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1 Openingitems

1.1 Moduleintroduction

Energy is one of the fundamental concepts of physics. In the context of Newtonian mechanicsit often provides a
simple way of solving problems that would be very difficult to solve directly in terms of forces and
accelerations. An example of this is given at the end of this module, where you will see how easy it is to
determine the minimum speed with which a projectile must be launched if it is to escape entirely the
gravitational attraction of an airless body such as the Moon.

Section 2 introduces the concept of the work done on abody by aforce. A vector approach is used to show how
the work done can be quantified in various three-dimensional situations, including those in which the force
changes its magnitude and direction during the displacement and the expression for the work done involves an
integral. (Although integrals appear throughout this module, the concept of integration and its relationship to the
area under a graph is introduced in Section 2, and familiarity with the mathematical techniques of integration is
not a prerequisite.) This section also introduces the concept of (translational) kinetic energy and explains how
changes in this quantity can sometimes be related to the work done on a body.
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Section 3 deals with the idea of conservative and non-conservative forces and introduces the concept of potential
energy in relation to the former. It shows that in an isolated system the total mechanical energy is conserved,
whereas, when non-conservative forces act, mechanical energy is not conserved. The extension of thisidea to
embrace all forms of energy, including the energy associated with mass, leads to the principle of conservation of
energy. This asserts that in an isolated system the total energy is constant. Although energy can be converted
from one form into another, it cannot be created nor destroyed. In this section also, the important relationship
between a conservative force and the associated potential energy is introduced (F, = —dEp,/dx).

Section 4 considers power, as the rate of doing work and Section 5 includes applications of the concept of
energy to collisions and to the calculation of escape speeds.

Study comment  Having read the introduction you may feel that you are already familiar with the material covered by this
module and that you do not need to study it. If so, try the Fast track guestions given in Subsection 1.2. If not, proceed
directly to Ready to study? in Subsection 1.3.
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1.2 Fast track questions

Study comment  Can you answer the following Fast track questions?. If you answer the questions successfully you need
only glance through the module before looking at the Module summary (Subsection 6.1) and the Achievements listed in
Subsection 6.2. If you are sure that you can meet each of these achievements, try the Exit test in Subsection 6.3. If you have
difficulty with only one or two of the questions you should follow the guidance given in the answers and read the relevant
parts of the module. However, if you have difficulty with more than two of the Exit questions you are strongly advised to
study the whole module.

Question F1

During aroad accident, a car slides 130 m with locked wheels. If the magnitude of the frictional force between
the tyres and the road is 0.80 x the magnitude of the weight of the car, calculate the speed of the car at the
moment the brakes are applied. Takeg=9.81ms2
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Question F2

Derive an expression for the (minimum) escape speed required for a projectile to leave the surface of a planet
and escape entirely from its gravitational attraction. Calculate the value of this speed for the planet Jupiter,
which has a mass of 1.90 x 10°kg and a radius of 71.5 x 10°m. (Newton's gravitational constant

G = 6.67 x 10" N m2kg-2.)

Question F3

One end of alight spring isfixed to a ceiling so that the other (free) end hangs directly below it when the spring
isinits normal unextended state. A downward pointing x-axis is chosen so that the free end of the unextended
spring isat x = 0 and any further downward extension corresponds to a positive value of x. A 1kg block is added
to the free end, causing an extension x = 0.10m when the block is in equilibrium. The block is pulled down a
further 0.20m and then released. The spring has a special property. For any extension, X, the applied force
required to maintain the spring in equilibrium is F, = k3. Find the speed of the block as it passes through its
former equilibrium position. (If you are not familiar with the techniques of integration you will find it useful to
know that the area under the graph of F, against x, between x = 0 and X = X iS 4 ksx?, ) Takeg=9.81ms=2.
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Study comment  Having seen the Fast track questions you may feel that it would be wiser to follow the normal route
through the module and to proceed directly to Ready to study? in Subsection 1.3.

Alternatively, you may still be sufficiently comfortable with the material covered by the module to proceed directly to the
Closing items.
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1.3 Ready to study?

Study comment  To begin the study of this module you will need to be familiar with the following terms. acceleration,
Cartesian coordinate system, component (of a vector), displacement, force, friction, gravitation, magnitude (of a vector),
mass, Newton's laws of motion, scalar, speed, uniform (or constant) acceleration equations, vector, velocity and weight. Also
you will need to be familiar with the use of trigonometric functions, the idea of a derivative (e.g. dy/dx) and its graphical
interpretation as the gradient of a suitable (y against x) graph. (However, it is not assumed that you are familiar with the
mathematical techniques of differentiation.) If you are uncertain about any of these terms then you can review them now by
reference to the Glossary which will also indicate where in FLAP they are developed. The following Ready to study
questions will allow you to establish whether you need to review some of the topics before embarking on this module.
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Question R1

A stoneis allowed to fall from rest from the top of atall tower. If the speed of the stoneis 31 ms™ just before it
hits the ground, calculate the height of the tower. Determine also the time taken for the stone’s fall.
State any assumption made in solving this problem. (Take g = 9.81 ms?)

Question R2

A horizontal force of magnitude 16 N acts in the direction that is 60° south of west (i.e. the direction of the
7 from the centre of a circular clock face). What are the (scalar) components of the force in the south and west

directions?
Question R3
A person pushes a 10 kg box from rest along a rough floor with a constant, horizontal force of magnitude of

5.0N, causing the box to cover a distance of 6.4m in 8.0s. Determine the magnitude and direction of the
frictional force acting on the box. (Y ou may find it helpful to introduce an x-axis pointing in the direction of the

displacement.)
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2 Forces, work and kinetic energy

In everyday language we use the word work to refer to any activity that requires muscular exertion or mental
effort. You know from everyday experience that when you lift an object, the heavier it is and the higher you lift
it, the more the muscular exertion required. Also, if you push an object along a rough horizontal surface, the
harder you push and the further you push, the more tired you get. This suggests that the ‘exertion’ depends on
both the force applied and the displacement (i.e. change of position) which occurs. However, even when you just
hold up a heavy object, when there is no displacement, your arms still become tired due to your exertion.
The term ‘exertion’ here isimprecise.

In physics and engineering the terms work and work done are given a precise meaning, so that they can be
guantified and measured in appropriate units. Although the terms work done and exertion are related, they are
not equivalent nor are they interchangeable. One striking difference is that without a displacement there can be
no work done in the precise technical sense. [ In this section we will define work and work done.
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We will also have to define energy carefully, since this too is a word which is used in an imprecise way in
everyday language. Even at this stage it is useful to state that

Energy isthe property of abody or system that givesit the capacity to do work.

As we investigate energy and try to formulate a clear definition of work we must remember that forces and
displacements have directions as well as magnitudes and so are vector quantities, having three componentsin
three-dimensional space. | We begin our discussion of work done with the simplest case— a constant
resultant force acting in a fixed direction on a body, which undergoes a displacement along a straight line.

Study comment  From now on the word force will be used as a shorthand to represent a resultant force or an unbalanced
force.
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2.1 Work done by a constant for ce acting on a body

A constant for ce acting along the line of a displacement

Imagine a body (e.g. a supermarket trolley) undergoing a displacement, and imagine yourself applying a
constant force to that body along the line of the displacement. The force that you are applying may be
responsible for the displacement (you might be pushing the trolley) but it doesn’t have to be (if somebody else
was pushing the trolley your applied force might be intended to stop the trolley). In either case if we orientate
the x-axis of a Cartesian coordinate systemalong the line of the displacement then we can specify the
displacement by a single component s,, and the (constant) force by a single (constant) component F,.
If the displacement and the force are in the same direction (i.e. if they are parallel) then s and F, will have the
same sign, if they are in opposite directions (i.e. antiparallel) they will have opposite signs. In either case, we
define the work done by the force on the body as:

W= F,s, )
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From this definition we see that work is a scalar quantity since it is the product of two other scalars—the x-
components of the force and the displacement. We also see that W will be positive if the force and the
displacement are in the same direction, but it will be negative if the force and the displacement are in opposite
directions. (Given the line along which the x-axis must lie, the choice of a direction for increasing values of x,
i.e. the choice of the positive x-axis, is arbitrary. Thus, the signs of F, and s, can both be changed by reversing
that arbitrary choice, but the sign of the product F, s, is independent of that particular choice.)

W=F,s, (Ean1)

From Equation 1 the unit of work is the unit of force multiplied by the unit of displacement. In the SI system, the
unit of work is thus the newton metre (N m). This unit is so important that it merits a special name—it iscalled
the joule (J) in honour of the British physicist James Prescott Joule (1818-1889). Thus1J= 1N m.
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A constant force acting at an angle to the line of a displacement

We can extend our definition of work done to the case of aforce acting at an
angle to the direction of the displacement. In Figure 1 the force F acts at an
angle 6 to the displacement s of a body. In this case it is convenient to
introduce a two-dimensional Cartesian coordinate system, in the same plane
asF and s, so that we can express the force and the displacement in terms of
their components; F = (F,, Fy) and s = (s,, S;). Although it is not essential,
we can further simplify matters by choosing to make the x-axis of the
coordinate system parallel to the displacement, so that s, = 0 and s, = s, the
magnitude of s. Using this two-dimensional coordinate system, a natural
extension of Equation 1 isto define the work done by the force as the (scalar)
sum of the work done by each of its components.

