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1 Opening items

1.1 Module introduction
When two billiard balls collide they remain in contact for only a very short time, during which the forces
between them vary rapidly. To predict the outcome of such a collision by calculating the acceleration of each
ball at each instant of time we would need to know exactly how the forces vary with time, and this is not an easy
matter. However, we may predict the outcome in a simpler way, using the concept of linear momentum1—1the
subject of this module.

The total linear momentum involved in a collision is important because, under certain conditions, it has the same
value both before and after the collision. In other words, it is a conserved quantity. Interestingly, when
appropriately interpreted, the principle of conservation of linear momentum extends beyond the confines of
classical Newtonian mechanics, into the realms of relativistic mechanics and even quantum mechanics.
It is, therefore, along with the conservation of energy, one of the most wide ranging and far reaching principles
in the whole of physics.

We introduce linear momentum in Section 2 and show how Newton’s second law of motion may be expressed in
terms of linear momentum. The principle of conservation of linear momentum is then derived from Newton’s
second and third laws of motion and it is illustrated with some simple one-dimensional applications.
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In Section 3 we extend this to study collisions, and introduce the idea of energy, translational kinetic energy and
the principle of conservation of energy. Collisions are classified as elastic or inelastic, according to whether
kinetic energy is conserved. Elastic and inelastic collisions are then analysed in terms of the conservation
principles, using examples that involve one- and two-dimensional motions. Finally, brief mention is made of a
revised definition of momentum, necessary for the extension of momentum conservation into relativistic
mechanics.

Study comment Having read the introduction you may feel that you are already familiar with the material covered by this
module and that you do not need to study it. If so, try the Fast track questions given in Subsection 1.2.  If not, proceed
directly to Ready to study? in Subsection 1.3.
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1.2 Fast track questions

Study comment Can you answer the following Fast track questions?. If you answer the questions successfully you need
only glance through the module before looking at the Module summary (Subsection 5.1) and the Achievements  listed in
Subsection 5.2. If you are sure that you can meet each of these achievements, try the Exit test in Subsection 5.3. If you have
difficulty with only one or two of the questions you should follow the guidance given in the answers and read the relevant
parts of the module. However, if you have difficulty with more than two of the Exit questions you are strongly advised to
study the whole module.

Question F1

A railway truck is moving horizontally under a stationary hopper, and is receiving coal at a rate of 2001kg1s−1

from the hopper. The coal is delivered with negligible speed, and the truck and its contents are subject to no
resultant force. Find the rate of change of the truck’s speed at the instant when the total mass of the truck and its
contents is 4 × 1031kg and the speed of the truck is 21m1s−1.
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Question F2

A neutron of mass m travelling east at a speed of 4 × 1041m1s−1 collides with a helium nucleus of mass 4m which
is travelling north at a speed of 3 × 1041m1s−1. If the neutron travels with unchanged speed after the collision, but
moves in a direction 36.9° west of north, find the final speed and direction of the helium nucleus.

Question F3

A golf ball of mass 451g is hit with a golf club. The mass of the club head is 0.301kg and the mass of the shaft is
negligible compared with that of the head. Immediately before the head strikes the ball, the speed of the club
head is 301m1s−1. Assuming that the collision is elastic, calculate the speed with which the ball is propelled.

Study comment

Having seen the Fast track questions  you may feel that it would be wiser to follow the normal route through the module and
to proceed directly to Ready to study? in Subsection 1.3.

Alternatively, you may still be sufficiently comfortable with the material covered by the module to proceed directly to the
Closing items.
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1.3 Ready to study?

Study comment In order to study this module you will need to be familiar with the following terms: acceleration,
component (of a vector), force, mass, Newton’s laws of motion, scalar, speed, vector, vector addition and velocity. Also, you
will need to be familiar with the use of Cartesian coordinate systems, Pythagoras’s theorem, trigonometric functions, the
sine rule, and the cosine rule. Additionally, this module makes some use of the derivative notation of basic differentiation to
represent rates of change and assumes you are familiar with symbols such as dv/dt. If you are uncertain of any of these terms
you can review them now by referring to the Glossary which will indicate where in FLAP they are developed. The following
Ready to study questions will allow you to establish whether you need to review some of the topics before embarking on this
module.
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Question R1

Describe the difference between scalar and vector quantities, and how the resultant or sum of two vector
quantities is found diagramatically.

