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1 Opening items

1.1 Module introduction
Any object that is launched into unpowered flight close to the Earth’s surface is called a projectile. Examples
include artillery shells, shot putts, high jumpers and balls in games such as tennis, football and cricket.
To a good approximation (ignoring any sideways swerve) many projectiles can be modelled as particles moving
along curved paths in a vertical plane. The motion is therefore two-dimensional and the following questions can
be asked:

What is the horizontal range of the projectile and what is the maximum height that it attains?

How long does the flight take, and what is the shape of the flight path?

How do the velocity and acceleration of the projectile vary during its flight?

This module explains how questions such as these can be answered. In doing so it also provides an introduction
to the general analysis of two-dimensional motion in terms of vectors and their (scalar) components.
In particular, Section 2 explains how vectors can be used to describe quantities such as the position,
displacement, velocity and acceleration of a projectile, and how vectors of a similar type can be added together
and algebraically manipulated.
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Section 3 investigates the equations that describe the motion of a projectile, stressing the fact that the horizontal
and vertical motions of a projectile are essentially independent, apart from having the same duration.
The equations that emerge from this investigation are used to deduce a number of general features of projectile
motion, including the shape of the projectile’s trajectory and the condition for achieving the maximum
horizontal range. Finally, in Section 4, the techniques developed earlier are used to solve a variety of two-
dimensional projectile problems, and their extension to three-dimensional problems involving arbitrary uniform
acceleration is briefly mentioned.

The following problem will give you an idea of the sort of question you will be able to answer by the end of this
module. The solution is given in Subsection 4.3.

An aircraft flies at a height of 20001m with a constant velocity of 1501m1s−1 in a straight horizontal line.
As it passes vertically over a gun a shell is fired from the gun. Find the minimum muzzle speed, u, of
the shell, and the angle φ, from the horizontal, at which the shell should be fired in order for it to hit the
plane. Take the magnitude of the acceleration due to gravity g  as 9.811m1s−2 ☞ and ignore air
resistance.

Study comment Having read the introduction you may feel that you are already familiar with the material covered by this
module and that you do not need to study it. If so, try the Fast track questions given in Subsection 1.2.  If not, proceed
directly to Ready to study? in Subsection 1.3.
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1.2 Fast track questions

Study comment Can you answer the following Fast track questions?. If you answer the questions successfully you need
only glance through the module before looking at the Module summary (Subsection 5.1) and the Achievements  listed in
Subsection 5.2. If you are sure that you can meet each of these achievements, try the Exit test in Subsection 5.3. If you have
difficulty with only one or two of the questions you should follow the guidance given in the answers and read the relevant
parts of the module. However, if you have difficulty with more than two of the Exit questions you are strongly advised to
study the whole module.

Question F1

Miss Magnificent, the human cannonball, is fired from her cannon with a muzzle speed of 181m1s−1 at an angle of
35° to the horizontal. If she is to land at the same level from which she took off, how far away from the cannon
should the net in which she wishes to land be placed? You should ignore the effect of air resistance and treat
Miss Magnificent as a point particle.
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Question F2

A particle moves in the (x, y) plane from point 1, with position (31m, 21m) to point 2, with position (71m, −11m).

(a) What are the x- and y-components of the particle’s displacement from point 1 to point 2?

(b) What is the magnitude of this displacement?

(c) What is the angle between this displacement and the x-axis?

Question F3

A shell is fired with a velocity of 2001m1s−1 at an angle of 30° above the horizontal. Find the time taken for the
shell to reach its maximum height and the magnitude and direction of its velocity after 16 s. Take the magnitude
of the acceleration due to gravity to be g = 9.811m1s−2 and ignore the effect of air resistance.
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Study comment Having seen the Fast track questions  you may feel that it would be wiser to follow the normal route
through the module and to proceed directly to Ready to study? in Subsection 1.3.

Alternatively, you may still be sufficiently comfortable with the material covered by the module to proceed directly to the
Closing items.
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1.3 Ready to study?

Study comment To begin to study of this module you will need to be familiar with the following terms or topics:
Cartesian coordinate system, cosine (as in cos1θ), gradient of a line, graph, position coordinates, Pythagoras’s theorem,
quadratic equation, SI units, sine (as in sin1θ) and tangent (as in tan1θ). It is also assumed that you have some familiarity with
concepts such as position, speed, velocity and acceleration in the context of one-dimensional linear motion and that you have
previously encountered the calculus notation dx/dt used to indicate the (instantaneous) rate of change of x with respect to t.
However, proficiency in the use of calculus is not required for the study of this module. If you are uncertain about any of
these items you can review them now by reference to the Glossary, which will also indicate where in FLAP they are
developed. The following Ready to study questions will enable you to check whether you need to review some of the topics
before embarking on this module.
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Question R1

A right-angled triangle has sides of length a, b and c. If the longest side is of length c and if the angle between
that side and side b is θ, write down Pythagoras’s theorem as it applies to this particular triangle and express the
lengths a and b in terms of c and θ.

Question R2

An object moving along the x-axis of a Cartesian coordinate system does so in such a way that its position
coordinate x changes from x = −1.01m to x = 8.01m in a time interval of 3.01s. What is the average velocity 〈 1vx1〉
of the object over the three-second interval? In what way would your answer have been different if the initial
and final values of x had been interchanged?

Question R3

A cyclist is travelling due north along a straight road at 101m1s−1 when the brakes are applied. If the brakes can
cause the speed to reduce at a constant rate of 31m1s−2, how long will it take to stop the bicycle and how far will it
have travelled in that time?
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2 Describing the motion of a projectile

Figure 14Aristotle’s idea of projectile
motion. The dots represent successive
positions of the projectile at equally
separated moments of time.

Any object that is launched into unpowered flight near the Earth’s surface
is called a projectile. A rock thrown from a hand or an arrow released
from a bow would be typical examples. The motion of a projectile has
been of interest since ancient times, but describing the motion accurately
and explaining its cause has created a great deal of difficulty. In the 4th
century BC the Greek philosopher Aristotle (384–322BC) said that when
an object is thrown it will carry on in a straight line until it runs out of
‘force’, after which it will fall down. Figure 1 illustrates his idea, which
we will soon see to be incorrect.
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Figure 24Galileo’s idea of projectile
motion. Note how the dots representing
successive positions of the projectile
bunch together near the top of the
trajectory.

In medieval times the exact paths of cannonballs and arrows were of
great interest, and it became necessary to think about them more
precisely.

In the 16th century the Italian scientist Galileo Galilei (1564–1642)
produced an accurate analysis of the flight path, or trajectory, of a
projectile, this is illustrated schematically in Figure 2.
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In this module we will be concerned only with projectiles that may be treated as particles (i.e. bodies with
negligible size and no internal structure, that may be regarded as occupying a single point in space at any
particular time). Also we will assume that during flight, projectiles move under the influence of gravity alone; in
other words we will ignore air resistance and other such effects. These restrictions may seem rather limiting, but
for many purposes the motion of quite large bodies, such as footballs and people, can often be modelled quite
successfully on this basis.

