measured. If the reference point is
stationary then dsx1/dt = dx/dt at any time and we learn nothing new. However, if the reference point is located on
a moving body (such as the pedestrian in Figure 8) then dsx1/dt at any time will generally differ from dx/dt.
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In this latter case in particular it is customary to refer to dsx1/dt at any moment as the (instantaneous) relative
velocity. �☞ For example, if at some moment the pedestrian in Figure 8 has an instantaneous velocity (dx1/dt)
of 11m1s–1, while that of the car (dx2/dt) is 151m1s–1, the velocity of the car relative to the pedestrian (i.e. dsx1/dt) at
that moment will be (15 – 1)1m1s–1 = 141m1s–1.

In linear motion, at any time, the instantaneous relative velocity of one body with respect to another is given
by the gradient of the tangent to the displacement–time graph, dsx1/dt, at that time, where sx is the
displacement from the first body to the second.

All velocities are really relative velocities. Just as a position x is a special kind of  displacement sx, so an
instantaneous velocity dx/dt is a special kind of instantaneous relative velocity dsx1/dt. So, if one day when out
driving you are stopped by a policeman and asked ‘how fast do you think you were travelling?’ you would be
quite justified in replying ‘relative to what?’ However, you would probably be most unwise to do so.
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4 Acceleration
The previous section introduced a velocity that changed with time. The rate at which the velocity of a body
changes with time is known as its acceleration. Since velocity is a vector quantity, the rate of change of velocity
must also be a vector quantity, the specification of which requires both a magnitude and a direction. In three
dimensions an acceleration is therefore usually denoted by a and expressed in terms of its three (scalar)
components by an equation of the form

a = (ax, ay, az1)

As usual we shall avoid dealing with this three-dimensional quantity by considering one-dimensional linear
motion in which the acceleration is entirely specified by its scalar component ax along the x-axis. The component
ax may be positive or negative. A positive value for ax corresponds to an increase in vx with time and a negative
value for ax corresponds to a decrease in vx with time. Any acceleration that causes the speed to decrease is
called a deceleration. In the case of linear motion the magnitude of the acceleration is the positive quantity
given by

a = |1ax1| (6) ☞

✦ What would be appropriate SI units for the measurement of a or ax?
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4.1 Constant acceleration
Table 3 shows the measured velocity of a falling ball at six different instants of time. Data of this kind can be
used to plot a velocity–time graph.

Table 33Velocity of a falling ball.

Time from release
t/s

Velocity of ball
vx1/m1s−1

0.0 0.00

0.2 1.97

0.4 3.93

0.6 6.10

0.8 7.81

1.0 9.80

Question T7

Use the data in Table 3 to plot a velocity–time graph for the falling ball.
(Plot the time along the horizontal axis and the velocity along the vertical
axis, and draw a smooth line through the points.)3❏

You will have noticed that your graph is a straight line. Equal changes of
velocity occur in equal time intervals, and this implies that the ball is
falling with constant acceleration or uniform acceleration. In fact, this
graph is an illustration of a well known experimental observation that,
provided air resistance can be neglected, a body falling freely from rest near the Earth’s surface increases its
velocity at a constant rate. The gradient of the line represents the rate of change of velocity, i.e. the acceleration.
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Question T8

Measure the gradient of the line you have drawn in answer to Question T7.2❏

Measurements of the magnitude of the acceleration of any falling body near the Earth’s surface, in the absence
of air resistance, give the value 9.8 1m1s−2 (to two significant figures). This quantity is known as the magnitude of
the acceleration due to gravity at the Earth’s surface (or often simply as the acceleration of gravity) and is
given the symbol g. ☞
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4.2 Average
acceleration
Figure 17 is a velocity–time
graph for the motion of the
ball in Questions T7 and T8
over a much longer period of
time. After a few seconds the
graph becomes markedly
curved, indicating that the
acceleration is no longer
constant. The velocity is still
increasing, but at a slower
rate. This illustrates the effect
of air resistance, which
becomes more significant as
the velocity increases.

Figure 173Velocity–time graph
of a falling ball.
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If we use Figure 17 we can calculate the average acceleration over a chosen period of time by means of the
method we applied to the calculation of average velocity in the previous section. This leads to the following
equation:

  
ax = ∆vx

∆t
= vx2 − vx1

t2 − t1
(7) ☞

where ∆vx2=2vx22−2vx1 is the change in vx over the interval ∆t2=2t22−2t1.

4.3 Instantaneous acceleration
In many cases we wish to know the instantaneous acceleration of a moving body, that is the acceleration at a
specific time. In Subsection 3.3 we defined an instantaneous velocity in terms of the limit of the average velocity
as the time interval shrank to zero. We may use the same ideas now to calculate the instantaneous acceleration.
Therefore we can write the following.