Question R2

A triangle ABC has side AB of length 4.001m and the angles at A and B equal to 60° and 80°, respectively.
Find the lengths of the sides BC and CA.

Question R3

A horizontal force of magnitude 20 N acts in a direction 40° west of north. Find the components of the force in
the north and west directions.
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Question R4

A horizontal force of magnitude 401N applied to a block on a frictionless horizontal surface produces an
acceleration of magnitude 21m1s−2. What is the mass of the block?

Question R5

(a) If v(t) represents the speed v of a particle at time t, what is the meaning of dv/dt in terms of a graph of v
against t1?

(b) If m is a constant, what would be the graphical interpretation of d(mv)/dt1?

(c) If m is not a constant, would you expect to find that 
  
m

dv
dt

= d

dt
(mv)?
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2 Linear momentum and Newton’s second law

2.1 Definition of linear momentum
It is easy to imagine that a lorry travelling at 401m1s−1 is more difficult to stop than the same lorry travelling at
201m1s−1. Similarly, a lorry travelling at 401m1s−1 is more difficult to stop than a car travelling at 401m1s−1.
From this it is apparent that the difficulty in stopping a body depends on both the mass and the velocity of the
body. The scientific quantity identifying this property of a moving body, which we have loosely described in
terms of the ‘difficulty in stopping’ is called linear momentum (more often simply momentum), p.
In Newtonian mechanics, a body of mass m moving with velocity v, has a momentum p defined by:

p = mv (1)

As velocity is a vector quantity, linear momentum is also a vector quantity, with magnitude mv and a direction
which is the same as that of the velocity vector. The SI units of linear momentum are kg1m1s−1.
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It is often convenient to express the momentum ☞ vector p in terms of its components. If the components of
the velocity vector v are vx, vy and vz, then we write: v = (vx, vy, vz) and p = (1px, py, pz), where the components
of the momentum vector are given by:

px = mvx4py = mvy4pz = mvz (1a)

In dealing with momentum we frequently encounter problems in which motion is not restricted to a single line.
Bodies moving in different directions may collide and may change directions. Since momentum is a vector
quantity, a change in direction represents a change in momentum, even if the magnitude of the momentum is
unchanged.

Question T1

A body of mass 41kg is moving with speed 151m1s−1 in a direction 36.9° east of north. What are the components
of the momentum of the body in the north and east directions?4❏
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Question T2

In a game of volleyball, player 1 near the back of the court passes the ball to player 2, who is standing near the
net. As it approaches player 2 the ball is moving horizontally at 3.01m1s−1. Player 2 taps the ball with a vertical
force so that it acquires a 0.81kg1m1s−1 component of momentum in the vertical direction. If the mass of the ball is
4001g, determine the magnitude and direction of the ball’s resultant momentum.4❏

2.2 Relationship between force and rate of change of momentum
Momentum is closely associated with Newton’s second law of motion, F = ma. Indeed, if we assume that the
mass m is constant, then we can express Newton’s second law in terms of momentum. To see this first note that:

  
F = ma = m

dv
dt

Then note that if m is constant

  
m

dv
dt

= d(mv)
dt

= dp
dt

☞
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and so
  
F = dp

dt
(2)

i.e. the resultant force acting on a body is equal to the rate of change of its momentum.

Equation 2 is a vector equation and so represents the three equations, one for each of the three components of
force:

Fx = dpx

dt
, Fy =

dpy

dt
, Fz = dpz

dt
(2a)

We now have two forms of Newton’s second law when m is constant:

F = ma4and4
  
F = dp

dt

Faced with two ways of expressing Newton’s second law it is legitimate to ask if one is more general or more
fundamental than the other. In fact, the general view is that Equation 2 is the more fundamental. It can be
applied directly to systems of particles as well as to single bodies, and, in some cases, it can even be applied to
bodies with changing mass, such as a rocket that accelerates by expelling the fuel that it carries.
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Given experimental fact that F = dp/dt is more generally applicable throughout classical mechanics you might
wonder how F  = ma fails in various contexts, such as that of varying mass. In that particular case the
inadequacy of F = ma is easy to demonstrate provided you are familiar with the product rule of differentiation
which enables us to write the derivative of a product as a sum of products.