Of course, there are many problems in which these simplifications would be misleading. Real projectiles have a
finite size and this allows air resistance to influence their motion. When air resistance is large it cannot be
ignored, for example, badminton players will recognize the trajectory of a shuttlecock as being nearer to that
shown in Figure 1 than Figure 2. Also, in many ball games, such as cricket and tennis, it is possible to spin the
ball. The effect of this spin on the flow of air around the ball produces a sideways force so that the ball
‘swerves’. These phenomena are beyond the scope of this module, though it is not too difficult to extend the
ideas that are introduced here in order to accommodate them.
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2.1 Position and displacement

Study comment This subsection is mainly concerned with vector notation and deliberately parallels the development of
vectors presented in the maths strand of FLAP. If you have already studied vectors there or elsewhere you should aim to
finish this subsection very quickly, pausing only to make sure that you are familiar with the notation that will be used in this
module and that you are able to answer Questions T1 and T2. If you are unfamiliar with vectors and you feel you need a
more detailed treatment than that presented here you should consult the Glossary which will refer you to the appropriate
modules in the maths strand.

Position

A projectile represented by a point particle moving under the influence of gravity has a trajectory that is confined
to a single vertical plane. Such a projectile is said to exhibit two-dimensional motion, since its trajectory may be
adequately described using just two independent coordinate axes. In this module we will use two mutually-
perpendicular Cartesian coordinate axes for this purpose: a horizontal axis which will usually be labelled x, and
a vertical axis which will usually be labelled y. These axes meet at a point called the origin from which we can
measure the position coordinates of any point in the plane of the axes (i.e. the specific values of x and y that
determine the location of that point in the plane). So, provided we choose the directions of the x- and y-axes
appropriately, we can suppose that the motion of any projectile we wish to consider is confined to the (x, y)
plane and may be described in terms of the changing values of the projectile’s x- and y-coordinates.
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Figure 34The arrow drawn from the origin to a point such as A
represents the position vector r of that point.

Figure 3 uses a two-dimensional Cartesian
coordinate system of the sort just described to
show various points along the trajectory of a
projectile launched from the origin (the point
marked O). As usual, the dots represent
successive positions of the projectile at equally
separated moments of time. The location of any
point on the trajectory, such as the point marked
A, can be described in terms of its position
coordinates. In this particular case we can call
them xA and yA since they relate to the point A,
and we can adopt the convention of writing them
as an ordered pair (xA, yA), in which the first
value is always the x-coordinate and the second
the y-coordinate.

✦ What are the position coordinates (xA, yA) of

point A in Figure 3?
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Figure 34The arrow drawn from the origin to a point such as A
represents the position vector r of that point.

Figure 3 also indicates an alternative way of
specifying the location of a point in the (x, y)
plane. An arrow of given length and given
orientation, with its tail at the origin, will
inevitably have its tip at some specific point.
Such an arrow is called the position vector of
the point and is generally denoted by the bold
symbol r. The bold symbol is used to distinguish
the position vector (which has both magnitude
and direction) from its magnitude r which is the
distance of the point from the origin of
coordinates. A distance r doesn’t point in any
particular direction and does not specify a point;
a position vector r  has direction and does
specify a point.
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Figure 34The arrow drawn from the origin to a point such as A
represents the position vector r of that point.

Note that in order to specify the position vector r
of a particular point we must clearly define two
things:

1 the magnitude of r, which is the distance r
from the origin to the point in question;

2 the direction of r, which in two dimensions
can be described by the angle θ measured in
an anticlockwise direction from the positive
x-axis to r.

✦ Using a ruler and a protractor determine the
magnitude and direction of the position vector r
of point A. ☞
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Aside As has already been stressed, position vectors and their magnitudes may both be represented by the same letter, but the
vector is distinguished by the use of a bold typeface. This is fine in print but not of much help in work that you have to write
by hand. In order to show that a handwritten letter is supposed to represent a vector you should generally put a wavy
underline beneath it as in a~ . This sort of underline is used to indicate to a printer that whatever has been underlined should
be set in bold type.
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Figure 34The arrow drawn from the origin to a point such as A
represents the position vector r of that point.

So, we now have two different ways of
specifying the location of any point in the (x, y)
plane. We can either give the coordinates of the
point (x, y) or we can specify the point’s position
vector r by giving its magnitude and direction.
There is clearly an intimate relationship between
these two descriptions. Indeed, it is natural to use
the ordered pair of position coordinates (x, y) as
a way of identifying the position vector r  by
writing

r = (x, y) (1)

When represented in this way we say that x and y
are the components of the position vector r.
Thus, we may say that the point A in Figure 3
has the position vector, r = (7.01m, 4.21m) or,
equivalently, we may say that the x-component
of r is 7.01m, and that the y-component of r is
4.21m.
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For a two-dimensional position vector, the magnitude r is related to the components x and y by Pythagoras’s
theorem:

r = x2 + y2 (2)

where x2 + y2  indicates the positive square root of x2 + y2. Note that this relation ensures that the magnitude
of the position vector will be a positive quantity as any length must be. It is often useful to emphasize this by
using the symbol |1r1| to represent the magnitude of r. You might forget that r represents a positive quantity, but
you are unlikely to forget that |1r1| must be positive.

The direction of a position vector may also be related to its components. For the two-dimensional position vector
r = (x, y), the direction of which is specified by the angle θ, the relationship takes the form

tan θ = y

x
☞   (3)

It also follows from basic trigonometry that the horizontal and vertical components of a position vector r are

x = r1cos1θ 4and4y = r1sin1θ (4)

so r = (r1cos1θ, r1sin1θ) (5)
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Figure 44A point P with its position
vector, r.

Question T1

Figure 4 shows a point P and its position vector, r. Write down the
position coordinates of the point, P, and use those coordinates to
determine the magnitude and direction of the position vector r.4❏

Position vectors are not the only quantities with magnitude and
direction that are of interest to us in the study of projectile motion, or
indeed in physics generally. In fact, any quantity that requires both a
magnitude and a direction for its complete specification is called a
vector, and common examples that you will meet in this module
include velocity and acceleration. As you will see later, any vector may
be expressed in terms of its components though in most cases the
components will not have such a simple interpretation as the
components of a position vector.

Many physical quantities, such as mass, length, time, speed and temperature, are specified by a magnitude alone.
Such quantities are collectively called scalars. Although scalars are quite distinct from vectors it should be noted
that the components of a vector are actually scalar quantities (they are sometimes formally referred to as scalar
components for this reason).
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Thus, although it would not make sense to equate a vector (which involves direction) with a scalar (which does
not), it is possible to identify a vector with an ordered arrangement of scalars such as (7.01m, 4.21m) since it is the
agreed ordering and the predefined coordinate system that supplies the directional information.

A vector is a quantity that is characterized by a magnitude and a direction. By convention, bold typeface
symbols such as r are used to represent vector quantities. The magnitude of such a vector is represented by
|1r1| or r and is a non-negative scalar quantity. In diagrams, vectors are represented by arrows or directed line
segments. In handwritten work vectors are distinguished by a wavy underline (

~
a ) and the magnitude of a

vector is denoted |
~
a |.
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Figure 54Displacement and position vectors.