FLAP P2.1 Introducing motion
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

In linear motion, the instantaneous acceleration ax at any particular time is the limit of the average
acceleration as the time interval around that particular time is made smaller and smaller, i.e.

  
ax = lim

∆t→0

∆vx

∆t

We also saw in Subsection 3.3 that calculus provides a useful shorthand for limits of this kind and that at any
particular time such a limit may be interpreted graphically as the gradient of the tangent to an appropriate graph
at that particular time. In the present case we are dealing with a velocity–time graph, so the piece of calculus
notation we need is dvx1/dt, the derivative of vx with respect to t. Using this we can say:

In linear motion, the instantaneous acceleration ax at any particular time is given by the gradient of the
tangent to the velocity–time graph at that time, i.e.

  
ax = dvx

dt
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✦ What is the instantaneous
acceleration at the point
indicated in Figure 17, when

the time is 3.751s? ☞
Compare this with the average
acceleration between t2=23.51s
and 4.01s.

The acceleration you have just
found is considerably less
than g, because of the effects
of air resistance.

Figure 173Velocity–time graph
of a falling ball.
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Figure 183See Question T9.

Question T9

Figure 18 shows the velocity−time graph
of a car during a short journey along a
straight road. Determine the acceleration
dvx1/dt at 101s, 401s and 551s, and then use
this information to help you to describe the
journey in everyday language.3❏
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5 Equations of motion
In previous sections we have seen how the motion of an object such as a car or a ball, can be described and
analysed graphically. However, drawing graphs is time consuming and may be inaccurate, so it is highly
desirable that methods should be developed for describing and analysing motion algebraically (in terms of
equations), without the need for graphs. Such methods certainly exist and are explained in some detail in various
FLAP modules. The aim of this section is simply to introduce you to such algebraic descriptions in a way that
will be clearly related to the graphical descriptions you have already seen. In order to keep the discussion as
simple as possible we not only restrict ourselves to motion in one dimension but we further restrict our
considerations to moving objects that are sufficiently small and simple that they can be treated as ideal point-like
particles. Such ideal particles have mass and occupy a definite position at any time, but unlike real objects (such
as cars or balls) they cannot rotate, bend or vibrate. Their simplicity makes them ideal subjects for our
considerations, and, as it turns out, an excellent starting point from which to consider more realistic objects in
other modules.

We will now use the ideas developed in previous sections to derive equations that describe the motion of a
particle travelling either with constant velocity or with constant acceleration. We will not concern ourselves here
with the more general case of non-uniform acceleration.
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5.1 Uniform motion equations
Uniform motion (i.e. constant velocity motion) is the simplest kind of motion. It was treated graphically in
Subsection 3.1. In this subsection we are going to consider uniform motion algebraically, but our viewpoint will
be slightly different from that which we adopted earlier. The main difference is that the present treatment will
concentrate on the changing displacement of the particle from some physically defined reference point rather
than the changing position of the particle relative to an arbitrarily chosen origin. More specifically, we shall take
the position of the particle itself at time t2=20 to be the fixed reference point from which the displacement sx is
measured and we shall let ux represent the constant velocity of the particle relative to that reference point. As a
consequence of this choice of reference point we can be sure that sx 1=20 at t2=20. Moreover, since the velocity is
uniform in this case we can equate ux with the rate of change of displacement over any part of the motion.

Thus, ux = ∆sx

∆t
= sx − 0

t − 0
= sx

t
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i.e. sx = uxt (8)

Remember, this applies only if

vx = ux = constant (9)

which also has the consequence

ax = 0 (10)

Equations 8, 9 and 10 are the uniform motion equations. They make it possible to work out the displacement
from the initial position, the velocity and the acceleration of the particle at any time.
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Figure 19a shows uniform motion on a velocity–time graph. This is a very
simple graph, nonetheless it illustrates a significant (and easily
generalizable) result concerning the area under the graph between two
given times (see Figure 19b) ☞.

Question T10

Use the uniform motion equations to confirm this claim by writing down
an expression for the area under the graph between t1 and t2, and then
relating that area to the change in displacement over the same
interval.3❏

For uniform motion, the area under the velocity–time graph, between any
two times t1 and t2, is equal to the change in the displacement over that
interval.

Figure 193(a) Velocity–time graph of a particle moving with a constant velocity
ux. (b) The area under the velocity–time graph between t1 and t2. Note that if the
velocity ux is negative then the area ‘under’ the graph is also counted as negative.
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Although somewhat out of context, it is worth noting at this point that the relationship, that has just been
uncovered between the area under a velocity–time graph and the change in displacement, indicates a more
general result that applies even when the particle is accelerating and the area under the graph is not rectangular.