Thatis W=F,s+Fs, ()]
Since s, = O inthis case, and F, = F cos 6 we then have:

W=F,s,=sFcos6

Figurel A body undergoesa
displacement s while acted upon by
aconstant force F. If the angle

between F and s is 6, then the work
doneis Fscos#.
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Moreover, because s, = sin this case we can write

W=Fscos@ 3

Now, although we have used a particular coordinate system to deduce Equation 3 the result that it expressesis
actually independent of the coordinate system (it makes no reference to our arbitrarily chosen x-axis) and is true
in general. So, no matter which way the x-axis is defined in the plane of F and s, we will always find that
Equations 2 and 3 provide equally valid ways of calculating the work done by F over the displacement s.

W=Fys+Fys, (Ean 2)
Equation 3 is of particular significance since it shows that the work done by F' can be thought of equally well in

either of two ways:

o asthe product of the magnitude of the displacement s and the component of F' along s (as we have just
done); or

o asthe product of the magnitude of the force F and the component of the displacement vector s along F.
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These two views are shown in Figure 2. No matter which view we take the
work W is entirely determined by the magnitudes of the two vectors and the
angle between them; more specifically

The work done by a constant force F' acting over a displacement s isthe
product of the magnitudes of these two vectors and the cosine of the
angle 6 between them, i.e. W= Fscos 6.

Figure2 The product, Fscos8, of the magnitudes of two vectors and the cosine
of the included angle may be looked upon as either, (a) the magnitude F multiplied
by the component of s in the F' direction (i.e. scos6) or (b) the magnitude s

multiplied by the component of F' in thes direction (i.e. F cos6).
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In Equation 3
W=Fscos@ (Ean 3)

the magnitudes F and s are always positive, but W may be positive or negative according to the value of the
angle 6. We may distinguish several possibilities.

1 If 8=0°in Equation 3, then cos@=1and W is equal to the positive quantity Fs, as we would also have
expected from Equation 1.
W=F,s, (Ean 1)

2 If O lies between 0° and 90°, then the work done by F' is still positive because the force has a positive
component in the direction of the displacement.

3 If 8=90°, then cos 8 = 0 and the work done by F is zero. In this case the force has no component along the
line of the displacement. (Or if you prefer, its component in that directionis 0.)

4 If 6 liesbetween 90° and 180°, then the work done by F' is negative because it has a negative component in
the direction of the displacement.

5 If 6 =180° then cos8 = -1 and W is equal to the negative quantity —Fs, another result we might have
anticipated from Equation 1.
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This last case (W = —Fs) often arises when dealing with the frictional force that acts on a body asit slides across
a surface. The frictional force opposes the relative motion of the body and the surface, and tends to reduce the
speed of the dliding body. Thus, when a sliding motion causes a body to be displaced, the frictional force that
opposes the motion will point in the opposite direction to the displacement (i.e. with 8 = 180°) and the work
done on the dliding body by that frictional force will be negative.

Question T1

How should you reword the following statement to make its precise meaning more obvious? ‘Five joules of
work were done when | lifted a book from the floor to the table.” [

Question T2

We usually think of frictional forces as opposing motion and thereby doing negative work on a body. However,
in reality frictional forces oppose relative motion and may do positive or negative work. Describe one common
situation in which a frictional force does positive work on a body. (Hint: Think of a situation in which a
frictional forceis used to make something move.) 0O .
KP
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2.2 Vector treatment of work done by a constant force: the scalar product

In Subsection 2.1, working in two dimensions, we expressed a scalar quantity, work, asa ‘product’ of two vector
quantities ( force and displacement). The ‘product’ was atrue scalar since it was actually defined as the product
of the magnitudes of the two vectors and the cosine of the angle between them, all of which are scalar quantities.
We can now extend this ideato the three dimensions of the real world as follows:

Suppose F =(F,Fy,F,) and s=(s.s),S)

then, if F is a constant force that is applied to a body that undergoes a displacement s, the work done by the
force on the body may be expressed in terms of the magnitudes of the two vectors and the angle between them
as.

W= Fscos 8 LI (Egn3)
Alternatively, the work done may be expressed in terms of the components of the vectors as:
W = Fys, + Fys, + Fys, 4)

It can be shown that these two expressions (Equations 3 and 4) are entirely equivalent, and it is conventional to
represent them by F - s, so we can write
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W = Fys, + Fys, + F;s, = Fscos6 = Fl[d (5)

The term F -s in Equation 5 is an example of a mathematical entity called the scalar product
(or the dot product) of two vectors.

In general, the scalar product of any two vectorsa = (ay, a,, &,) and b = (b, by, b,) is defined by
a-b=ap,+ahb, +ab,=abcosd LI ()
where a and b are the magnitudes of a and b, respectively, and 8 is the angle between them.

The scalar product of two vectors has many uses in physics. It arises whenever two vectors must be multiplied
together to produce a scalar — hence its name. (The alternative name dot product reflects the fact that a bold dot
between two vectors is used to indicate the scalar product, asin a -b.) The fact that the scalar product may be
expressed in the form ab cos 8 shows that its value is independent of the coordinate system we choose to use
when specifying a and b in terms of their components. If we changed the coordinate system we would change
the values of the six components, but the value of the scalar product @ -b = a,b, + a/b, + ab, would remain
unchanged. This makes good physical sense—we don’'t expect the work done by aforce F over a displacement
s to depend on the coordinate system we choose to use when specifying F and s.
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O A linerispulled into aharbour by two horizontal
ropes attached to tugs as shown in Figure 3.
How much work is done on the liner by each of the
forces shown when the liner is moved 701 in the x-

direction?

O @IfF=(20N,3.0N,-1.0N)and

s = (70m, Om, 0 m), find the work done when the
constant force F acts over the displacement s.
(b) Evaluate the magnitudes of F and s and use your
results, together with your answer to part (a), to
determine the angle 8 between F and s. (You may
find it useful to draw a diagram showing the relative
directionsof F and s.)

liner

— 450
@W{\ e
\

F,=850N

Figure3 Top view of aliner pulled along by two forces 'y
andF2
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2.3 Work done and the changein trandational kinetic energy

In Subsection 2.1 we noted that the frictional force which tends to slow down a diding body does negative work.
In this subsection we use the uniform accel eration equations and Newton's laws of motion to investigate how the
speed of a body changes when forces act on it, with a view to finding a general relationship between the work
done by the forces and the change in ‘motion’ of the body. As usual, we begin by considering the case of one-
dimensional motion along the x-axis, and for the sake of simplicity we will suppose that the ‘body’ in question is
actually a particle without any internal structure, so it can be characterized by its mass, position, speed and
acceleration, but we don’'t have to worry about the possibility that it might be spinning or wobbling.

When a single constant force F, acts on a particle of mass m the acceleration it produces is given by
Newton’s second law of motion as a, = F,/m. If the initial velocity of the particle is u, and the force acts for a
timet the final velocity of the particle vy is:

Uy = Uy + 3yt (7)

The displacement of the particle at time t (measured from itsinitial position) is denoted s, and isrelated to vy, Uy,
a, and by:

02 = U2 + 28,5, ®
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A AT
2a, 2F,

Multiplying both sides of this equation by F, we see that the work W done on the particle by the constant force
F, acting over the displacement s, is given by:
m(vZ -u2) 1 1
W:FX&:%:EWE—Emuf (99

Equation 9a shows very clearly how the velocity component v, changes in response to the work done by the
force, but we can rewrite it in a somewhat more memorable form. Because we are only considering one-
dimensional motion at this stage, we can say u2 = u? and v2 = v?, where u and v are the initial and final speeds,
respectively. It is useful for many purposes to introduce a quantity called the translational kinetic energy of a
particle which is defined by the relation

O s =

trandational kineticenergy Eyan = % M2 (10)
2

where mis the mass of the particle and v isits speed.
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Y ou have probably met the idea of kinetic energy before; it is usually described as ‘energy by virtue of motion’.
However, you should note that in this discussion we are only interested in the translational kinetic energy that
arises from the overall movement of the particle. Larger bodies might spin on an axis or vibrate internally,
thereby acquiring rotational or vibrational kinetic energy, but by considering a structureless particle we have
deliberately excluded these possibilities. [ 1n what follows we will continue to use the symbol Ey., but we will
sometimes refer to it simply as the kinetic energy, leaving you to remember that we are only concerned with
translational kinetic energy in this module.
We can now identify the quantity 3 mu2 in Equation 9a
mpz-uz) _1_, 1 .,
— == —mvg ——mu 93

o= M M (%)

astheinitial translational kinetic energy of the particle and 4 mw?2 asits final translational kinetic energy. It then
follows that

W= F,s =

W = final trandational kinetic energy — initial trandational kinetic energy

This relation (which we have only proved in one dimension, so far) makes no reference to any particular
direction, and actually remains true in three dimensions.
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It is often stated more formally as the wor k—ener gy theorem:

When a single resultant force does work on a particle, the trandlational kinetic energy of the particle changes
by an amount which is equal to the total work done on the particle by that force. These changes can be
positive or negative.