If we start from Equation 2

  
F = dp

dt
(Eqn 2)

but do not assume constant mass, then:

  
F = dp

dt
= d(mv)

dt
= m

dv
dt

+ v
dm

dt
= ma + v

dm

dt
(3)

From this we see that if m is not constant then we have to add a further term vdm/dt to ma to obtain the correct
expression for F. There are several surprising aspects of this. First, a resultant force acting on a body does not
always cause acceleration; it could be that the mass of the body is increasing with time at just the correct rate to
allow constant velocity. Second, even when there is no resultant force acting on the body it may nevertheless
accelerate, if its mass is changing.
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✦ What force is required to push a truck across a frictionless surface at a constant velocity of 51m1s−1 in a given
direction if sand is being poured into the truck at a rate of 61kg s−1?

The identification of ‘force’ with ‘rate of change of momentum’ sanctioned by Equation 2

  
F = dp

dt
(Eqn 2)

also has another important consequence; if F = 0  ☞  then dp/dt = 0 thus:

If no resultant force acts on a body then its momentum does not change.

As you will see in Subsection 2.3 a generalization of this result leads to the important principle of momentum
conservation.
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Impulse

There are many situations where the force on a body acts only for a very short time (e.g. bats on balls) and we
are concerned only with the consequent changes in the motion of the body. If the force F is constant and acts for
a short time ∆t, it follows from Equation 2

  
F = dp

dt
(Eqn 2)

that the momentum of the body will change by an amount

∆p = F∆t (4) ☞

The quantity F∆t is called the impulse of the force. ☞

In many situations where varying forces act for short times it is only their effects (i.e. the momentum changes
they cause) that are of real interest. In such cases Equation 4 may be used to find the constant force that would
produce the same overall effect as the varying force that actually acted. This procedure can give surprising
insights into the rapidly varying forces that arise in various impulsive interactions. For example, in American
baseball the bat and ball are typically in contact for one or two thousandths of a second, during which the
effective average force has a magnitude of about 60001N. Such large forces are not unusual.
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2.3 Conservation of momentum
The concept of momentum is particularly useful when dealing with situations where there are two or more
interacting bodies which interact with each other but not with their surroundings. We call such a system an
isolated system. Any forces which act on parts of an isolated system arise from the mutual interactions between
bodies within the system. Each force is then one member of a Newton’s third law pair of action–reaction forces.
Such forces are called internal forces, to distinguish them from the external forces which act on the system or
parts of the system from outside. We will begin by considering an isolated system in which there are only two
bodies and they only interact with one another.

Let p1 = m1v1 and p2 = m2v2 be the momenta of the two bodies in the system. These two momenta will change
with time, due to the mutual interaction. The total momentum of the system, p, is given by the vector sum of the
momenta of the two bodies:

p = p1 + p2

The rate of change of p with time is therefore determined by the rates of change of p1 and p2

  
dp
dt

= dp1

dt
+ dp2

dt
☞
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At a given instant let F12 be the force on the first body due to the second and F21 be the force on the second
body due to the first. Equation 2

  
F = dp

dt
(Eqn 2)

gives:
  
F12 = dp1

dt
and 

  
F21 = dp2

dt

Newton’s third law of motion tells us that:

F12 = −F214or4F12 + F21 = 0

Therefore
    
dp1

dt
+ dp2

dt
= dp

dt
= 0 (5)

Thus p = p1 + p2 is constant with time, although both p1 and p2 may be varying. At every instant of time the
total momentum is the same (since p does not depend on t). We can summarize the situation by saying that the
total momentum of the isolated system is a conserved quantity.
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Note that in deriving Equation 5

    
dp1

dt
+ dp2

dt
= dp

dt
= 0 (Eqn 5)

we have assumed that the only forces acting on the bodies are F12 and F21. If an external force F had been
acting on the bodies then the system would not be isolated, Equation 5 would not be valid and the total
momentum of the system would not be conserved; rather the total momentum would vary according to

Equation 2.
  