In linear motion, the area under a velocity–time graph, between two times t1 and t2, is always equal to the
change in displacement between those times.

5.2 Uniform acceleration equations
Inspired by our success in dealing algebraically with uniform motion let us now move on to a slightly more
difficult case, that of a particle moving with constant or uniform acceleration. Suppose such a particle has a
velocity ux at the start of its motion when t2=20, and a velocity vx at some later time t. These two velocities are
known, respectively, as the initial velocity and the final velocity. If we recall the definition of average
acceleration 〈 1ax1〉  given in Equation 7, we can write the constant acceleration ax in terms of these symbols as

  
ax = vx − ux

t
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which can be rearranged to give

vx = ux + axt (11)

This is the first of the three uniform acceleration equations (also known as the constant acceleration
equations).

When using the uniform acceleration equations, it is generally a good idea to state clearly:

o the reference point from which displacements are to be measured;

o the direction in which displacements are positive;

o the given data, expressed in terms of the symbols to be used, e.g. ax, ux, vx, t.

It is generally a bad idea to change any of these during a solution.

Question T11

A racing car moves from rest with a uniform acceleration of 9.01m1s−2 for the first 51s. Calculate the velocity of
the car after 2.51s, and then find the time taken for the car to increase its speed from 301m1s−1 to 401m1s−1.3❏
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You have probably seen advertisements for cars stating that they can accelerate from rest to 601mph in, say, 81s.
Suppose you want to work out how far the car would travel in that time, assuming that the acceleration is
uniform. You could do this if you knew the average speed of the car.

✦ What is the average speed of the car over the interval?

✦ What is the distance travelled over the interval?

For our uniformly accelerated particle we can calculate the displacement sx after a time t in this same way once
we have an expression for the average velocity. We will measure the displacement from the initial position of
the particle when the time is zero (so the initial displacement is zero) and calculate the final displacement at time
t by multiplying the average velocity by t.

✦ What is the expression for the average velocity in this case?
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Thus
    
sx = ux + vx

2
t (12) ☞

Substitution of the expression for vx from Equation 11

vx = ux + axt (Eqn 11)

gives

sx = ux + ux + axt

2
t = 2uxt + axt2

2
and hence our second uniform acceleration equation is

sx = uxt + 1
2 axt2 (13)

Try using this equation in the next question.

Question T12

A stone falls from rest with an acceleration of 9.81m1s−2. Calculate how far it has fallen after 2.01s.3❏
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Aside The next question is more difficult because it requires you to use both of the uniform acceleration equations derived so
far (Equations 11 and 13), in order to eliminate the time t, which is not given in the question.

Question T13

Calculate how fast the stone in Question T12 is moving after it has fallen through 2.01m.3❏

In answering Question T13 an expression was found for the time at the end of the interval, even though the
question did not ask for it. We could have avoided this extra effort if we had an equation which gave the final
velocity directly in terms of the acceleration and displacement, the quantities which were given in the question.
To derive such an equation we can follow the same route that was used in Question T13, but this time use
algebra to derive a general expression for the time t. We can obtain this expression by rearranging Equation 11.
Thus

  
t = vx − ux

ax
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From Equation 12, the displacement is the average velocity multiplied by this time;

so
  
sx = ux + vx

2
t (Eqn 12)

and on substitution for t this gives

  
sx = vx

2 − ux
2

2ax

This may be rearranged to give the third uniform acceleration equation

vx
2 = ux

2 + 2axsx (14)

Question T14
A car is travelling at an initial velocity of 6.01m1s−1. It then accelerates at 3.01m1s−2 over a distance of 201m.
Calculate its final velocity.3❏
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Finally, it’s important to remember that all the equations derived in this subsection apply to situations in which

ax = constant (15)

Do not make the common mistake of supposing them to work in more general situations.

5.3 Solution to the introductory problem
We will return now to the problem posed in Subsection 1.1. At this point in the module you should be able to
solve this problem. Reread the problem and then consider how you would tackle it.

According to the Highway Code, a car travelling along a straight road at 301mph (i.e. about 13.31m1s−1,
read as 13.31metres per second) can stop within 231metres of the point at which the driver sees a hazard.
This is known as the stopping distance. If the driver always takes 0.701s to react to a hazard and apply
the brakes, what is the stopping distance at 701mph (i.e. about 31.11m1s−1) assuming the same
deceleration as at 301mph?