Displacement
In many projectile problems a vector quantity
that is of particular interest is displacement
which can be used to describe a change or a
difference in position. The distinction between
the position and displacement vectors can be
seen from Figure 5 in which O is the origin of a
Cartesian coordinate system from which the
changing position of a projectile can be
measured. During part of its motion the
projectile moves from P1 (with position vector
r1 = (x1, y1)) to P2 (with position vector r2 = (x2,
y2)). The corresponding change (or difference) in
the projectile’s position can be represented by
the arrow marked s in Figure 5. This is certainly
a vector quantity since it has both magnitude and
direction, but it cannot be a position vector
because its tail is not at the origin. It is in fact
the displacement from P1 to P2.
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Figure 54Displacement and position vectors.

Like all vectors, the displacement s from P1 to
P2 can be expressed in terms of its components.
These are generally denoted by sx and sy; so we
can write s = (s x , s y), where sx  and sy,
respectively, represent the differences in the x-
and y-coordinates of P1 and P2:

sx = (x-coordinate of P2) − (x-coordinate of P1)

= x2 − x1

sy = (y-coordinate of P2) − (y-coordinate of P1)

= y2 − y1

Thus, s = (sx, sy) = (x2 − x1, y2 − y1) (6)

✦

What are the components of the particular displacement shown in Figure 5? Use your answers to write the vector
as an ordered pair of components.
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The great advantage of using displacements
rather than position vectors when describing
projectile motion is that the displacement from
one point to another does not depend in any way
on where the origin of the coordinate system is
located. For instance, even if we moved the
origin of coordinates in Figure 5 from the origin
to some other point, it would still remain true
that the displacement from P1 to P2  is
s = (2.01m, −2.41m); choosing a new origin
would change the position coordinates and
position vectors of P1 and P2, but it would not
change the differences that determine sx and sy.
☞  Why is this an advantage? In projectile
problems we are usually interested in how far
the projectile has travelled (horizontally or vertically) from its launch point. If we describe the motion in terms
of displacements from the launch point rather than positions relative to the origin we will have a description
(in terms of displacements) that will be equally valid whether or not the launch point happens to be at the origin.
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In Figure 5 the launch point was at the origin,
but that won’t always be the case.

Although we have gone to some lengths to stress
the differences between position vectors and
displacements it is important to realize there are
also deep similarities. A displacement vector
provides us with a way of describing the
location of one point (such as P2) with respect to
some arbitrarily chosen reference point (such as
P1). A position vector provides us with a way of
describing the location of one point (such as P2)
with respect to a very particular reference
point1—1the origin O. Clearly, if we were to
choose O as the arbitrary reference point from
which we measured displacements then the
displacement of a point such as P2 would be
equal to its position vector. To this extent position vectors are simply a special class of displacements;
position vectors are displacements from the origin.
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Figure 54Displacement and position vectors.

2.2 Vector algebra

It is a general property of displacements that
they can be added together, though the word
‘added’ has to be interpreted in a rather special
way. For example, the projectile launched from
point O in Figure 5 will at some stage arrive at
point P1, where its displacement from O is r1,
☞  and some time later, after undergoing a
further displacement s from P1, it will arrive at
P2 where its displacement from O is r 2 .
Consequently it makes sense to say that the
result of adding the displacement s to the
displacement r1, is the displacement r 2 .
More formally we say that r2 is the vector sum
or resultant of r1 and s and we write

r2 = r1 + s
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Figure 64The triangle rule for
adding vectors. Note the directions of
the arrows: the diagram would be
incorrect if any one, or any two of
the arrows were reversed.

The operation of adding vectors together is called vector addition, the
process is not restricted to displacements but it can only be applied to
vectors of ‘similar type’, e.g. we can add a velocity to a velocity, or an
acceleration to an acceleration, but we cannot add a velocity to an
acceleration.

A vector sum such as r1 + s looks a lot like an ordinary (scalar) sum, but it
is really quite different because the directions of the vectors must be taken
into account as well as their magnitudes. When thinking about vector
addition you should have in mind a picture something like that shown in
Figure 6, the essential features of which are described by the following rule:

The triangle rule for adding vectors:

Let a  and b be vectors of similar type represented by appropriate
arrows (or directed line segments). If the arrow representing b is drawn
from the head of the arrow representing a, then an arrow from the tail
of a to the head of b represents the vector sum c = a + b.

✦ If c = a + b, will it necessarily be the case that |1c 1| = |1a1| + |1b1|?
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Although it is helpful to have a picture in mind when thinking about vector
addition, it is usually easier to perform such additions with the aid of
components. For instance, looking at Figure 6 you should be able to
convince yourself that if a = (ax, ay), b = (bx, by) and c = (cx, cy) then the
vector equation a + b = c may be written in the form

(ax, ay) + (bx, by) = (cx, cy)

where cx = ax + bx

and cy = ay + by

In other words,

To add together vectors a  and b , simply add the corresponding
components so that:

a + b = (ax, ay) + (bx, by) = (ax + bx, ay + by) (7)

✦ If c = a + b, where a = (1.61m, −5.51m) and b = (−1.61m, 5.31m), express c in terms of its components and
describe its direction in words.
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Apart from adding vectors another useful mathematical operation that can be carried out is that of multiplying a
vector by a scalar. This is called scaling and may be defined in the following way

To multiply a vector a by a scalar λ, simply multiply each component of a by λ so that:

λa = λ(ax, ay) = (λax, λay) (8)

The result of scaling a by λ  is to produce a vector λa of magnitude |1λa1| = |1λ1|1|1a1| that points in the same
direction as a if λ  is positive, and in the opposite direction to a  if λ  is negative. So, for example, given a
displacement a, the scaled vector 2a would be twice as long and would point in the same direction, and the
scaled vector −a = (−1)a would have the same length as a but would point in the opposite direction (i.e. it
would be antiparallel) to a.

✦ If a = (−71m, 41m) and b = (−11m, 21m) what are the components of the vector a − 4b?
What is the magnitude of a − 4b?
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Now that you know how to add and scale
vectors you should be able to rearrange vector
equations. For instance, referring back to Figure
5 and recalling that r1 = (x1, y1), r2 = (x2, y2) and
s = (x2 − x1, y2 − y1), it is easy to see that the
vector equation r2 = r1 + s can be rearranged to
give a purely vectorial definition of
displacement:

s = r2 − r1

Given the rule for adding vectors, it should be
pretty clear what we mean by a vector
difference such as r2 − r1 but if you are in any
doubt just regard the vector difference as the
sum of r2 and the scaled vector (−1)r1. It then
follows from the above definitions that

s = r2 − r1 = (x2, y2) − (x1, y1) = (x2 − x1, y2 − y1) (9)
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As you can see, vector equations can be treated very much like ordinary equations as far as rearrangements are
concerned, though you should keep in mind the directional nature of vectors so that you avoid trying to do
something silly like dividing by a vector.

Another possible rearrangement of r2 = r1 + s is

 r2 − r1 − s = 0

where 0 = (0, 0) represents the zero vector which has zero magnitude. (Note that a vector cannot be equal to a
scalar, so you should always write a − a = 0 rather than a − a = 0.)

Question T2

A body moves from a point A, with position coordinates (41m, 21m), to a point B, with position coordinates
(71m, −3 m). What is the magnitude and direction of this displacement? Check your answers by drawing a scale
diagram.4❏
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Figure 54Displacement and position vectors.