O What isthe Sl unit of kinetic energy?

Two important aspects of kinetic energy are worth noting:

1 Kinetic energy is ascalar quantity, asis essential if we are to relate changes in kinetic energy to the scalar
quantity of work done.

2 Unlike work done, kinetic energy can only be positive. In our one-dimensional discussion above, the
velocity components u, and v, may be positive or negative but their squares, u2 and vZ, must remain
positive. This is consistent since it is the changes in kinetic energy which relate to work done, and these
changes can be positive or negative.
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It is straightforward to extend our one-dimensional discussion of work and kinetic energy to the three-
dimensional caseinwhich F = (F,, F, F), s = (S, S, S), & = (Uy, Uy, Uy) and v = (vy, vy, v)). The argument that

led to Equation 9a can then be applied to each component separately. This again yields Equation 9a

m(vg - ug) _ , 1

—" mv —mu Eqn 9a)
TR (Eqn %)

and, in addition, also leads to the analogous results

m(vg -ug) 1 1

W=Fys, =

Fysy =———-=7 mo2 - > mu2 (9b)
and F,s, = M va 1 ~Zmu?2 (90)
‘ 2 2 2 7

If we add together the three Equations 9a, 9b and 9c we obtain the three-dimensional result:

Fusc + Fysy +Fs, = Em(v2 +vZ +0?) —lm(u2 +ug +u?) (11)
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2 2 2 =12 2 2 2 =42
But ug +ug +uz =u® and vy tug tus =v

where u and v arethe initial and final speeds, respectively. The right-hand side of Equation 11

1 1
Fusc + Fysy + s, = Em(vf +vZ +0v2) - Em(u)% +uZz+u?) (Egqnil)

is the change in the kinetic energy, while the left-hand side is the work done on the particle by the force.
In vector notation thisis given as:

W= FE:%mUZ _%muz = (Evan)t = (Etran)i = OEyan (12)

where the subscripts f and i stand for ‘final’ and ‘initial’, AE;,, is the change in the kinetic energy and W is the
work done on the particle by the single constant force F' acting over the displacement s. Equation 12 confirms
that the work—energy theorem is also valid in the three-dimensional case. Note that the kinetic energy of the
particle increases if positive work is done on it whereas the kinetic energy decreases if negative work is done on
it.
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Question T3

Suppose that you apply a lifting force to a book of mass m so that it is raised to a height h above the ground.
Suppose also that the book is stationary at the beginning and the end of the lifting process. Work has been done
on the book by the lifting force yet the kinetic energy of the book has not changed; how is this reconciled with

the work—energy theorem? [

Question T4

The brakes on a car of mass 1000 kg travelling at a speed of 15 ms1 are suddenly applied so that the car skidsto
rest in a distance of 30 m. Use energy considerations to determine the magnitude of the total frictional force
acting on the tyres, assuming it to be constant throughout the braking process. What is the car’s speed after the
first 15m of thisskid? 0O
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2.4 Work donein compressing or stretching a spring

Until now we have considered only work done by a constant force which is independent of the displacement.
We will now consider cases where the force depends on the displacement. As usual, we will start by considering
aone-dimensional example.

What happens when you stretch or compress a spring or any other elastic [ | body which is fixed at one end?
Generally speaking, the more the spring or body is stretched or compressed, the greater the force you have to
apply to stretch or compress it further. Thus, the force you must apply when stretching or compressing such a
body varies in strength throughout the process. Nonethel ess, whether you are stretching or compressing the body
the applied force is generaly in the direction of the displacement it causes and therefore does positive work in
the process. Finding an expression for the work done by such aforce is the main aim of this subsection.
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Clearly, that expression must take into account the particular way in |
HMANWVWVWH x-direction

which the force varies as the body is distorted, and this may be quite
complicated so we will start by considering the work done in stretching 0 _
or compressing a simple spring of the kind shown in Figure 4a. J\/\/\/\/\/\N\/\/\/\/\/\/\ﬁ‘ Fx
As you can see from Figure 4, the spring is extended along the x-axisof  (a)
a coordinate system, and we have chosen the origin (x = 0) in such away
that it marks the location of the free (mobile) end of the spring when it is
in its unstretched state. By setting-up the coordinate system in this way
we ensure that the position coordinate x of the mobile end of the spring
is always equal to the displacement s, of the mobile end from its |
unextended position, so we can write s = x in this case. We can describe w
thisin another way by saying that the position coordinate x of the mobile
end of the spring represents the extension of the spring; this extension
will be positive when the spring is stretched, and negative when it is
compressed. T

0 extension, x
Figure4 (a) Theapplied force Fy required to stretch or compressaspring with ~ (b)
one fixed end. The extension x may be positive (when the spring is stretched) or negative (when compressed) and represents
the displacement of the free (mobile) end of the spring from its unstretched position. (b) Variation of the applied force Fy
with the extension x for a spring that obeys Hooke' s law (the spring constant kg determines the gradient of the graph).
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We will also assume that the particular spring we are considering obeys |
HMANWVWVWH x-direction

Hooke's law, which requires that the applied force which stretches or
compresses a spring is directly proportional to the extension it produces. -
Consequently, a graph of the applied force F, against the extension x will J\WN\N\/VVWW‘ Fy

be linear and will pass through the origin, as shown in Figure 4b. @

Algebraically we can represent Hooke' s law by:

Fy = kex

where kg is a constant that characterizes the spring, called the

spring constant. The mobile end of the spring is also subject to a
restoring for ce that arises from tension within the spring and actsin the x
opposite direction to the applied force F,. When the spring is maintained

at some particular extension x the restoring force must exactly balance

the applied force, so (F,e)x = —F and it is therefore not unusual to see
Hooke's expressed by an equation of the form (Feq)x = —KsX.

T T T T T 1

0 extension, x
Figure4 (a) The applied force Fy required to stretch or compress aspring with () ’

one fixed end. The extension x may be positive (when the spring is stretched) or negative (when compressed) and represents
the displacement of the free (mobile) end of the spring from its unstretched position. (b) Variation of the applied force Fy
with the extension x for a spring that obeys Hooke' s law (the spring constant ks determines the gradient of the graph).
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Since the applied force depends on the extension x, it makes good
sense to say that F, isafunction of x and to denote it by F,(X).
Thus we may aso write Hooke' s law in the form

Fu(X) = kx H)

To calculate the work done on the spring by an applied force F,(X)
when the mobile end of the spring is displaced from its unextended
position x = 0 to some particular point X = X5 We must take into
account the changing value of F,(x) throughout the displacement.
This can be done by supposing that the total work done is the result of
adding together the work done in a succession of n small extensions
each of which involves displacing the mobile end of the spring by
such a tiny amount that the applied force is almost constant
throughout each such small extension (Figure 5).

Figure5 (a) The work done on a spring by aforce F, in producing a small

extension Ax;. (b) The total work done on the spring to produce an extension
Xmax: Viewed as the sum of the work done in a sequence of small extensions.

— <= AX;

Fu(x)

=k

X —>

Xmax

(@) extension
Fx) Fx= ke
KeXmax
0 . Xmax X
extension
(b)
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The work done in any one of those small extensions, such as the ith
one, in which the mobile end of the spring is displaced from x; to x; +
Ax; and the force is approximately F,(x;) throughout, will then be
given approximately by:

AW, = F (X)X (139)

This small amount of work is represented in Figure 5a by the area of
the small rectangle of width Ax; and height F,(X;) = Kg;.

The total work W done over the full displacement from x = 0 to

X = Xmax Will then be approximately equal to the total area of al the

small rectanglesin Figure 5b, and may be represented algebraically by
n

W = Fy (%) A% + Fy(X2) AXp + ... + Fx(Xn) A%y = 5 Fr(Xi) A
=1

LI (a3

Figure5 (a) The work done on a spring by aforce Fy in producing a small

extension Ax;. (b) The total work done on the spring to produce an extension
Xmax» Viewed as the sum of the work done in a sequence of small extensions.

— <= AX;

Fu(x)

=k

“Xi - X Xmax
(a) extension
Fx) Fx= ke
KXmax
0 . Xmax X
extension
(b)
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The approximation in Equation 13b (or Figure 5b)
n

W= Fx(xl)Axl + Fx(XZ)AXZ +.t Fx(xn)AXn = Z Fx(xi)AXi
i=1

(Egn 13b)

will become increasingly accurate as the size of the displacements Ax;
are reduced, since the assumed constancy of F(x;) throughout each
small displacement will then be more justified. We can indicate this
by saying that the sum in Equation 13b is equal to the work done in
stretching the spring in the limit as Ax tends to zero, and writing

W= A'X‘E“oé F (%)% [ (130

Figure5 (a) The work done on a spring by aforce F, in producing a small

extension Ax;. (b) The total work done on the spring to produce an extension
Xmax: Viewed as the sum of the work done in a sequence of small extensions.