F = dp

dt
(Eqn 2)

Although we have considered only two bodies in deriving Equation 5, the conservation of momentum result can
be extended to any number of bodies in an isolated system. The same reasoning as before may be used: the rate
of change of total momentum of the isolated system is zero because the vector sum of the impulses from each
action–reaction pair of forces is zero. This result constitutes one of the most important principles of physics:

The principle of conservation of momentum:

The total momentum of any isolated system is constant with time.

Alternatively, we can say that the total momentum of any system does not change through mutual
interactions within the system.
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✦ When a ball bounces from a wall, its momentum changes, and so it appears that momentum is not
conserved. Explain why this is not so.

Question T3

Derive the principle of conservation of momentum from Newton’s laws as applied to an isolated system
consisting of three interacting particles.4❏

Question T4

When you walk along the road with constant velocity you have constant momentum. When you stop walking
you have zero momentum. Where has your momentum gone?4❏
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2.4 Symmetry and conservation
If an object or a system of objects can be altered in some way without changing its overall behaviour or
appearance, that object or system is said to exhibit symmetry under the alteration. For instance, a uniform
sphere may be rotated through an arbitrary angle about its centre point without changing its properties or
appearance in any way; such a sphere is consequently said to exhibit rotational symmetry and to be invariant
(i.e. unchanging) under arbitrary rotations about its centre.

Symmetries and their related invariances are common features of physical systems and of the laws that describe
them. Some of these symmetries are so readily taken for granted that it is easy to overlook them. For example, it
is generally assumed amongst physicists that the outcome of a fundamental experiment does not depend on
where or when it is performed. There is, of course, a good deal of evidence in support of this belief but it is
impossible to test every case. Consequently, our expectation that the fundamental behaviour of physical systems
will not vary from country to country or from day to day is largely based on our belief in the symmetry of nature
under translations (i.e. ‘shifts’ or ‘transfers’) through space and time. In fact, much of modern science is based
on the following assumptions:

o The laws of physics must be invariant under arbitrary translation through space.

o The laws of physics must be invariant under arbitrary translation through time.
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If either of these fundamental invariances was violated, if momentum was only conserved on Tuesdays say, or
only in Western Europe, then physics would be a much less interesting subject and even harder to master.

The reason for embarking on this discussion of symmetry and invariance is that it has been known for a long
time that there is a deep link between the symmetries of nature and the existence of conserved physical
quantities. It can be argued, for instance, that the invariance of physical laws under translations through time
implies the existence of a conserved scalar quantity which may be identified as energy (about which more is said
later in the module). Similarly, the invariance of physical laws under translation through space implies the
existence of a conserved vector quantity which may be identified as momentum. Thus the principle of
momentum conservation may be regarded as one of the fundamental principles of physics and you should not be
surprised to learn that its validity extends beyond the confines of classical Newtonian mechanics.

The mathematical techniques needed to establish the link between symmetry and conservation are beyond the
scope of FLAP but the importance of the result would be hard to overestimate. The search for fundamental
symmetries, of which we have mentioned only two, has been one of the central pillars of modern physics and
has fuelled much of the progress made in the last 40 years.
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2.5 Worked examples involving conservation of momentum
In a scientific context, the term collision means a brief but powerful interaction between two particles or bodies
in close proximity. To illustrate the value of the principle of conservation of momentum in solving problems, let
us begin with the simple case of two bodies moving in one dimension which collide and stick together on
impact. Later, we will extend our discussion to two- and three-dimensional motion and to collisions where the
bodies do not stick together.

Collisions in one dimension, where the two bodies stick together

Example 1 A body of mass 21kg moving with a speed of 61m1s−1 along the x-axis collides with a stationary
body of mass 41kg. The bodies stick together on impact and move off as one combined body along the x-axis
with speed vx. Find the value of vx, assuming this is an isolated system.
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Solution4In applying the principle of conservation of momentum to the isolated system we equate the total
momentum before the collision to the total momentum after the collision. Therefore, conserving momentum
along the x-axis:

m1u1x + m2u2x = (m1+ m2)vx (6)

where u1x and u2x are the initial velocities of the masses m1and m2.