2.3 Velocity in projectile motion

Let us return yet again to the kind of projectile
motion shown in Figure 5, but let us now
associate values of the time with various points
in the motion. In particular suppose that at time t
the projectile passes through a point P with
position vector r = (x, y), and that a short time
later, at t + ∆ t, the projectile arrives at a point
with position coordinates (x + ∆x, y + ∆y). ☞
We can then represent the change in position
over the short time ∆t by the displacement
vector ∆r  = (∆x , ∆y) and we can define the
average velocity 〈 1v1〉  of the projectile as it
moves between the two points by

  
〈 v 〉 = ∆r

∆t
= 1

∆t
(∆x, ∆y) = ∆x

∆t
,
∆y

∆t




 (10) ☞
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Note that the operation of dividing the two-dimensional displacement ∆r by ∆t really amounts to scaling ∆r by
1/∆t, so the resulting average velocity is another two-dimensional vector that points in the same direction as ∆r.
The x-component of 〈 1v1〉  is given by ∆x/∆t and represents the average rate of change of the x-coordinate of the
projectile, while the y-component, ∆y/∆t, represents the average rate of change of the projectile’s y-coordinate.
This definition of the average velocity vector provides the natural two-dimensional generalization of the
definition given elsewhere in FLAP for average velocity in one-dimensional (linear) motion. In effect the two-
dimensional velocity can be regarded as the result of two independent linear velocities, one in the x-direction
and the other in the y-direction.

In practice we often need to know the velocity of a projectile at a particular instant, rather than the average
velocity over some specified interval. This instantaneous velocity v is also a vector quantity, the components of
which, vx and vy, can be found by considering the corresponding components of average velocities taken over
smaller and smaller intervals around the time in question. In mathematical terms we can indicate that the
instantaneous velocity is a limiting case of the average velocity as the time interval ∆t becomes vanishingly
small by writing

  
v = lim

∆t→0

∆r
∆t





 = lim

∆t→0

∆x

∆t
,
∆y

∆t




 = lim

∆t→0

∆x

∆t




 , lim

∆t→0

∆y

∆t












(11)
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Now, if you are familiar with calculus you will know that limits of this kind are represented symbolically by
derivatives, so we have

  
v = dr

dt
= dx

dt
,
dy

dt




 (12)

and since we can write v = (vx, vy) we can see that

  
vx = dx

dt
4and4

  
vy = dy

dt

Whether you are familiar with calculus or not ☞, you should be able to appreciate that these final equations
have a simple graphical interpretation. If you were to draw a graph showing how the x-coordinate of the
projectile changed with time (i.e. an x  against t graph) then the gradient (i.e. slope) of that graph at any
particular value of t would represent the instantaneous velocity component vx at that time. Similarly, the gradient
of a y  against t graph at any particular value of t would represent the value of vy at that time. Thus, each
component of the projectile’s instantaneous velocity represents the instantaneous rate of change of the
corresponding component of the projectile’s position vector.



FLAP P2.2 Projectile motion
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

x/m

y/m

0

vy

vx

v

φ

Figure 74The instantaneous velocity v = (vx, vy) of a projectile is
tangential to the trajectory at any point.

It follows that the instantaneous velocity itself is
the instantaneous rate of change of the position
vector and at any particular time it is tangential to
the trajectory (see Figure 7).

In discussing the velocity ☞ of a projectile we
have, so far, emphasized the use of components
but, as you know, a vector can also be
characterized by its magnitude and direction.
The magnitude of the (instantaneous) velocity v
is called the (instantaneous) speed and may be
represented by v or |1v1|: it is of course a scalar
quantity and it can never be negative. Thus, it
makes perfectly good sense to say that the
velocity component vy = −2.41m1s−1, but it would
be utter nonsense to say that the speed v had the
same value. For the two-dimensional motion of a
projectile, the direction of the velocity v can be
described by the angle φ (measured in the anticlockwise direction) between the positive x-axis and the velocity
vector (see Figure 7).
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So, given a velocity v we can write down the following relationships

v = (vx, vy)

with     v = |v | = vx
2 + vy

2 4and4
  
tan φ =

vy

vx

or vx = v1cos1φ 4and4vy = v1sin1φ

Study comment Notice that in Figure 7 we have used φ to represent the angle between v and the x-axis, whereas in
Figure 3 we used θ to represent the angle between r and the x-axis. In problems involving projectile motion we must be
careful never to confuse these two angles, which are usually quite different. In this module we will reinforce the distinction
by always using the appropriate symbol for each angle.

Question T3

Find the magnitude and direction of a velocity which has an x-component, vx, of 81m1s−1 and which has a y-
component, vy, of 101m1s−1.4❏
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Figure 84Successive positions of a projectile at intervals of 0.11s.

Figure 8 is an enlarged version of Figure 3,
without the position vector. We can use this
diagram to investigate the motion of the
projectile in the x- and y-directions. The dots
represent successive positions of the projectile at
intervals of 0.11s.

Question T4

Using Figure 8, measure the x-component of the
displacement between the first and second,
second and third, eighth and ninth, fourteenth
and fifteenth, and sixteenth and seventeenth dots.
What do your answers suggest about the x-
component of the projectile’s velocity?4❏

It seems from the solution to Question T4 that the horizontal component of the velocity of a projectile is
constant.
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Figure 84Successive positions of a projectile at intervals of 0.11s.

We can also use Figure 8 to try to acquire
information about the vertical component of the
velocity of a projectile.

Question T5

Using Figure 8, measure the y-component of
displacement between the same points as in
Question T4. What do these values suggest about
the y-component of the projectile’s velocity?4❏

From the solution to Question T5, the vertical
component of the velocity, vy, is not constant.
Its value is positive at the launch point but
decreases as the projectile ascends, v y  = 0
momentarily when the projectile reaches its

maximum altitude and thereafter vy is negative and decreasing until the projectile hits the ground. Clearly, if we
want to describe the velocity of the projectile more precisely we need some way of describing the rate of change
of this vertical component of velocity; that is the function of the next subsection.
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2.4 Acceleration in projectile motion
Just as we can use a two-dimensional velocity to describe the rate of change of position of the projectile so we
can use a two-dimensional instantaneous acceleration to describe the rate of change of the projectile’s velocity.
So, if the velocity of the projectile changes from v at time t, to v + ∆v at time t + ∆t, we can say that the
instantaneous acceleration at time t is

    
a = lim

∆t→0

∆v
∆t





 = lim

∆t→0

∆vx

∆t
,
∆vy

∆t






= lim
∆t→0

∆vx

∆t




 , lim

∆t→0

∆vy

∆t
















or, in terms of derivatives

    
a = dv

dt
= dvx

dt
,
dvy

dt






(13)

In terms of components, a = (ax, ay)

where
  
ax = dvx

dt
4and4

  
ay =

dvy

dt
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As usual we can interpret these equations graphically: the value of ax at any particular time is given by the
gradient of the vx against t graph at that particular time, and similarly for vy.

✦ Express the magnitude of the instantaneous acceleration a in terms of its components ax and ay, and then
express the components in terms of the magnitude and the angle ψ  ☞ from the positive x-axis to a.