Fx
— <= AX;
'Ix(xi) = kX
04;)(i*> X Xmax
(a) extension
Fx) Fx= ke
KXmax
0 . Xmax X
extension
(b)
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Now, in terms of Figure 5b, if we alow the extension increments Ax;
to become smaller and smaller then the total area of al the small
rectangles will approach the triangular area under the force—extension
graph (the line F, = kx) between x = 0 and X = Xpgy. Since that
triangle has a base of length x5 and a height F,(Xmax) = KeXmax 1tS
areais

%Fx(xmax) X Xmax = %ksxr%w

Thus, the work done on a spring that obeys Hooke' s law by an applied
force in extending the spring by an amount X, from its unextended
positioniis:

W = 3 KeXfix (14)

Figure5 (a) The work done on a spring by aforce F, in producing a small

extension Ax;. (b) The total work done on the spring to produce an extension
Xmax» Viewed as the sum of the work done in a sequence of small extensions.

— <= AX;

Fu(x)

=k

X —>

Xmax

(@) extension
Fx) Fx= ke
KeXmax
0 . Xmax X
extension
(b)
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Note that since X,.x appears as a squared term, the work done depends on the magnitude but not on the sign of
Xmax @nd so it is the same whether the spring is stretched or compressed. As expected, the work done on the
spring is always positive and Equation 14

W = 5 KeXFa (Ean 14)
implies that the only condition in which W= 0iswhen x = 0 and the spring is not distorted.

0 What is the work done by the tension in the spring (a restoring force) if an applied force increases the
extension from O to some positive value Xpa?

Question T5

How much work must be done by an applied force to increase the extension of a spring that obeys Hooke's law
(with kg = 200N m™) from 15cm to 20cm? How does this compare with the work done in increasing the
extension from 20cmto 25cm? 0O
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Although Equation 14
W = 3 koXZa, (Ean 14)

only appliesto forces described by the equation F,(x) = ke, the method that was used to deriveit is quite general
and may be applied in other situations. So, provided we know the specific function F,(x) that relates the applied
force to the extension x, we can always say that

W= Alx|r110 iZl Fy (%) A (Eqn 13c)

where the n small extensions Ax; cover the full displacement from x = 0 t0 X = Xpax- (Of course, as the Ax;
become smaller n must become larger.)

Now this kind of limit of a sum over a specified range is very common in physics and mathematics and is
generally referred to as a definite integral. So important are definite integrals that there is a special notation for
writing them down that avoids al the clumsiness of Equation 13c. Using this standard notation Equation 13c can
be rewritten as:

Xmax

W= [Fy(x)dx (15)
0
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Asyou can see, alarge distorted ‘'S’ (called the integral sign), sandwiched between the upper and lower ends of
the range (called the upper and lower limits of integration), is used to indicate the process of taking the limit of a
sum. The variable x (theintegration variable) that changes continuously across the range is indicated by writing
an integration element dx on the right of the integral, and the quantity that depends on the integration variable
(the integrand) iswritten in the centre. It isimportant to note that whatever the exact form of the integrand F,(x),
you can still interpret Equation 15

Xmax

W= IFX(X) dx (Egn 15)
0

as indicating that the work done is given by the area under the force—extension graph between x = 0 and
X= Xmax- Q

In the particular case that F,(X) = kx, we already know that

Xmex Xmax 1

W = _([Fx(x)dx = ‘([kSXdX :Eksx%ax
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but if the applied force had been related to x by some other formula, such as F,(x) = k<3, then we could have
written

Xmax Xmax

W= ‘([Fx(x)dx: %'ksx?’dx

which can be interpreted graphically as meaning that W is equal to the area under the graph of F,(X) = k3
between x = 0 and X = Xma. If you drew that graph and measured that area you would find that W = 4 kex#., ,
though it would require quite alot of drawing and measuring to confirm this. Fortunately, there is an easier way.
Given the particular expression for F,(x) that applies to any particular problem there are a number of standard
techniques that will often enable you to evaluate the corresponding definite integral algebraically, without
drawing any graphs. These techniques are a major part of the subject of integration — the analysis and
evauation of integrals—they will not be used in this module, but many of them are developed in detail in the
maths strand of FLAP. Their existence makesit relatively easy to apply Equation 15

Xmax

W = IFX(X) dx (Egn 15)
0

to avast range of problems.
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Before finishing this subsection and moving on to three dimensions it is
worth noting a simple generalization of Equation 15

Xmax

W= IFX(X) dx (Egn 15)
0

that is often of great value. Suppose you want to calculate the work done
by an applied force in changing the extension of a spring from some
initial value x = X, to some final valuex = xg. Thisisthe kind of problem
that was considered in Question T5 for a spring that obeys Hooke's law.
But how do we deal with a spring that doesn’t necessarily obey Hooke's
law? Let us suppose the relevant force—extension graph for this particular
spring is the one shown in Figure 6.

%
Fx work =J F(X)dx

Figure6 Thework doneby an
arbitrary one-dimensional force Fy
acting over an arbitrary displacement in
the line of the force.

Following the usual procedure of dividing the full displacement into small steps, adding together the work done
in each step and then considering the limit of the sum as the individual steps become vanishingly small leads to
the conclusion that the required amount of work is represented by the area under the force—extension graph

between x = x, and X = Xg.
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We can use the definite integral notation to write this as

W = ?FX(X) dx (16)

Although we have used the example of an extended spring to arrive at this result, the only essential ingredients
from the mathematical point of view are the applied force F,(X) and the displacement (from X = X, t0 X = Xg)
over which it acts. We may therefore summarize our final result by saying

The total work done by a force acting in the direction of a displacement over the displacement is given by
the area under the force—displacement graph between the limits of the displacement. This may be found
graphically or by integration.
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2.5 Work done by a force which varies in magnitude and
direction

In the previous example the magnitude of the force was allowed to vary but
not its direction. In the most general case both the magnitude and the
direction of the force vary and the body moves along a curved path through
space. (As an example you might like to think of aroller-coaster acted upon
by a resultant force arising from gravity, friction, air resistance, etc.)
Suppose the body moves from point A to point B along a curve as shown in
Figure 7. As before, we can imagine dividing the path into n very small
displacements, but in this three-dimensional case each of those small
displacements must be a vector, so we will denote the it" displacement by A
As;, where As; = (AX;, Ay, Az). We suppose that each such displacement is
sufficiently small that the force is virtually constant over it. The work done  Figyre7  An object movesalong a
by F over As; is then approximately given by the scalar product: curved path from A to B. The path is
divided into small displacements
AW =F -As; = FAX + RAY; + FAZ uy As;. The work done on the object by
the (varying) force F' over the
displacement As; is approximately
AW, =F - As;.
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The total work done by F' as the object moves from A to B is obtained by summing the work done over al the
displacements and taking the limit as the As; approach zero (i.e. as Ax;, Ay;, and Az approach zero o ):
n
W= lim S F[ds
8s-0{5
Asin the last subsection, we can rewrite this limit of a sum as a definite integral. Thus we can say that the work
done by aforce F over the given path from A to B is

W = _?F [ds (17)
A

Such anintegral is called aline integral. To evaluate it we would need to know the exact shape of the path so
that we could determine the value of F at each point along the path. Performing such an evaluation is beyond the
scope of this module.
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3 Conservative forces, potential energy and energy conservation

In Section 2 the concept of kinetic energy was introduced as the energy possessed by a particle due to its motion.
In this section the concept of potential energy will be introduced as the energy possessed by a particle or a body
due to its position or itsinternal state. When a single resultant force acts on a particle the work done by that
force changes the kinetic energy of the particle, but when two or more forces act on a particle the work done by
any of those forces may change the body’s potential energy as well as or instead of its kinetic energy.
The discussion of energy changes contained in this subsection will lead us to introduce the principle of
conservation of mechanical energy and the more general principle of conservation of energy.
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3.1 Conservative and non-conser vative for ces

Despiteitstitle, this subsection has nothing to do with politics! Forces can be classified as either conservative or
non-conservative, according to how they behave when doing work on a particle—basically, on whether that
work isfully recoverable or not.

To understand what a conservative force is, consider the process of lifting a stone of mass m slowly and
vertically from the ground to a given height h, and then lowering it slowly and vertically back to the ground
again. L] Of course, forces must be applied to cause this motion but for the moment we will ignore all forces
except for the constant gravitational force [N (i.e. the weight of the stone) which is directed downwards and
has magnitude mg throughout the motion. [ From Equation 3

W= Fscos@ (Egn 3)

this force is seen to do negative work, —mgh, during the lifting, (since the angle between the gravitational force
and displacement is 180°) and positive work, +mgh, during the lowering. Thus the total work done by gravity
over the complete (closed) path is zero. We will now show that this conclusion is valid for any closed path
(not necessarily verticaly up and down); it is this property which makes the gravitational force a conservative
force.
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Figure 8 shows a stone of mass m being lifted from point A to point B,
through a height h, via an arbitrary path that passes through a point P.
If the stone undergoes a small displacement As from P then the work done
by the gravitational force over that displacement will be

AW=Fy,,-As 0
i.e. AW=mgAscosf
where Asis the magnitude of As. From Figure 8 it can be seen that

AscosO=-Ah

so AW=-mgAh (18)

This tells us that the work done over the displacement As depends only on
the height change Ah along As and not directly on As itself or on 6. It isthen
clear that the work done by gravity between A and B, which is just a
succession of such small changes, also depends only on the total height
difference and not on the details of the path chosen.