Thus vx = (m1u1x + m2u2x)/(m1+ m2)

i.e. vx = (21kg × 61m1s−1 + 41kg × 01m1s−1)/(21kg + 41kg)

so, vx = 121kg1m1s−1/61kg = 21m1s−14❏

Example 2

A radioactive nucleus ☞ at rest decays by forming an alpha-particle (an α-particle is a helium nucleus) and a
daughter nucleus. The mass of the daughter nucleus is 54 times that of the α-particle. What is the velocity of the
daughter nucleus if the velocity of the α-particle vα is 1 × 1071m1s−1 along the positive x-axis? This can be
thought of as a ‘sticking collision’, but in reverse.
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Solution4The total momentum before the decay is zero and so the total momentum afterwards must also be
zero. This means that the vector sum of the momenta of the two particles after the decay must be zero. To satisfy
this condition the magnitudes of the two momenta must be equal and their directions must be opposite. Let m be
the mass of the α-particle and vx the required velocity of the daughter nucleus. Conserving momentum along the
x-axis, we have:

mvα  + 54mvx = 0

so vx = −vα /54 = −1 × 1071m1s−1/54 = −1.85 × 1051m1s−1

This confirms that the daughter nucleus recoils in the opposite direction to the α-particle, as expected.4❏

Question T5

Two blocks of masses 0.31kg and 0.21kg are moving towards one another along a frictionless, horizontal surface
with speeds 1.01m1s−1 and 2.01m1s−1, respectively. If the blocks stick together on impact, find their final
velocity.4❏
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Question T6

Consider the following scenario. The population of the Earth (5.6 × 109 people in September 1994) all begin
walking in the same direction at 1.01m1s−1. Estimate the effect on the Earth. (Take the mass of the Earth as
6.0 × 10241kg.) What would happen when everybody stopped walking?4☞ ❏
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Collisions in two dimensions, where the two bodies stick together

In problems in which motion is in more than one dimension we have to take care over the directions of motion
of the bodies involved. This means that in applying conservation of momentum we need to remember the vector
nature of momentum. In our discussions so far we have prepared the ground for this extension by stressing the
vector approach throughout and by insisting on the use of component notation, even with one-dimensional
problems where there was the temptation to drop the subscripts! For two- or three-dimensional problems there
are two possible approaches which may be used: vector summation or use of components. We will consider
these alternative approaches in the following worked examples.

Example 3 A 20001kg van, travelling due east at 201m1s−1 collides on an icy patch of road with a 10001kg car
travelling due north at 301m1s−1. The vehicles lock together on impact and then move off as one body over the
frictionless surface. Find the velocity of the vehicles after the collision.

Study comment Beware1— 1problems which ask for the velocity cannot be fully answered until you have given the
direction of motion as well as the speed of motion. This same warning applies equally for any other vector quantity, such as
momentum. It is very easy to forget this!
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θ p11=1m1u1

p1=1(m11+1m2)v p21=1m2u2

41×1104
1kg1m1s−1

31×1104
1kg1m1s−1

y

x

Figure 14The resultant momentum p
of two vehicles moving east and north
is constructed from the vector sum of
the momenta of the vehicles.

Solution4Let the final velocity of the vehicles be v. We need to determine
both the magnitude and direction of v in order to specify it completely.
First, let us consider the vector summation approach. The magnitudes of
the momenta of the van and car before the collision are:

for the van p1 = (20001kg × 201m1s−1) = 4.0 × 1041kg1m1s−1

for the car p2 = (10001kg × 301m1s−1) = 3.0 × 1041kg1m1s−1

These two momenta must be added vectorially, as shown in Figure 1, to
determine the total momentum, p = p1 + p2 before the collision.
The direction of p is at an angle θ to the original direction of the van.
Using Pythagoras’s theorem or by inspection of Figure 1 (a ‘3, 4, 5
triangle’) we find the magnitude of p is 5.0 × 1041kg1m1s−1; also we see that
tan1θ = 3/4.