In what follows we will generally refer to the instantaneous acceleration simply as the acceleration.

You learned in the last subsection that one characteristic of projectile motion is that the horizontal component of
velocity, vx, is constant. This means that the rate of change of vx must be zero and consequently ax = 0.

You also learned that the vertical component of the velocity changes continuously throughout the motion.
Careful measurements would show that in the absence of air resistance vy decreases at a constant rate. In other
words, throughout the motion the vertical component of velocity is reduced by equal amounts ∆vx in equal
intervals of time ∆t, irrespective of when those intervals begin and end. It follows that the vertical component of
acceleration is a negative constant which we can write as ay = −g. Since this vertical component of acceleration
is caused by the action of gravity on the projectile we say that the constant g  is the magnitude of the
acceleration due to gravity.
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The value of g varies from place to place over the Earth’s surface, but it is generally about 9.81m1s−2 and is
usually taken to be 9.811m1s−2 throughout the UK. It describes the acceleration with which all objects near the
surface of the Earth fall, so long as they are not impeded appreciably by air resistance.

Combining the observations that ax = 0 and ay = −g we have:

a = (ax, ay) = (0, −g) (14)

and a = |1a1| = g

It is this particular acceleration that characterizes a projectile near the Earth’s surface (in the absence of air
resistance).

✦ If you were to measure the speed of a projectile at two different times separated by an interval of one second
would you always expect them to differ by about 9.8 1m1s−1? If not, under what conditions would you expect the
speeds to differ by about 9.81m1s−1. (As usual, ignore air resistance, but think carefully!)
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2.5 The independence of x- and y-motions for projectiles
As we have seen in Subsections 2.2 and 2.3:

The two key features of projectile motion are:

1 A constant horizontal velocity component, vx (since ax = 0).

2 A constant acceleration a of magnitude g = 9.811m1s−2 directed vertically downwards, 
i.e. ay = −9.811m1s−2, if upwards is taken as the direction of increasing y.

These two features will help you to solve a vast range of projectile problems provided you keep one other
principle in mind:

The horizontal and vertical motions of a projectile must have the same duration, but are otherwise
independent of one another and can be treated as two separate one-dimensional (linear) motions.

The idea that movement in the x-direction is independent of movement in the y-direction may sound simple and
obvious, but many students find it somewhat counter-intuitive and are led into making simple mistakes by
forgetting it. The following question is one that many who have not been forewarned might get wrong.
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✦ Suppose you have two identical bullets and you drop one while firing the other horizontally from a high
velocity rifle. Which bullet will hit the ground first? (Ignore air resistance, as usual.)

3 Applying the equations of motion

3.1 Horizontal motion
In Subsection 2.4 we saw that a projectile does not experience any acceleration in the horizontal direction. So, in
terms of our usual Cartesian coordinate system

ax = 0 (15)

It follows that the x-component of the projectile’s velocity, vx, is constant and will therefore be equal to its initial
value at the launch point. So, if this initial value of the horizontal velocity component is denoted by ux, we can
write

vx = ux (16)
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It follows from this that if the projectile is launched at time t = 0, then at time t the x -component of its
displacement from the launch point will be

sx = uxt (17)

ax = 0 (Eqn 15)

vx = ux (Eqn 16)

Equations 15, 16 and 17 are called the uniform motion equations. They are introduced elsewhere in FLAP in
the context of one-dimensional (linear) motion, but they are also relevant here because of the independence of
the horizontal and vertical motions, and the lack of horizontal acceleration.
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3.2 Vertical motion
In Subsection 2.4 we also stressed that the vertical motion of a projectile is determined by the constant vertical
acceleration due to gravity. So, in terms of our usual Cartesian coordinate system

ay = −g (18)

Since this implies that the vertical component of velocity vy decreases at a constant rate from its initial value uy
we can say that at time t after launch

  vy = uy − gt (19)

Now, since vy is decreasing at a constant rate, its average value between the moment of launch (t = 0) when it
has the initial value uy and any later time t when it has the final value vy will be 〈 1vy1〉  = (uy + vy)/2. It follows that
at time t the vertical component of the projectile’s displacement from its launch site will be

  
sy = 〈vy 〉t =

uy + vy

2






t =
uy + uy − gt

2






t

where Equation 19 has been used to eliminate vy in the last step. Thus

sy = uyt − 1
2 gt2 (20)
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We can relate vy to sy by first squaring both sides of Equation 19

  vy = uy − gt (Eqn 19)

to obtain

  
vy

2 = uy
2 − 2uygt + g2t2 = uy

2 − 2g uyt − 1
2

gt2





and then using Equation 20

sy = uyt − 1
2 gt2 (Eqn 20)

to replace the expression in brackets by sy. Thus

  vy
2 = uy

2 − 2gsy (21)

Equations 19, 20 and 21 (together with Equations 15, 16 and 17) are the main equations used to solve projectile
problems.
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Equations 19, 20 and 21 are in fact a special case (corresponding to ay = −g) of the uniform acceleration
equations introduced elsewhere in FLAP

  vy = uy + ayt (22)

sy = uyt + 1
2 ayt2 (23)

  vy
2 = uy

2 + 2aysy (24)

These are slightly more general than Equations 19, 20 and 21 since they apply for any constant value of ay,
though it should be noted that they do not describe more general situations in which ay varies with time or
position. We will return to Equations 22, 23 and 24 later since, together with Equations 15 to 17, they will allow
us to extend our treatment of projectile problems to cover any form of two-dimensional motion where there is
uniform acceleration along the y-axis and no acceleration along the x-axis.

When using any of Equations 15 to 24 it is important to remember that the displacements sx and sy are measured
from the position of the body at time t = 0.

Question T6

A ball is thrown vertically upwards with a velocity of 20 1m1s−1. How long will the ball take to reach the highest
point before it begins to fall and what is this maximum height above the point of launch ? 
(Assume g = 9.811m1s 

−2.)4❏
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3.3 The trajectory of a projectile
The shape of a projectile’s trajectory may be specified in a number of ways, for example Equations 17 and 20
express the displacement components sx and sy in terms of the time t since launch1—1thus providing a parametric
description of the trajectory. However, a more informative specification may be obtained by expressing sy
directly in terms of sx. We can derive this relationship by eliminating t from Equations 17 and 20 as follows.

From Equation 17 t = sx

ux

Substituting this into Equation 20 gives us

sy = uy
sx

ux







− 1
2

g
sx

ux







2

This equation can be rearranged to give

sy =
uy

ux

sx − g

2ux
2

sx
2 (25)
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Any projectile, launched with speed u  at an angle φ to the x-axis, will initially have velocity components
ux = u1cos1φ and uy = u1sin1φ, so Equation 25

sy =
uy

ux

sx − g

2ux
2

sx
2 (Eqn 25)

becomes

sy = u sin φ
u cos φ

sx − g

2u2 cos2 φ
sx

2 = sx tan φ − g

2u2 cos2 φ
sx

2 (26)

Since u and φ are constants we can write Equation 26 in the form

sy = Asx − Bsx
2 (27)

where A and B are constants. Equations 25 and 27 show that sy is a quadratic function of sx, and imply that the
graph of sy against sx will have the shape known as a parabola. The projectile trajectories shown in Figures 3, 5
and 8 were all parabolas.