Figure8 A stoneislifted from A to B viaan arbitrary path.
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We can indicate this by writing:

B B B
Wag =y AW = - mghh = -mg}y Ah = -mgh L a9
A A A
B B B
or, asanintegral, Wyg = J’dW = —J‘mgdh = —ng'dh = -mgh (20)
A A A

Thus, the total work done by the gravitational force over any path from A to B is simply Wag = —mgh.
Similarly, the return journey from B to A by any path has W, = +mgh, so the round trip by any path is
completed with zero net work done by gravity.

In general, conservative and non-conservative forces are defined as follows:

A force acting on a particle is said to be conservative if the work that it does when the particle moves
around a closed path is zero, irrespective of the choice of closed path. Forces which do not satisfy this
condition (i.e. those for which there is a closed path around which the work done is not zero) are said to be
non-conser vative.
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An equivalent definition of a conservative force that may be shown to be a direct consequence of the first is the
following:

A force acting on a particle is said to be conservative if the work that it does when the particle moves from
point A to point B is independent of the path that the particle follows from A to B. Forces which do not
satisfy this condition (i.e. those for which the work done between A and B is path dependent) are said to be
non-conservative.

Question T6

A conservative force F = (Fy, Fy, F) = (2x2N, 3yN, 5N) acts on a particle, which isinitially at rest at the origin
(O, 0, 0). While this force continues to act the particle is moved to the point (X, y, 2 = (3m, 1m, —2m).
Calculate the work done by the force during the movement. (If you are unfamiliar with the techniques of
integration you will find it useful to know that the area under a graph of the function F, = 2x2N between x = 0
and x =3mis18N m = 18J. Note that the given force is not the cause of the motion in thiscase.) O .
f;)
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We have aready seen that the gravitational force on a body is conservative, but it is important not to make the
mistake of thinking that every force is conservative. To find an example of a non-conservative force, we need
look no further than some of the non-gravitational forces required to move a stone around a closed path.
The person responsible for lifting and lowering the stone will certainly realize that the whole cycle can only be
completed with a net exertion and will not be any the lesstired for being told that no net work has been done on
the stone. The muscular forces employed in lifting (and lowering) the stone will have done work on the person’s
own body and the net work done by these forces will certainly not be zero. Unlike the gravitational force, these
forces are not conservative.

Other examples of non-conservative forces are friction and fluid resistance (including air resistance).
Fluid resistance is velocity dependent, and velocity dependent forces are generally non-conservative unless the
forceis always directed at right angles to the velocity, so that it does no work. L] The fact that a frictional force
is non-conservative can be seen from the following example.
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Suppose a block is pushed through a displacement of magnitude s along a horizontal straight path from A to B
and then is pushed back along the same lineto itsinitial position A. Usually, the frictional force that acts on the
block throughout its motion is of constant magnitude f. The work done on the block by the frictional forcein
going from A to B is —fs, since the angle between the force and the displacement is 180°. In going from B to A,
the direction of the frictional force on the block is reversed, and so is the displacement, so that the work done
from B to A is again —fs. Thus, the total work done over the round trip is —2fs. Since thisis not zero, the friction
forceis not a conservative force.

Question T7

Construct an argument to explain why velocity-dependent forces should generally be expected to be
non-conservative. [
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3.2 Potential energy

If a stone falls to the ground from rest at a height h the work done on the stone by the (conservative)
gravitational force will be mgh. If we ignore air resistance, it follows from the work—energy theorem that the
kinetic energy of the stone when it hits the ground will be

3 mw? = mgh

If the stone is released from a greater height its final kinetic energy will be increased; if released from a lesser
height the final kinetic energy will be reduced. For practical purposes the stone is behaving as if the process of
lifting it to the height h somehow enables it to store energy which is released again as kinetic energy as the stone
falls. This notion of stored energy as a result of position or configuration is useful in various contexts and is
generally referred to as potential energy. The particular potential energy that a body has as a result of its
position relative to the Earth’s surface is called its gravitational potential energy. Of course, gravitational
potential energy isn't really stored away inside the stone, rather it arises from the gravitational interaction of the
Earth and the stone, and depends on their relative configuration. The gravitational potential energy associated
with a particular position or configuration represents the work that the gravitational force will do on the stone
when it moves from that position to the ground. It is a useful concept because the gravitational force is
conservative, so the work done by the gravitational force when the stone moves from any point A to apoint B on
the ground isindependent of the path followed from A to B.
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Consequently, once a reference point has been chosen, such as a point on the ground, it is possible to assign a
unique value of the gravitational potential energy to every other point. In the case of the gravitational force no
work is done when a body moves horizontally so it is actually sufficient to choose a reference level (e.g. ground
level) rather than areference point, but the principle remains the same.

A potential energy that depends on position can be associated with each conservative force that acts on a
body. Thisis because a unique amount of work is done on the body by such aforce when the body is moved
from any given position to a chosen reference point. This remains true irrespective of the path that is taken.

The recognition that potential energy is always associated with conservative forces leads in a natural way to a
general expression for the difference in potential energy between different configurations of the system. [

The potential energy E of some final configuration of a system (e.g. astone raised to a height h above the
surface of the Earth) relative to a chosen reference configuration (e.g. the stone on the surface of the Earth)
is equal to the work done by the associated conservative force when the system is returned from that final
configuration to the reference configuration.
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So, in the case of the stone, taking the vertically upwards direction to be that of the x-axis, we find:

0 0
Epot = [ Fora [ = [—-mgcx
h h

i.e.  Epr=mgh

In practice we can often avoid the need to define any specific reference configuration by noting that

The potential energy of afinal configuration differs from that of an initial configuration by an amount AE
that is equal to the negative of the work done by the conservative force when the system is taken from its
initial configuration to itsfinal configuration.

Using the subscriptsi and f to represent initial and final, we can write this symbolically as follows:

(Epot)f - (Epot)i = AEpot == i(fmn (21)
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O For the case of the stone being moved from an initia height h; to afina height h;, write down an expression
for AE, in terms of a definite integral.

By interpreting the right hand side of this last expression hy
(Epot)t = (Epot)i = AEper = —~W" (Egn 21) F r{mgdx

as the rectangular area under the graph of F = mg betweenx =h;jand by mg
(see Figure 9) it can be seen that in this case

for gravitational potential energy  AE = mg(h; — h) 2

hy by

by
Figure9 Imgdx interpreted as an
h

area under agraph.

O  Can Epy be negative in the gravitational case?
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Question T8

We have taken some care here to define the increase of potential energy with height in terms of the negative of
the work done by the gravitational force. In many texts this increase in gravitational energy with height is
described as the positive work done by the lifting force (magnitude mg upwards) acting over the positive
displacement h, upwards. Give a criticism of this second approach. [ .
HP

In Subsection 2.4 we considered the work done by an applied force in stretching or compressing an elastic body.
We found that positive work was done in each case, but there was no change in the kinetic energy of the body
(zero at the start and finish) because a compensating amount of negative work was done by the restoring force
that arose within the body. As every child knows, a stretched or compressed elastic body may be used to create
havoc by launching a projectile — catapults are ample evidence of this. The way in which the restoring force in
an extended elastic body provides kinetic energy to a projectile when it is released is analogous to the way in
which the gravitational force provides kinetic energy to a raised mass when it is dropped. The restoring force
exerted by an ideal spring (i.e. a spring that obeys Hooke's law) is an example of a one-dimensional
conservative force, and so potential energy may be associated with such aforce. The potential energy, due to the
configuration of an elastic body, is called strain potential energy or smply strain energy.
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The work done by the restoring force when an ideal spring that obeys Hooke' s law is extended by an amount x is
-1 kex?, where ks is the spring constant. From thisiit follows that the work done by the restoring force when the
spring is returned from an extension x to its unextended state will be +3 kx2. Taking the unextended state

(with x = 0) as the reference configuration, it follows from the general definition of potential energy that the
strain potential energy of an ideal spring extended by an amount x is

pot = 3 keX? [ (23)

and when such a spring is extended from x; to x;

for strain potential energy  AEpq = 3 ks(X? — x?)

0 Can Epy for aspring be negative?
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Finally, it should be stressed that the potentia energy E, that we have been discussing in this subsection is
really just another difference in potential energies, like AE. Itis ‘specia’ only in the sense that it represents the
difference from the potential energy of the selected reference configuration of the system. We are actually freeto
assign any value we want to the potential energy E, of the reference configuration, with the consequence that the
total potential energy of any other configuration will then be E,; + Eo. Because of our freedom to choose E, to
be whatever we want, these total values have no physical significance. In practice we choose E, for our own
convenience, which usually means choosing it to be zero.

Question T9

By how much must an ideal spring with ks = 200 N m2 be stretched from its unextended position to give it the
same potential energy as a 2kg mass raised to a height of 1.20m above the reference level at which Ep, = 0?