Since the two vehicles on a frictionless surface constitute an isolated
system, conservation of momentum tells us that the total initial momentum
is equal to the total final momentum and so we know that p also represents
the total final momentum of the locked-together vehicles.
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Since p = (m1 + m2)v (7)

the magnitudes of the vectors p and v are related by

v = p/(m1 + m2) = 5.0 × 1041kg1m1s−1/30001kg = 16.71m1s−1

Furthermore, since tan1θ = 3/4, it follows that θ = 36.9°.

Let us now try the alternative approach, using components. The component approach is based on the fact that if
the total momentum vector, p, remains constant in an isolated system, then so too must the component of p in
any given direction. In our example we need to consider, in turn, the component in the east direction (say the
positive x-direction) and the component in the north direction (say the positive y-direction). In this example the
van has the total x-component of momentum and the car has the total y-component of momentum. Conservation
of x and y momentum then immediately gives:

px = p1cos1θ = p1 = m1u1x = 4.0 × 1041kg1m1s−1

and py = p1sin1θ = p2 = m2u2y = 3.0 × 1041kg1m1s−1

with p = (0px
2 + py

2)1/2 = 5.0 × 1041kg1m1s−1

and θ = arctan1(00py0/px ) = arctan1(3/4) = 36.9°

As before, v = p/(m1 + m2) = 5.0 × 1041kg1m1s−1/30001kg = 16.71m1s−14❏
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Study comment Whilst you should practice using both the vector summation method and the component method in
solving problems on momentum involving more than one dimension, the component approach is easier to use with more
complicated examples. A good general strategy is to set up a clearly labelled diagram of the collision, with appropriately
chosen Cartesian coordinate axes x, y, z shown. These axes are chosen so as to simplify the solution1—1perhaps by arranging
them in such a way that one of the incoming particles is moving only along the x-axis. Then momentum conservation is
applied for components along each of the axes in turn, with each direction treated entirely independently. Finally, the
components are recombined to give the magnitude and direction of the required vector.

Question T7

A body of mass 61kg moving north over a frictionless horizontal surface at a speed of 61m1s−1 collides with a
stationary body of mass 41kg. After the collision the more massive body moves in a direction 30° west of north
and the less massive body in a direction 25° east of north. Find the speeds of the bodies after the collision.
Use the vector summation method, then repeat the calculation using components.4❏
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3 Momentum and kinetic energy in collisional problems
In the collision problems tackled so far we have always either finished up with a single body, or started with a
single body (e.g. in α-decay). The reason for this limitation is that only such problems have a unique solution,
obtainable by applying momentum conservation alone. For all other collisions we need to involve other
principles in addition to momentum conservation. To illustrate this we can consider a one-dimensional problem
in which two colliding bodies with known masses m1 and m 2, and with known initial velocities u1x and u2x
collide and then separate with final velocities v1x and v2x. In general, when the initial conditions are given, the
problem involves finding the two unknowns v1x and v2x. However, consideration of momentum conservation
along the x-direction:

m1u1x + m2u2x = m1v1x + m2v2x

gives only one equation connecting these two unknowns and so the problem is insoluble without more
information. ☞
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The additional information is provided by introducing the idea of energy. ☞ Energy can exist in several forms,
but the energy that a body has due to its instantaneous linear motion is called its translational kinetic energy.
In classical Newtonian mechanics the translational kinetic energy of a body of mass m and speed v is defined as:

  Etran = 1
2 mv2 (8)

Energy is a scalar quantity. In the SI system, the unit of energy is the joule (J) where 11J = 11kg1m21s−2.