A projectile moving near the Earth, under the influence of gravity alone, follows a parabolic trajectory.☞
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3.4 The range of a projectile
Archers, gunners and cricketers often want to know how to maximize the range of a projectile, i.e. the
horizontal distance between the launching and landing points. This can be easily deduced from Equation 25 (or
26) if the launching and landing points are at the same vertical height because under these conditions the final
vertical displacement will be sy = 0 and Equation 25 will give

0 =
uy

ux

sx − g

2ux
2

sx
2 (Eqn 25)

i.e.
uy

ux

sx = g

2ux
2

sx
2

One solution to this equation is sx = 0, which corresponds to the launching of the projectile. However, this
mathematical solution is not of much physical interest. The solution we want (corresponding to the landing of
the projectile) has sx ≠ 0. We can therefore divide both sides of the equation by sx and rearrange to obtain

sx =
2uyux

g



FLAP P2.2 Projectile motion
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

R

φ

u

Figure 94The range of a thrown ball.

This value of sx is the horizontal displacement from
the point of projection (the launch) to the landing
point.

The magnitude of this displacement is the range, R.
Therefore

R =
2uyux

g
(28) ☞

We are now in a position to consider a problem which
is of interest to cricketers or rounders players.
At what angle to the horizontal, φ , should a fielder
throw a ball to achieve maximum range?

Figure 9 defines the range
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Figure 104Maximizing the range of a projectile.

while Figure 10 shows the effect on
the range of varying the angle of
projection. If the ball is thrown too
steeply it achieves plenty of height
but very little range. On the other
hand, if it thrown at too shallow an
angle, gravity will pull the ball
down before it has chance to travel
far. There must be some
intermediate value of φ at which the
maximum range is achieved.

To simplify the problem, we will
assume that the ball is thrown from
ground level at the same speed
whatever the angle and that air
resistance is negligible.
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Suppose the ball is thrown with an initial velocity u at an angle φ to the horizontal, achieving a range R.
The initial (and subsequent) horizontal component of velocity is ux = u1cos1φ and the initial vertical component of
velocity is uy = u1sin1φ. Substituting these values into Equation 28

R =
2uyux

g
(Eqn 28)

gives us

R = 2u2 sin φ cos φ
g

(29)

Using the trigonometric identity

21sin1φ1cos1φ = sin1(2φ) ☞

Since u2 and g are positive quantities we can write Equation 29 as

R = u2

g
sin (2φ ) (30) ☞
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✦ Assuming φ is between 0° and 180°, what are the greatest and least values that sin1(2φ) can have, and hence
what is the maximum range?

We now need to find the angle of projection, φ, which produces the maximum range.

✦

What is the value of φ that gives the maximum range? ☞

A projectile moving near the Earth, under the influence of gravity alone, achieves maximum horizontal
range when launched at 45° to the horizontal. ☞

For the flight of many objects, such as would be used in cricket or in putting the shot, these assumptions are
fairly good.
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Question T7

In the 1976 Olympic Games the shot-putting event was won with a throw of 21.321m. Assuming that the shot
was thrown from ground level at the optimum angle (45°), calculate the speed at which it was projected, making
use of the formula for range. (Assume g = 9.811m1s−2.)4❏

In the next section you will learn how to solve similar problems in a more fundamental way, without resorting to
the range formula.
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4 Solving projectile problems
Using the ideas developed in the previous two sections you should be able to solve almost any projectile
problem. It is particularly important to remember that:

In projectile motion, the horizontal component of velocity is constant and the vertical component of
acceleration is constant. ☞

The usual strategy for dealing with projectile problems is as follows:

1 Express the initial velocity u in terms of its horizontal and vertical components ux = u1cos1φ and uy = u1sin1φ.

2 Treat each component of the motion as an example of one-dimensional (linear) motion: one along a
horizontal line at a constant velocity, vx, and the other along a vertical line at a constant acceleration −g,
(assuming vertically upwards to be the direction in which y increases).

3 Link the two component motions together by means of the total time of flight, T, which must be the same
for each.
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4.1 Some examples of projectile motion
Before you tackle a projectile problem on your own, here is a worked example.

Example 1 A cannon points at 60° above the horizontal and fires a ball from ground level with a muzzle
speed of 20.01m1s−1. Find the horizontal range R, the maximum height h and the time of flight T. Neglect air
resistance.

Solution4Using the strategy described above to solve this problem, we will first find the horizontal and vertical
components of the initial velocity, ux and uy, respectively.

ux = (20.0 × cos160°)1m1s−1 = 10.01m1s−1

and uy = (20.0 × sin160°)1m1s−1 = 17.31m1s−1

We can now make use of the two properties of projectile motion.
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Horizontal motion4The displacement sx is given by Equation 17

sx = uxt (Eqn 17)

The horizontal range R can be found from this equation by putting t = T, (where T denotes the time of flight) and
taking the modulus.

Therefore R = |1uxT1| (31)

We can find T by considering the vertical motion.

Vertical motion4When the ball lands on the ground at the end of the flight t = T and the final vertical
displacement is sy = 0. So, upon substituting sy = 0 and t = T into

sy = uyt − 1
2 gt2 (Eqn 20)

we have

0 = uyT − 1
2 gT 2 = T uy − 1

2 gT( )
This is a quadratic equation and therefore has two solutions ☞. These are

T = 0  and  T =
2uy

g
= 2 × 17.3m s−1

9.81m s−2
= 3.53s (32)
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The first solution, T = 0, is the time the ball leaves the cannon; the second solution corresponds to the ball hitting
the ground again and this is the time we need to find the range R.

Now that we have found the time of flight we can substitute this value for T into Equation 31,

R = |1uxT1| (Eqn 31)

giving R = |1uxT1| = 101m1s−1 × 3.531s = 35.31m.

When the ball is at its maximum height, sy = h, and the vertical component of velocity is momentarily zero, so vy
= 0. We can substitute these values into Equation 21

  vy
2 = uy

2 − 2gsy (Eqn 21)

to give the maximum height

0 = uy
2 − 2gh

i.e. h =
uy

2

2g
= (17.3m s−1)2

2 × 9.81m s−2
= 15.3m4❏
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Now apply this strategy yourself to the next two questions.

Question T8

A cannon standing on the top of a cliff, 401m high, fires a cannonball horizontally out to sea with a muzzle speed
of 1401m1s−1. How far out to sea does the ball go? (Assume g = 9.811m1s−2.)4❏

Question T9

A golf ball is hit on level ground so that it leaves the ground with an initial velocity of 40.01m1s−1 at 30° above
the horizontal. Find the greatest height reached by the ball, the total time of flight of the ball and the range of the
shot. Neglect air resistance and assume g = 9.811m1s−2.4❏
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4.2 The vector equations for motion with uniform acceleration

Study comment This subsection develops vector expressions for the equations of motion of a projectile. Familiarity with
these expressions is not necessary in order to meet the achievements of this module, but they may help you to become more
familiar with the use of vectors.