When you have done this, have a look at the solution given below.
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We can divide the motion of the car into two stages. During the first stage, corresponding to the driver’s reaction
time, the car is travelling at a constant velocity. The second stage starts when the brakes are applied and we shall
assume the car then has a constant deceleration. The question does not tell us the value of this constant
deceleration but since it is constant and therefore doesn’t depend on the velocity of the car we can work it out
from the information we are given about the stopping distance of the car travelling at 30 mph (13.31m1s−1).

Within each stage of the motion, displacements will be measured from the position of the car at the beginning of
that stage. The direction of motion will always be the positive direction for displacements, so all velocities will
be positive and deceleration will be a constant negative acceleration in this case.

For the car travelling at 13.31m1s−1, during the first stage of its motion

vx2=2ux2=2constant2=213.31m1s−1 and t2=20.701s.

To find the displacement at the end of this constant velocity stage we can use

sx = uxt (Eqn 8)

so sx = 13.31m1s−1 × 0.701s = 9.311m
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Therefore the distance covered by the end of the reaction time is s = |1sx1| = 9.311m. Since the stopping distance at
13.31m1s−1 is 23.01m, the distance covered in the second stage must be (23.02−29.31)1m2=213.71m.

For the second stage, while the driver is braking, we thus have

ux = 13.31m1s−1, vx = 01m1s−1 and sx = 13.71m3(from the new origin)

To find ax during this constant acceleration stage we can use

vx
2 = ux

2 + 2axsx (Eqn 14)

so
  
ax = vx

2 − ux
2

2sx

= (0 − 13. 32 ) m2 s−2

2 × 13. 7 m
 = −6.461m1s−2

Now that the acceleration is known, we can apply it to the situation in which the car is travelling at 31.11m1s−1.
For the first stage of that motion

vx2=1ux2=1constant1=231.11m1s−1 and t2=20.701s

If we use the constant velocity equation sx2=2uxt we see that

sx = (31.1 × 0.70)1m = 21.81m
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For the second stage, while the driver is breaking

ux = 31.11m1s−1, vx = 01m1s−1 and ax = −6.461m1s−2

If we use the constant acceleration equation vx
2 = ux

2 + 2axsx we see that

    
sx = vx

2 − ux
2

2ax

= (0 − 31.12 ) m2 s−2

2 × −6. 46 m s−2
= 74. 9 m

The stopping distance of the car at 31.11m1s−1 is the sum of the magnitudes of the displacements in the two
stages, so

stopping distance = (21.82+274.9)1m = 96.71m

This shows that the stopping distance at 701mph is more than four times that at 301mph, which reinforces the
need to drive at a safe distance from the car in front.
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6 Closing items

6.1 Module summary
1 Space is three-dimensional, so three position coordinates (x, y, z) are required to locate any point in space

relative to the origin of a Cartesian coordinate system.

2 A vector has both magnitude and direction, and may be contrasted with a scalar which has no direction.
Vectors are often specified in terms of their components; these are scalar quantities that may be positive or
negative and which are measured along the axes of the coordinate system. Vector quantities include position
vector r = (x, y, z), displacement s = (sx, sy, sz1), velocity v = (vx, vy, vz1) and acceleration a = (ax, ay, az1).

3 The magnitude of a vector is the ‘length’ or ‘size’ of that vector. |1r1|, the magnitude of the position vector r
of a point, represents the distance from the origin of the coordinate system to that point. Magnitudes can
never be negative.

4 The displacement s from one point to another describes the difference in their positions. |1s1| is the distance
between those two points.

5 The velocity v of a particle is the rate of change of the position vector of that particle; it tells us how fast the
particle is moving and in what direction. |1v1| is called the speed of the particle.

6 The acceleration a of a particle is the rate of change of the velocity of that particle.
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7 Linear motion is motion along a straight line, though not necessarily in one direction along this line. Such
motion is one-dimensional since the position of the moving particle can be described in terms of a single
position coordinate, x.

8 The linear motion of a particle can be represented on a position–time graph, a displacement–time graph, or
a velocity–time graph. The position–time graph shows the displacement from the origin at any time, while
the displacement–time graph shows the displacement from some general reference point that may itself be
in motion or it may be the particle’s position at t = 0.

9 If the position–time graph of a moving particle is linear, that particle must be moving with constant
(uniform) velocity, i.e. with constant (uniform) speed and in a fixed direction.