Translational kinetic energy ☞ is only one of several forms in which energy can appear. A body may also have
potential energy due to its position or internal state, as in the case of a mass suspended above the surface of the
Earth, or a compressed spring. Quite apart from these various forms of mechanical energy we can also associate
energy with other physical phenomena, so we may speak of electrical energy, light energy, sound energy and
thermal energy. Energy may be transformed between these different forms by physical and chemical processes
but it is generally accepted that, for an isolated system, the sum of all these different forms of energy remains
constant. This fundamental principle is known as the principle of conservation of energy.
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Collisions may be categorized by comparing the total kinetic energy of the colliding bodies before and after the
collision. If there is no change in the total kinetic energy, then the collision is an elastic collision. If the kinetic
energy after the collision is less than that before the collision then the collision is an inelastic collision. In some
situations (e.g. where internal potential energy is released) the total kinetic energy may increase in the collision;
this type of collision is a superelastic collision.

Collisions between macroscopic objects are usually inelastic but some collisions, such as those between steel
ball bearings or between billiard balls, are very nearly elastic. Collisions between subatomic particles, such as
electrons, protons, commonly are elastic. The kinetic energy which is lost in an inelastic collision appears as
energy in a different form, e.g. thermal energy, sound energy, light energy, so that the total energy is conserved.
The collisions which we have dealt with so far, in which the bodies stick together on collision and move off
together afterwards, are examples of completely inelastic collisions. In these cases the maximum amount of
kinetic energy consistent with momentum conservation, is converted into other forms of energy.
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3.1 Elastic collisions in one dimension
We begin this discussion with an example of a simple one-dimensional elastic collision between two identical
masses, where one incoming projectile strikes another, initially stationary target. We wish to know the final
velocities of each mass after the collision.

Example 4 A mass m moves along the x-axis with velocity u1x and collides elastically with another identical
mass at rest. What are the velocities of the two masses after collision?
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Solution4Let the final velocities be v1x and v2x. Conservation of momentum along the x-axis gives

mu1x = mv1x + mv2x (9)

and conservation of kinetic energy gives

  
1
2 mu1x

2 = 1
2 mv1x

2 + 1
2 mv2 x

2 (10) ☞

By eliminating common factors, Equations 9 and 10 can be simplified to give

u1x = v1x + v2x

i.e. v2x = u1x − v1x (9a)

and   u1x
2 = v1x

2 + v2 x
2

i.e.   v2 x
2 = u1x

2 − v1x
2 = (u1x − v1x )(u1x + v1x ) (10a)

Dividing this last equation by v2x =  u1x − v1x gives us

v2x = u1x + v1x



FLAP P2.5 Momentum and collisions
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

Comparing this expression for v2x

v2x = u1x + v1x

with that in Equation 9a

i.e. v2x = u1x − v1x (Eqn 9a)

shows us v1x = 04and4v2x = u1x4❏

This result is familiar to anyone who has seen the head-on collision of two bowls on a bowling green.
The moving one stops, and the stationary one moves off with the original velocity of the first.

✦ In the situation above, the two masses were equal. What would you expect to happen if the two masses were
not equal? Can you predict qualitatively (without calculation what would happen with the target mass m2 at rest
if: (a) m1 >> m2, (b) m2 >> m1. ☞)

✦ In this last question we used terms such as ‘high mass’ and ‘low mass’ rather than ‘heavy’ and ‘light’.
Why do you think we did this?
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Now we consider the mathematical solution of the general one-dimensional case of an elastic collision between
particles of mass m1 and m2 which move with speeds u1x and u2x before the collision and speeds v1x and v2x after
the collision. Since the collision is elastic the kinetic energy is conserved and so we can write:

  
1
2 m1u1x

2 + 1
2 m2u2 x

2 = 1
2 m1v1x

2 + 1
2 m2v2 x

2 (11)

This equation, together with the momentum conservation equation,

  m1u1x + m2u2 x = m1v1x + m2v2 x (12)

allows v1x and v2x to be found, if we know the values of m1, m2 and the initial velocities u1x and u2x. The algebra
is rather lengthy but it is worth the trouble because on the way we derive another useful expression relating the
velocities. From Equation 11:

  m1(u1x
2 − v1x

2 ) = m2 (v2 x
2 − u2 x

2 )

i.e. m1(u1x − v1x)(u1x + v1x) = m2(v2x − u2x)(v2x + u2x) (13)