As indicated earlier, the methods developed in this module cannot only solve projectile problems, but any
problem involving motion in two dimensions in which there is constant acceleration (including zero
acceleration). So far, we have always chosen our axes so that there is no acceleration in the x-direction, and
consequently ax = 0. When dealing with the general vector equations of uniformly accelerated two-dimensional
motion, it does no harm to consider a more general case in which the x- and y-axes point in arbitrary directions
in the plane of motion. In this general, case there will be uniform acceleration along both axes, so applying
Equations 22, 23 and 24 in each case

vx = ux + axt (33)

and vy = uy + ayt (Eqn 22) ☞
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We can write these as a single vector equation by using the rules for adding and scaling vectors that were
introduced in Subsection 2.1

v = (vx, vy) = (ux + axt, uy + ayt) = (ux, uy ) + (ax, ay)t

i.e. v = u + at (34)

and in the same way we can write

sx = uxt + 1
2 axt2 (35)

and sy = uyt + 1
2 ayt2 (Eqn 23)

as the single vector equation4  s = ut + 1
2 at2 (36)
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The two-component equations

  vx
2 = ux

2 + 2axsx (37)

and   vy
2 = uy

2 + 2aysy (Eqn 24)

can be summed to give

  v
2 = vx

2 + vy
2 = ux

2 + uy
2 + 2(axsx + aysy )

which can be combined into a single equation

v2 = u2 + 2a1·1s (38)

where the symbol a1·1s represents the scalar product of the vectors a  and s which (in two dimensions) is
defined by

a1·1s = axsx + aysy ☞
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Note that it follows from this definition that the scalar product of two vectors is a scalar, so that Equation 38

v2 = u2 + 2a1·1s (38)

is actually a scalar equation even though it is expressed in terms of vectors. It is also worth noting that the
squared magnitudes v2 and u2 that appear in Equation 38 could both be expressed as scalar products since

  v
2 = vx

2 + vy
2  = (v1·1v)4and4 u2 = ux

2 + uy
2  = (u1·1u)

v = u + at (Eqn 34)

  s = ut + 1
2 at2 (Eqn 36)

Now, Equations 34, 36 and 38 are not frequently used, indeed Equation 38 actually scrambles together some of
the information that is contained in Equations 24 and 37.

and   vy
2 = uy

2 + 2aysy (Eqn 24)

  vx
2 = ux

2 + 2axsx (Eqn 37)
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Nonetheless, the vector equations do emphasize the remarkable power of vectors. In particular, if we were asked
to solve a three-dimensional problem in which a particle was free to move with components in three
independent directions simultaneously (call them x, y and z), subject to constant acceleration in any direction, we
could immediately say that Equations 34, 36 and 38

v = u + at (Eqn 34)

  s = ut + 1
2 at2 (Eqn 36)

v2 = u2 + 2a1·1s (Eqn 38)

will describe the motion provided we interpret s, u , v  and a as three-dimensional vectors which can be
represented by ordered triples such as s = (sx, sy, sz), u = (ux, uy, uz) and so on, and a 1·1s is the three-
dimensional scalar product defined by

a1·1s = axsx + aysy + azsz

So, vectors make it easy to write results in a form that is readily generalized to the three dimensions of the real
world and are therefore of great value in physics.
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Question T10

A puck is moving along the y-axis on an ice-rink (so that friction is negligible) at a speed of 101m1s−1. We define
the y-axis along the surface of the rink, in the direction of the original motion of the puck. The x-axis is also on
the surface of the rink and perpendicular to the y -axis. If the puck is subjected to an acceleration
a = (21m1s−2, 0, 0) for 51s, in what direction will it finally be moving? At the end of the acceleration, what is the
displacement of the puck from its position at the start of the acceleration?4❏
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4.3 Solution to the introductory problem

Study comment This subsection contains the solution to the problem that was posed in Subsection 1.1. You should reread
the problem and attempt to answer it before you work through the solution below.

We require the minimum muzzle speed. This corresponds to the launch velocity that will just enable the shell to
reach the height of the aircraft. This means that the shell’s maximum height must equal the height at which the
aircraft is flying. Since the shell is fired when the aircraft is directly overhead, the horizontal component of the
muzzle velocity must equal the horizontal velocity of the aircraft, so that it arrives at the aircraft’s height with
the correct horizontal displacement.

First consider the vertical motion. The vertical component of the initial velocity, uy is u1sin1φ and the vertical
acceleration, ay is −9.811m1s−2. At the top point of the motion the displacement, sy is 20001m and the vertical
component of velocity, vy is 01m1s−1.

Using   vy
2 = uy

2 − 2gsy (Eqn 21)

we have 0 = u21sin21φ − 2gsy

so u21sin21φ = 2gsy = 2 × 9.811m1s−2 × 20001m = 3.92 × 104 1(m1s−1)2 (39)
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Now consider the horizontal motion. The horizontal constant velocity, vx is equal to the horizontal component of
the launch velocity, that is u1cos1φ. To keep pace with the aircraft this must equal 1501m1s−1.

Therefore u1cos1φ = 1501m1s−1

and u21cos21φ = 2.25 × 1041(m1s−1)2 (40)

If we add Equations 39 and 40 we obtain

u21sin21φ = 2gsy = 2 × 9.811m1s−2 × 20001m = 3.92 × 104 1(m1s−1)2 (Eqn 39)

u2(sin21φ + cos21φ) = (3.92 + 2.25) × 1041(m1s−1)2

Using the trigonometric identity

sin21φ + cos21φ = 1

we find u2 = 6.17 × 1041(m1s−1)2

so u = 2481m1s−1
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Now we need to find the launch angle φ. If we divide each side of Equation 39 by the corresponding side of
Equation 40

u21sin21φ = 2gsy = 2 × 9.811m1s−2 × 20001m = 3.92 × 104 1(m1s−1)2 (Eqn 39)

u21cos21φ = 2.25 × 1041(m1s−1)2 (Eqn 40)

we find

sin2 φ
cos2 φ

= tan2 φ = 3.92 × 104 (m s−1)2

2.25 × 104 (m s−1)2
= 1.74

which gives φ = arctan1(1.32) = 52.9°

For the shell to hit the aircraft, it should be fired with a minimum speed of 2481m1s−1 (at an angle of 52.9° to the
horizontal). It is worth noting that since vx is equal to the speed of the aircraft, the shell will be travelling
vertically beneath the plane until it hits! On impact, the velocities of aircraft and shell will be identical
(vx = 1501m1s−1, vy = 0) and so the relative velocity between the two will be zero. Any damage to the aircraft will
be due to the explosive charge, not the impact itself.
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5 Closing items

5.1 Module summary
1 A projectile is an object that is launched into unpowered flight near the Earth’s surface.

2 Some projectiles can be adequately represented by point particles that move under the influence of gravity
alone. In this approximation the flight of a projectile is an example of two-dimensional motion under
constant acceleration.