10 In linear motion, the average velocity 〈 1vx1〉  over a specified time interval is

  
vx = ∆x

∆t
= x2 − x1

t2 − t1
(Eqn 5)

11 In linear motion, the instantaneous velocity vx at any particular time is the limit of the average velocity as
the time interval around that particular time is made smaller and smaller. This may be written more
compactly in terms of the derivative of x with respect to t, dx/dt, which may be interpreted graphically as the
gradient of the tangent to the position–time graph at the time in question. Thus,

  
vx = lim

∆t→0

∆x

∆t
= dx

dt
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12 In linear motion, at any time, the instantaneous relative velocity of one body relative to another is given by
the gradient of the tangent to the displacement–time graph dsx1/dt at that time, where sx is the displacement
from the first body to the second.

13 If the velocity–time graph of a moving particle is linear that particle must be moving with constant
(uniform) acceleration.

14 In linear motion, the average acceleration 〈 1ax1〉  over a specified interval is

  
ax = ∆vx

∆t
= vx2 − vx1

t2 − t1
(Eqn 7)

15 In linear motion, the instantaneous acceleration ax at a particular time is the limit of the average
acceleration as the time interval around that particular time is made smaller and smaller. This may be
written more compactly in terms of the derivative of vx with respect to t, dvx1/dt, which may be interpreted
graphically as the gradient of the tangent to the velocity–time graph at the time in question. Thus,

  
ax = lim

∆t→0

∆vx

∆t
= dvx

dt
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16 When vx = ux = constant, the uniform (linear) motion of a particle can be described algebraically using the
uniform motion equations:

sx = uxt (Eqn 8)

vx = ux = constant (Eqn 9)

ax = 0 (Eqn 10)

17 When ax = constant the uniformly accelerated (linear) motion of a particle can be described algebraically
using the uniform acceleration equations:

vx = ux + axt (Eqn 11)

sx = uxt + 1
2 axt2 (Eqn 13)

vx
2 = ux

2 + 2axsx (Eqn 14)

18 The area under a velocity–time graph, between two times t1 and t2 is equal to the change in displacement
between those times.
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6.2 Achievements
Having completed this module, you should be able to:
A1 Define the terms that are emboldened and flagged in the margins of the module.
A2 Plot position–time, displacement–time and velocity–time graphs from linear motion data.
A3 Describe the linear motion of a body, given its position–time, displacement–time or velocity–time graph, or,

conversely, sketch such graphs given a description of the linear motion of the body.
A4 Calculate the average velocity, or instantaneous velocity, or instantaneous relative velocity, as appropriate,

from a position–time or displacement–time graph.
A5 Calculate the average acceleration, or instantaneous acceleration, as appropriate, from a velocity–time

graph.
A6 Calculate the change in displacement of a particle over a given interval of time from its velocity–time graph.
A7 Derive the uniform motion and constant acceleration equations and use them to solve problems.

Study comment  You may now wish to take the Exit test for this module which tests these Achievements.
If you prefer to study the module further before taking this test then return to the Module contents  to review some of the
topics.
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6.3 Exit test

Study comment Having completed this module, you should be able to answer the following questions each of which tests
one or more of the Achievements.

Table 43See Question E1.

Time t/s Velocity vx1/m1s−1

0 0

2 5.0

4 10.0

6 14.0

8 12.0

12 8.0

17 4.0

24 2.0

30 1.0

Question E1
(A2, A4, A5  and A6)3Plot a velocity–time graph from the data given in
Table 4. From the graph determine: (a) the displacement from the initial
position after 301s, (b) the velocity at t = 101s, (c) the average acceleration
between t = 101s and t = 201s.
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Question E2

(A2 and A7)3A stone is released from rest and falls with uniform acceleration under gravity. Calculate its
displacement from its initial position over the first 31s at 0.5s intervals. For ease of calculation the magnitude of
the acceleration due to gravity may be taken to be 101m1s−2.  Use your results to plot a displacement–time graph.

If the stone were released from the top of a cliff and hit the ground at the base of the cliff 2.81s after it was
dropped, what is the height of the cliff?
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Figure 203See Question E3.

Question E3

(A3)3Write a description of the motion of a body,
illustrated by the velocity–time graph in Figure 20.
(You are not required to calculate displacements.)

Question E4

(A7)3(a) Derive an equation relating initial velocity,
final velocity, acceleration and time for a particle
moving with a constant acceleration. (b) A lorry is
travelling along a straight road at a constant velocity
of 151m1s−1 when the driver notices an obstruction in
the road 251m ahead. His reaction time is 0.401s and the
brakes can produce a deceleration of 7.01m1s−2.
Calculate whether the driver will stop the lorry in time.
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Study comment  This is the final Exit test question. When you have completed the Exit test go back to Subsection 1.2 and
try the Fast track questions if you have not already done so.

If you have completed both the Fast track questions and the Exit test, then you have finished the module and may leave it
here.
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