(Takeg=9.81ms3) O
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3.3 Conservation of mechanical energy

In the work—energy theorem of Subsection 2.3 we saw that the work done on a particle of mass m by any
resultant force F' (conservative or not) is equal to the change in kinetic energy of the particle. This result was
summarized in Equation 12:

W = (Eyan)t = (Egran)i (Egn 12)
In Equation 21 of Subsection 3.2
(Epot)t = (Epat)i = AEpg = —WF" (Egn 21)

we saw that the work done by a conservative force when a system is taken from an initia configuration to afinal
configurationiis:
W = ~[(Epor )i = (Epor)i| = (Bpot)i = (Epat)s

If we restrict our discussion to a system of particles acted upon by conservative forces (so that both Equations 12
and 21 are valid), and not subject to any additional external force, L] we can equate these two amounts of work
and hence obtain:

(Epot)i _(Epot)f = (Etran)f _(Etran)i
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i.e (Epot + Etran)i = (Epot + Etran)f

If we define the total mechanical energy E, Of a particle to be the sum of its potential and kinetic energies,
then we can say that

Provided the only forces which act on a system are conservative forces, and
provided no additional external forces are allowed to act

Emech = Epot + Egran = constant (24)

In other words, the total mechanical energy is constant unless work is done by some additional force. This result
is known as the principle of conservation of mechanical energy, and is an example of aconservation principle.
Note that the principle applies when only conservative forces act and for an isolated system, in which there are
no external forces acting or energy exchanges with any external system. o

This principle provides a means of relating the speed of an object to its position, and plays an important part in
the solution of many problems in mechanics.
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Question T10

A block of mass 1kg is released from rest in vacuum and falls on to the top of a spring, which is standing
vertically on a firm surface. If the total distance travelled by the block is 5.50m when the spring is suffering
maximum compression, find the maximum compression of the spring, and the speed of the block when the it
first hits the spring. The spring constant is299N m-1. (Tekeg=9.81ms=2) [ .
VP

3.4 Conservativeforcesand potential energy functions

In the examples we have considered so far, potential energy has always been related to the x-coordinate of
position in some unique way. In other words, the potential energy has always been a function of x, and could
have been written E,(X) to remind us of this. Q) So far, we have obtained potential energy functions from the
relevant conservative force, but we can do the opposite and obtain the conservative force from the potential
energy function. From Equation 21 in Subsection 3.2 we see that the work done by a conservative force is the
negative of the change in the corresponding potential energy.

Wien = _[(Epot)f - (Epot)i] = —AEp
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Let us apply this to the case in which a conservative force F = (F,, Fy, F,) acts on a particle initially located at
the point (x, y, 2 while it undergoes a small displacement As = (AX, Ay, Az). We will assume that the
displacement is sufficiently small that F' can be taken to be approximately constant throughout the displacement.
The work done by F over As isthen approximately given by

Wen = F[As = F,Ax + FAy + F,Az
and the corresponding change in the potential energy is approximated by
—AE,q = FxAX + F Ay + F,Az (25)

For the sake of simplicity we will assume that E; depends only on x, even though the displacement may be
fully three-dimensional (this was the case with the gravitational potential energy we considered earlier).
We can then say that

—AE = F\AX
e Fy=—AE/AX
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If we take the limit of this expression as Ax tends to zero then the approximation will become an equality and we
can use the notation of differential calculusto write:

—AE dE
= lim "‘“Q:— pot [ (29)
ax-od Ax dx

where the derivative on the right-hand side may be interpreted graphically as the gradient (i.e. slope) of a graph
of Euy against x at the particular value of x that corresponds to the instantaneous position of the particle.
Because of this identification we often summarize the important result given in Equation 26 by saying

Force is minus the gradient of potential energy.

Applying this to the case of the ideal spri ng, for which Epg = 3 kex?

dEpot - _ ks ZD

weseethat F, = -
X dx deZ
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If you evaluate the derivative (by drawing the graph of E,y against x and measuring its gradient, or by using the
techniques of differentiation which are developed elsewherein FLAP) you will find that

Y ou should recognize this as the correct answer, since it expresses Hooke's law, which appliesin this case, in
terms of the (conservative) restoring force that arises from the tension.

Question T11

Use the fact that the gravitational potential energy of a particle of mass mat a height h above the Earth’ s surface
is Epot = mgh to find the gravitational force that acts on that particle. [

Some of the most important conservative forces that arise in physics are central for ces, that isto say the force is
always directed towards a point (called the force centre) and has a magnitude that depends on the distance r
from that force centre | .
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Outstanding examples of such forces are the gravitational force that one particle exerts on another, as described
by Newton's law of gravitation, and the electrical force that one charged particle exerts on another.
In both these cases the force is described by an inver se squar e law of the form

F, = kir2 @7

where the component F, points radially outwards from or inwards towards the force centre, and k is a constant
that may be positive or negative. Central forces of this or any other sort are always conservative and may be
associated with a potential energy that depends on r. In the case of an inverse square law this potential energy is
of theform

Epot = KIr (28)

where the reference configuration with Ey; = 0 isthat in which the distance from the force centre, r, approaches
infinity.
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For instance, in the case of the gravitational
force between two particles of masses M and
m separated by a distance r (the full
expression for the force, not the
approximation of constant weight that applies
close to the Earth’ s surface) the constant k has
the value —~GMm, where G is Newton's
gravitational constant || , so the associated
gravitational potential energy is

Eoot = _GrMm (29)
dE,, -
and F, =St ZGMm (29b)
dr r2

If we set M = Mg, the mass of the Earth, and
consider r = Rg, the radius of the Earth, then
Equations 29a and 29b provide a good

Epot 1

Figure10 Thegravitational potential energy of afixed massmat a
distance r from the centre of the Earth.

approximation to the gravitational potential energy and radial force component on a body of mass m at a radial

distance r from the centre of the Earth. This gravitational potential energy is shown in Figure 10.

FLAP P24 Work and energy
COPYRIGHT © 1998 THE OPEN UNIVERSITY

S570 V11

© ©

& @



Y ou might be somewhat surprised that Equation 29
_ —GMm

pot = T

_ dEpo[ _ _GMm

dr r2

describes the gravitational force and potential on a body. After all, until we started this discussion of central
forces we had always said that for abody near the Earth

E (Egn 29a)

and F = (Egn 29Db)

Epx=Mmgh and F,=-mg 0
which is difficult to compare with E,, = -GMnvr since only E; and m are common to both equations.

However remember, these two equations only apply close to the Earth, wherer = Re.
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If you look at the small box that covers this
region, near point A in Figure 10, you will see
that the gravitational potential energy is
approximately linear in that region. So we can
use the linear relation E,o¢ = mgh
(and consequently F, = -mg) to describe
terrestrial gravity, provided we aso change
the reference position from which we measure
the potential energy. When using E,; = mgh
we assume E,; = 0 at the surface of the Earth,
where h = 0. But when using Ep,; = ~GMgmir
we are assuming Ey = 0 asr tends to infinity.
Naturally, we should not expect the terrestrial
approximations to work if we consider
changes in height that are substantial
compared with the radius of the Earth.

0 What specific feature of Figure 10 can be

Epot 1

Figure10 The gravitational potential energy of afixed massmat a
distance r from the centre of the Earth.

determined from the fact that the gravitational potential energy close to the Earth’s surface is well-approximated

by Epor = mgh?
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Aside In this subsection we have only considered potential energy functions that depend on a single variable, such as Epgi(X)
and Ey(r). However, in general the potential energy may depend on several variables, such as Ep(X, Y, 2). In such cases the
relation between F, and By given in Equation 26

o= m O
ox-00  Ax dx

has to be modified to some extent, along with the similar formulae that relate Fy and F, to Ey;. These modificationsinvolve a
technique known as partial differentiation which is not particularly difficult but is beyond the scope of this module.

(Egn 26)

3.5 Non-conservative forces and mechanical energy
The principle of conservation of mechanical energy,
Emech = Epot T Etran = CONstant (Egn 24)

enables us to establish the relation between position and speed, when we have an isolated system of particles
acted upon only by conservative forces. What happens if non-conservative forces are present? For example,
suppose a block descends a vertical distance from rest by sliding down a rough inclined plane. In this case, a
non-conservative frictional force acts on the block, so we would expect that the final speed of the block will be
less than that obtained if no such frictional force existed. Let us now consider how the principle of conservation
of mechanical energy has to be modified to account for such cases.
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The work—energy theorem (Equation 12) applies to the action of any resultant force, be it conservative or not,
and thistells us that the total work done on the block is related to the kinetic energy change by:

W= (Etran )f - (Etran)i (Eqn 12)

If the force is conservative then the work done also relates to the change in potential energy through
Equation 21:

Weon = _[(Epot)f - (Epot)i] = _AEpot (Egqn21)

Suppose now that the total work done W includes a contribution Wee" from conservative forces and a
contribution W from non-conservative forces.