3 The location of a point in a plane can be specified by its position coordinates (x , y) relative to a two-
dimensional Cartesian coordinate system, or by its two-dimensional position vector, r. The position vector

of a point can be specified in terms of its magnitude r = |1r1| (which represents the distance from the origin to
the point) and its direction as given by the angle θ measured anticlockwise from the positive x-axis to r.
The position vector of a point can also be specified in terms of its components which are equal to the

position coordinates of the point, thus we can write r = (x, y) with   r = |r | = x2 + y2  and tan1θ = y/x.
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4 The displacement from a point with position vector r1 = (x1, y1) to a point with position vector r2 = (x2, y2)
is defined by the vector quantity s = r2 − r1 = (x2 − x1, y2 − y1) and represents a change or difference in
position. Unlike position vectors, displacements in a given system of coordinates are independent of any
particular origin and may be measured from any selected reference point. In projectile motion the
displacement of the projectile is usually measured from its launch point.

5 In general, vector quantities require both a magnitude and a direction for their complete specification and
may be contrasted with scalar quantities which can be specified by a magnitude alone. In two-dimensions
any vector v may be represented by an ordered pair of (scalar) components (vx, vy); the magnitude of v may

then be written     v = |v | = vx
2 + vy

2 , and its direction may be specified by the angle φ given by tan1φ = vy1/vx.

Under these circumstances vx = v1cos1φ and vy = v1sin1φ.
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6 Given two vectors of similar type the operation of vector addition allows us to add them graphically using
the triangle rule or algebraically using

a + b = (ax, ay) + (bx, by) = (ax + bx, ay + by) (Eqn 7)

The operation of scaling allows us to multiply any vector by a scalar to produce another vector according to

λa = λ(ax, ay) = (λax, λay) (Eqn 8)

This has magnitude |1λ1|1|1a1| and points in the same direction as a if λ  is positive, and in the opposite
direction if λ is negative.

7 The velocity, v, and acceleration, a, of a particle moving in two dimensions are vector quantities that are
defined as follows:

    
v = (vx ,vy ) = dr

dt
= dx

dt
,
dy

dt




 (Eqn 12)

    
a = (ax , ay ) = dv

dt
= dvx

dt
,
dvy

dt







(Eqn 13)

The magnitude of the velocity is called the speed and cannot be negative.
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8 Projectile motion is characterized by a constant horizontal velocity component, vx = ux, and a constant
vertical acceleration component, ay, the magnitude of which is equal to the magnitude of the acceleration
due to gravity, g. ☞

9 Uniform motion equations may be applied to the horizontal motion of a projectile, giving

sx = uxt (Eqn 17)

vx = ux = constant (Eqn 16)

and ax = 0 (Eqn 15)

where the displacement, sx, is taken to be zero when t = 0.
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10 Uniform acceleration equations may be applied to the vertical motion of a projectile, giving

  vy = uy − gt (Eqn 19)

sy = uyt − 1
2 gt2 (Eqn 20)

  vy
2 = uy

2 − 2gsy (Eqn 21)

Where the y-axis has been assumed to point vertically upwards and the displacement, sy, is taken to be zero
when t = 0.

11 A projectile moving near the Earth, under the influence of gravity alone, follows a parabolic trajectory
and achieves maximum horizontal range when launched at 45° to the horizontal.

12 The strategy used to solve projectile problems is to resolve the initial velocity into its horizontal and vertical
components and subsequently to treat each component as an example of linear motion.

13 Similar principles and methods apply whenever a particle is subject to constant acceleration in a direction
other than its direction of motion, or opposite to this direction.

14 Vector methods of the sort developed to treat two-dimensional projectile problems may be readily extended
to deal with three-dimensional problems
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5.2 Achievements
Having completed this module, you should be able to:

A1 Define the terms that are emboldened and flagged in the margins of the module.

A2 Describe in quantitative terms the magnitude and direction of two-dimensional vector quantities such as
displacement, velocity and acceleration given their horizontal and vertical components.

A3 Draw and interpret graphical representations of vector quantities such as the position, displacement and
velocity of a projectile.

A4 Recall and apply the equations of motion that describe the behaviour of projectiles. (Equations 15–21 for
motion under gravity, and Equations 22–24 more generally.)

A5 Solve problems concerning the range, time of flight, maximum height, velocity and displacement of
projectiles.

A6 Solve general problems involving two-dimensional motion with uniform acceleration.

Study comment  You may now wish to take the Exit test for this module which tests these Achievements.  If you prefer to
study the module further before taking this test then return to the Module contents  to review some of the topics.



FLAP P2.2 Projectile motion
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

5.3 Exit test

Study comment Having completed this module, you should be able to answer the following questions, each of which tests
one or more of the Achievements. ☞

Question E1

(A3)4Sketch a Cartesian coordinate system, showing the origin and the point with position vector 
r = (11m, 21m). What is the distance of this point from the origin?
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Figure 114See Question E2.

Question E2

(A2 and A3)4A ball is at point A in Figure 11 at a time t1 = 1.41s
and at point B at a time t2 = 1.81s. Find the displacement from A to
B and hence find the average velocity vector over the time interval
from t = 1.41s to t = 1.81s.

Question E3
(A3, A4 and A5)4The opening to a basketball net is 3.051m above
the ground. A player’s feet are 61m away from a mark on the floor
immediately below the net. The player throws the basketball from a
height of 21m and at an angle of 60° above the horizontal. With
what speed should the player throw the ball in order to get it into
the net? (Assume g = 9.811m1s−2, and that both the ball and net can
be treated as point objects.)
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Question E4

(A4 and A5)4A rifleman holds his rifle with its barrel horizontal at a height of 1.51m above the ground. He is
aiming at the centre of a target which is 1001m away and also at a height of 1.51m. Assuming the muzzle speed of
the bullet to be 500 1m1s−1, and that the barrel is lined up with the target, find the time taken for the bullet to reach
the target and the vertical distance by which the bullet will miss the centre of the target. Take g = 9.811m1s−2.

Question E5

(A4 and A5)4A stone is thrown horizontally from the top of a vertical cliff with a velocity of 151m1s−1. It is
observed to reach the sea at a point 451m from the foot of the cliff. Find the time of flight of the stone and the
height of the cliff.

Question E6

(A3, A4 and A5)4A gun fires shells from ground level with a muzzle speed of 3001m1s−1. In a test, shells are
fired at (a) 30°, (b) 45° and (c) 60° to the horizontal. Assuming that g = 9.811ms−2 find the range and the
maximum height reached for each angle of firing. Using centimetre-squared graph paper, sketch a scale drawing
of each trajectory using the same set of axes.
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Question E7

(A4 and A5)4Look back at the information given in Question T7

In the 1976 Olympic Games the shot-putting event was won with a throw of 21.321m. Assuming that the
shot was thrown from ground level at the optimum angle (45°), calculate the speed at which it was
projected, making use of the formula for range. (Assume g = 9.811m1s−2.)

and recalculate the speed needed on the assumption that the shot was launched at 45°, but from a height of 21m
rather than from ground level.

Question E8

(A4 and A6)4An ice puck is travelling along the y-axis of the rink at 21m1s−1. At a particular instant, when its
position coordinates are (x, y) = (0 m, 51m), it begins to accelerate parallel to the x-axis with ax = 21m1s−2. Find its
new position and velocity vectors after 51s, and express each of these in both component and magnitude/direction
notation.
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Study comment  This is the final Exit test question. When you have completed the Exit test go back to Subsection 1.2 and
try the Fast track questions if you have not already done so.

If you have completed both the Fast track questions and the Exit test, then you have finished the module and may leave it
here.
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