W = Weon 4 \\/nc (30)
Substituting Equations 12 and 21 into this expression gives:
(Etran)f - (Etran)i = _[(Epot)f - (Epot)i ] + \Wne

i.e (Etran)f +(Epot)f = (Etran)i +(Epot)i +Wrne
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so from Equation 24:
Emech = Epot T Etran = CONstant (Egn 24)

(Emech )f = (Emech )i +Wwne (31)

From Equation 31 we see that if positive work is done on the body by the non-conservative force(s) as the body
travels from its initial position to its final one, then the final total mechanical energy is greater that the initial
total mechanical energy. However, if negative work is done by the non-conservative forces, then the fina total
mechanical energy islessthan theinitial value. Let us apply this result to our example of the block sliding down
the plane.

Examplel

Suppose a block of mass 5kg slides from rest down an inclined plane of length 8 m, and in so doing descends a
vertical distance of 2 m. Evaluate the speed of the block at the bottom of the incline assuming (a) no friction, and
(b) that africtional force of magnitude 4N acts on the block.
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Solution

L] (a) Let m bethe mass of the block, which starts from rest and descends a vertical distance h, reaching a
speed v4. Using the principle of conservation of mechanical energy, asin Equation 24:

$mv? = mgh
SO v =42gh =/2x9.81lms2 x2m =6.3ms™!

(b) Let the displacement down the incline be s, the final speed be v, and the frictional force f, which is directed
up the incline. Equation 31

(Emecn)t = (Emecn)i + W™ (Eqn 31)
gives:
+mvz = mgh - fs
O v, = \/Zgh 2fs \/(2 x9.81ms™? x 2m) — 2><42\+8m =51ms™t
g

As expected, the speed of the block at the bottom of the incline isless when africtional forceis present than
when no frictional forceexists. O
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3.6 Conservation of energy

In the last subsection we saw that when non-conservative forces do work the mechanical energy of a system is
not conserved. L] Inthe example of the block dliding down the plane, we saw that the final kinetic energy of the
block was lower when friction was present than when it was absent. What has happened to the kinetic energy
which was lost when friction was present? Experiment shows that the work done by the friction force resultsin
an increase of temperature of the surfacesinvolved. Thisis a manifestation of another form of energy, which we
call thermal energy. LI This thermal energy is actually the energy associated with the kinetic and potential
energies of the vibrating molecules of the materials of the block and the plane and is part of the internal energy
of those objects.

So, it appears that although some bulk mechanical energy has been lost by the block, this loss is matched by the
gain in thermal energy, and the total energy of our system has not atered. We can extend this idea further to
include all other types of energy, including chemical energy, electrical energy, nuclear energy and mass energy,
aswe will see shortly.
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Consider an isolated system, in which no energy exchange occurs between the system and its surroundings. We
can evaluate the total energy of the system by adding together the energies associated with all the various energy
forms. If we repeat this process at various times we find that the total energy remains constant, although the
contributions to the total energy from the various forms may change with time as energy is transformed from
one form to another. This result is embodied in the principle of conservation of energy which may be stated as
follows:

Although energy can change from one form to another, the total energy of an isolated system remains
constant.

The principle of conservation of energy is one of the most important in the whole of science. It prohibits many
processes which might otherwise seem plausible (such as various types of perpetual motion) and provides afirm
constraint on those processes which do occur. The principle emerged from the work of a number of 19th century
physicists, notably Julius Robert von Mayer (1814-1878) L] and Hermann Ludwi g von Helmholtz
(1821-1894), though a new aspect of the concept was introduced in 1905 when Albert Einstein (1879-1955)
developed his special theory of relativity.
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Einstein deduced that the mass of a body is a measure of its energy content. Thus, when a body is heated its
mass will increase dightly, and, more significantly, even when a body is at rest and has no potential energy, it
still has a certain amount of mass energy as given by Einstein’s equation

E=mc? (32)
where c is the speed of light in a vacuum. LI Theinclusion of mass energy as just another form of energy to be
taken into account in the conservation of energy alows for the interconversion of mass and energy; mass can be
transformed into energy, and energy can be transformed into mass. This is demonstrated most clearly in nuclear
reactions as described elsewhere in FLAP.

Question T12

What would be the mass equivalent of the energy needed to keep an electric fire that consumed 1000 J of
electrical energy per second running for 1 day? 0O
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4 Power

When calculating the work done by aforce we are not usually concerned with the time taken, but when we wish
to compare the capabilities of two machines for performing a particular task, we are very often concerned with
how quickly they can provide a certain amount of work. This means that the simple quantity ‘work done’ is not
sufficient for measuring the performance of a machine. What is often more useful as an indicator of performance

is the rate at which work is done, that is the amount of work that can be done per unit time. This quantity is
called the power .

The Sl unit of power, the joule per second (Js1) is usually called the watt (W), in honour of James Watt (1736—
1819) the Scottish engineer who pioneered the development of the steam engine. The kilowatt (1 kW = 103W) is
also commonly used. Watt himself originally introduced the idea of horsepower (hp) as the unit of power.
This non-Sl unit is still used in some engineering circles, and a useful conversion factor to remember for
everyday purposesis: 1 hp =746 W = 0.746 kW.
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4.1 Average and instantaneous power

Suppose you pull a heavy trolley and do 400J of work in 10s in moving the trolley through a certain
displacement.

The average rate of working is 400 J10s = 40W. In general we define the average power [P [(for an amount of
work done AW in atimeinterval At by

[P 0= AW/At 0 (33)

The rate at which work is done may not be constant over At, and it is often important to know thisrate at a given
instant of time. This instantaneous power, which is what is usually meant by the unqualified term power, is
defined as the limit of AW/At as At tendsto zero. Expressing this as a derivative we have:

instantaneous power P = dWidt (34

0 What are typical values for the power ratings of the following household items: a tungsten light bulb, a
colour television, an immersion heater, an electric toaster, a vacuum cleaner?
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Units of power can be used to define alternative units for work or energy. From Equation 33
[P [E AWIAt (Eqgn 33)

we see that AW can be expressed as:
AW = [P [At

This means that we could use the watt-second (W s) instead of the joule as an S| unit of work or energy.
In practice this watt-second unit is rarely used, but the kilowatthour (kW h) is commonly used as the commercial
unit for the measurement of electrical energy consumption. One kilowatthour is the energy consumed or work
done in one hour when the power is 1 kW.

1kwh=10%Js x 3600s= 3.6 x 106 J=3.6 MJ

0 Compare the energy consumed by a1 kW electric fire in 45min with that consumed by a 60 W light bulb in

12h.
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4.2 Power asa scalar product

An aternative expression for power to that given in Equation 33
[P (= AW/At (Ean 33)

can be developed in terms of aforce F' doing work on a body that moves with velocity v. The work done by F
over asmall displacement As is:

AW=F -As
The average power delivered by that force over the time At is given by:

(P [(F AWIAL = (F - As)IAt = F - (As/At)
The instantaneous power is given by the limit of this as At tends to zero:

P =dw/dt = F-(ds/dt) =F -v (35)
Question T13

What is the rate at which work is done by a force F' acting on a body which is moving in a direction

perpendicular to F? o
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5 Applications

In this section we examine two applications of the concepts and results regarding work, energy and power that
we have met in the earlier sections.

5.1 Coallisonsin onedimension

In ascientific context, the term collision means a brief but powerful interaction between two particles or bodies.
Collisions may be categorized by comparing the total kinetic energy of the colliding bodies before the collision
with their total kinetic energy after the collision. If there is no change in the total kinetic energy then the
collision is said to be an elastic collision. If the kinetic energy after the collision is less than that before the
collision then the collision is said to be an inelastic collision.

In general, collisions between macroscopic objects are inelastic but some collisions, such as those between steel
ball bearings or between hilliard balls, are very nearly elastic. Collisions between subatomic particles, such as
electrons, protons, etc., are often elastic. The kinetic energy which is lost in an inelastic collision appears as
energy in a different form, e.g. thermal energy, sound energy, light energy, etc., so that the total energy is
conserved. If the bodies stick together on collision, and move off together after the collision, the collision is said
to be completely inelastic. In this case a maximum amount of kinetic energy is converted into other forms of
energy.
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Let us consider the example of a collision in one dimension between particles of mass m; and m, which are
moving with initial speeds u; and u, in the same horizontal direction before the collision. We will call the speeds
after the collision v, and v,. If the collision is elastic the kinetic energy is conserved and we can write:

FMUf +3mpug = Fmpf + 5 mps (36)

Even if we know the values of my, m,, u; and u,, this single equation is insufficient for us to determine the two
unknown values, v, and v,. To evaluate two unknowns requires two independent equations and kinetic energy
conservation in an elastic collision gives only one equation, as above. These collision problems require another
conservation principle to supply one further equation involving v, and v,.

Thisisthe principle of conservation of linear momentum, which is discussed elsewhere in FLAP.
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5.2 Escape speeds

If we throw a stone vertically upwards it reaches a certain height and then falls back again. If we throw it again,
with a greater initial speed, it will reach a greater height before returning. This suggests that if we could launch
the stone with sufficient initial speed it would be able to leave the Earth entirely and escape to infinity. In fact
thisisa correct conclusion, and the minimum speed required to achieve thisis called the escape speed.

We saw earlier, using Equation 29a,

_ —GMm
pot = T
that the gravitational potential energy of abody of mass m at a distance r from the centre of the Earth is:
-GMgm
Bpat = — E (37)

where Mg represents the mass of the Earth, and G is Newton’ s gravitational constant.

E (Egn 29a)
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This potential energy function was shown
graphically in Figure 10. Notice that sincer is
positive E,; must always be negative, but it
becomes less negative (i.e. it increases) as r
increases. Indeed, as the separation tends to
infinity the value of Egy tends to zero.
On the surface of the Earth, wherer = Rg, it
follows that Ep, = ~GmMMe/Re.

Let us now use this expression for
gravitational potential energy together with
the concept of conservation of mechanical
energy to determine the escape speed of a
body. This is the minimum speed with which
a body can be projected from the surface of
the Earth to enable it just to escape from the
Earth and reach r = o with zero speed.
This means that the total mechanical energy
at r = o is zero, and so the initial total
mechanical energy at r = Rg also must be
Zero:

Epot 1

Figure10 Thegravitational potential energy of afixed massmat a
distance r from the centre of the Earth.
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- [E 2 |:|_ Grnlle

i.e. (Emech)i - DzmvasD Re =0

where v is the required escape speed from the Earth’ s surface.
Itfollowsthat v = (2GMg/Rp)Y2 (38)

It is interesting to note that the escape speed is independent of the mass of the escaping body. However, the
initial kinetic energy required to give a body the required escape speed is directly proportional to the mass of the
body.

0 Determine the value v from Earth given that G = 6.67 x 1071 N m2kg=2, Mg = 5.98 x 102*kg and
Re = 6.37 x 105 m.

Question T14

A body is projected vertically with a speed equal to half the escape speed. Determine the maximum height
reached, in terms of the radius of the Earth Re. (Neglect air resistance.) 0O .
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6 Closingitems
6.1 Module summary

1

The work done by a constant force F' on a body that undergoes a displacement s is defined by the scalar
product

W = Fys, + Fys, + F;s, = Fscos6 = Fl[d (Egn 5)

If the force is not constant, then this product is replaced by the limit of an appropriate sum, which may be
expressed as a definite integral. In the case of aforce that varies in strength but always acts along the x-axis
thisintegral takesthe form

XB

W= J’Fx(x) dx (Egn 16)

Xa
which may be interpreted as the area under the graph of F, against x between x, and xg. In three dimensions
the work done may depend on the particular path that the body moves along can be represented by the
line integral

W:_T'F@s
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The translational kinetic energy of abody of mass mand speed v is:
Etran = 5 Mv? (Ean 10)

and the work done on a body by a single resultant force can be related to the change in kinetic energy of the
body, by the work—energy theorem:

W = (Egan )t = (Egran)i = AEyan (Ean 12)

A conservative force is one where the total work done by the force is zero for any round trip, or where the
work done by the force is independent of the path connecting the start and end points. Other forces are
non-conservative forces.

A potential energy may be associated with each conservative force that acts on a body or between a system
of bodies. The amount of potential energy associated with some final configuration (relative to a chosen
reference configuration) is known as Ep. Thisis equal to the work done by the conservative force on the
system as it is taken from that final configuration to the chosen reference configuration. Equivalently, we
can say that it is the negative of the work done by the conservative force as the system is taken from some
initial configuration to the final configuration.

(Epot)f - (Epot)i = AEpot == i(fmn (Eqn 21)
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The gravitational potential energy of amass mat asmall height h above the Earth’s surface is given by:

Epot = Mgh Q
The gravitational potential energy of amass m at a distance r from the Earth’ s centre is given by:
-GMgm
Ep =——— LI (Ean 37)

r

The strain potential energy of a spring that obeys Hooke' s law that has been extended by an amount x from
its unextended stateis given by

Epot = 3 keX? 0 (Egn 23)
For systemsin which only conservative forces act, the total mechanical energy, Eqecn, 1S cOnserved. That is:
Emech = Epot + Eyran = CONstant (Egn 24)

where E, and E4, are the potential and translational kinetic energies of the system. This equation provides
the means of linking the speed of a body to its position in such a system.

For systems in which non-conservative forces act, the total mechanical energy, Eecn, 1S NOt conserved, but
varies with the work done as:

(Emech)f = (Emech)i +Wne (Eqn 31)
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If the potential energy associated with a particular conservative force is a function of the single variable X,
then the only non-zero component of the force will be F,, and its value at any point will be given by the
negative gradient of the E, against x graph at the same point.

= i 5O
ax-ol Ax dx

The principle of conservation of mechanical energy can be extended to cover al forms of energy, thus
leading to the principle of conservation of energy. The idea that mass is a measure of energy content, as
suggested by Einstein, has to be incorporated into this principle to make it universal.

Power is defined as the rate of doing work:

(Egn 26)

P = dwW/dt (Egn 34)
Power is related to the force F exerted on a body moving with velocity v by means of the scalar product:
P=F-v (Egn 35)

In an elastic callision the total kinetic energy is conserved.
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6.2 Achievements
Having completed this module, you should be able to:

Al

A2

A3

A4

A5

A6

Define the terms that are embol dened and flagged in the margins of the module.

Write down expressions for work done by aforce acting upon a body when the body undergoes a specified
displacement or moves along a specified path. (This applies to cases in which the force varies as well as
casesin which it is constant.)

Write down and justify an expression for the work done by a force in stretching a spring that obeys
Hooke's law.

State the work—energy theorem, derive an equation which represents that theorem in sufficiently simple
cases, and use that equation to solve problems involving work done and kinetic energy changes.
Distinguish between conservative and non-conservative forces and explain why the concept of potential
energy is meaningful only in relation to conservative forces.

Derive expressions for gravitational potential energy near the Earth’s surface and the potential energy of a

stretched or compressed spring in sufficiently simple cases. (This might involve writing down integrals, but
you are not expected to evaluate those integrals in this modul e unless you can do so graphically.)
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A7 Derive an expression which represents the principle of conservation of mechanical energy and solve
problems using this conservation principle.

A8 Recal the relation between a conservative force and the associated potentia energy function, and useit to
obtain the force from a given potential energy function in sufficiently simple cases. (In this module thisis
limited to casesin which the potential energy is afunction of asingle variable.)

A9 Explain the meaning of the term power and describe the use of this quantity in comparing the performances
of machines.

A10 Recall and derive an expression relating power, force and velocity.

A11 Describe how the concept of conservation of mechanical energy can be extended to cover all forms of
energy and how this leads to the principle of conservation of energy.

A12 Distinguish between elastic and inelastic collisions.

A13 Write down and use a general expression for the gravitational potential energy of two point like masses
separated by a given distance. Use this expression to justify aformulafor the escape speed from the Earth.

Study comment You may now wish to take the Exit test for this module which tests these Achievements.
If you prefer to study the module further before taking this test then return to the Module contents to review some of the
topics.

FLAP P24 Work and energy o 0 ‘ .
COPYRIGHT © 1998 THE OPEN UNIVERSITY S570 V1.1



6.3 Exit test

Study comment  Having completed this module, you should be able to answer the following questions, each of which tests
one or more of the Achievements.

Question E1

(A2) Explain the meaning of the term work done in the context of a constant force, and determine the work
done by a force of magnitude 5 N acting on a particle which undergoes a displacement of 3m, if the angle
between the force and the displacement is: (a) 0°, (b) 53.1°, (c) 90°.

Question E2

(A3) The same amount of work is done in stretching springs A and B by extensions 2x and x, respectively. If
both springs obey Hooke' s law, what is the ratio of the spring constants of springs A and B?
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Question E3
(A4) Show that the work done by a constant force on a particle is equal to the increase in kinetic energy of the

particle.

Question E4

(A10) A singleforce acts on particle moving in one dimension, causing it to accelerate. If power is supplied by
the force at the constant rate of 20 W, what is the magnitude of the force when the speed of the particle is

8ms1?

Question E5

(A5) Explain the difference between a conservative and a non-conservative force; explain the meaning of the
term potential energy. How are these concepts related?
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Question E6

(A8) The potential energy function associated with a central force directed towards a fixed point O is given by:
Epot = kr, wherer isthe distance from O and kis a constant. Find an expression for the force in terms of r and k.

Question E7

(A4 and A11l) A block of mass m projected with speed u across a rough horizontal surface comesto rest in a
distance d. Explain what happens to the kinetic energy lost by the block and derive an expression for the
magnitude of the (constant) frictional force acting on the block.

Question E8

(A12) A particle of mass 2m, travelling with speed u;, makes an elastic collision with another particle of mass
m and speed u,. Determine the total kinetic energy after the collision.
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Question E9
(A13) The Moon has a mass of 6.84 x 1022kg and radius 1.74 x 10% m. Calculate the escape speed from the

lunar surface.

(G=6.67x10 11 Nm2kg>?)

Study comment  Thisisthe fina Exit test question. When you have completed the Exit test go back to Subsection 1.2 and
try the Fast track questionsif you have not already done so.

If you have completed both the Fast track questions and the Exit test, then you have finished the module and may leave it

here.
i
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