But, from Equation 12:

m1(u1x − v1x) = m2(v2x − u2x) (14)
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If we divide each side of Equation 13

i.e. m1(u1x − v1x)(u1x + v1x) = m2(v2x − u2x)(v2x + u2x) (Eqn 13)

by the corresponding side of Equation 14

m1(u1x − v1x) = m2(v2x − u2x) (Eqn 14)

we obtain:

u1x + v1x = v2x + u2x

i.e. u1x − u2x = − (v1x − v2x) = v2x − v1x (15)

Equation 15 shows that the following general result holds true:

In an elastic collision between two masses the relative velocity of approach is the negative of the relative
velocity of separation.
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Equation 15 can be combined with Equation 14

u1x − u2x = − (v1x − v2x) = v2x − v1x (Eqn 15)

m1(u1x − v1x) = m2(v2x − u2x) (Eqn 14)

to solve simultaneously for v1x and v2x. We multiply Equation 15 by m2 to obtain:

m2u1x − m2u2x = m2v2x − m2v1x

If we subtract this equation from Equation 14 we have:

u1x(m1 − m2) + 2m2u2x = v1x(m1 + m2)

so v1x = [u1x(m1 − m2) + 2m2u2x]/(m1 + m2) (16)

Similarly we can derive the following expression for v2x:

v2x = [u2x(m2 − m1) + 2m1u1x]/(m1 + m2) (17)
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It is interesting to examine these results for v1x and v2x in a few special cases, including some that have been
mentioned earlier.

v1x = [u1x(m1 − m2) + 2m2u2x]/(m1 + m2) (Eqn 16)

v2x = [u2x(m2 − m1) + 2m1u1x]/(m1 + m2) (Eqn 17)

1 m1 = m2

If two objects of equal mass collide, Equations 16 and 17 give v1x = u2x and v2x = u1x. This means that the
particles simply exchange velocities on collision. For example, if particle 2 is at rest initially (u2x = 0), then
finally particle 1 is at rest (v1x = 0) and particle 2 moves with the initial velocity of particle 1
(v2x = u1x). We saw this result earlier in this subsection; it is a familiar tactic in bowls.

2 m1 >> m2; u2x = 0

If m 2  is very small compared with m1, and u 2 x  = 0, Equations 16 and 17 give
v1x ≈ u1x and v2x ≈ 2u1x. Thus the motion of the high mass particle is virtually unchanged by the collision but
the low mass particle moves off with a velocity of twice that of the high mass particle. Tennis players
serving will be familiar with this case.
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v1x = [u1x(m1 − m2) + 2m2u2x]/(m1 + m2) (Eqn 16)

v2x = [u2x(m2 − m1) + 2m1u1x]/(m1 + m2) (Eqn 17)

3 m2 >> m1; u2x = 0

If m1 is very small compared with m2 (which is stationary), then Equations 16 and 17 lead to v1x ≈ −u1x and
v2x ≈ 0 ☞. Therefore, the low mass particle rebounds with almost unchanged speed while the high mass particle
remains essentially at rest. Golfers whose ball hits a tree will recognize this situation.

4 m2 >> m1; u2x ≈ −u1x

If m1 is negligible compared with m2, and the two bodies approach head-on with equal speeds then
Equations 16 and 17 lead to v1x ≈ −3u1x and v2x ≈ u2x. This shows that the low mass particle bounces back
with three times its initial speed, while the high mass particle continues essentially unaffected by the
collision. This case will be recognized by a batsman playing cricket or by a tennis player returning a serve;
a less familiar example is covered in the Exit test.

The results for these four special cases accord with common experience. The results quoted above under
numbers 2, 3 and 4 give an upper limit to the speed that can be imparted to a ball hit by a club, bat or racquet.
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Question T8

A neutron of mass m rebounds elastically in a head-on collision with a gold nucleus at rest and of mass 197m.
What fraction of the neutron’s kinetic energy is transferred to the recoiling gold nucleus? Repeat this calculation
when the target is a carbon nucleus at rest and of mass 12m.4❏

Question T9

A tennis player returns a service ball back in the direction of the server. The ball of mass 501g arrives at the
racquet of mass 3501g with a speed of 451m1s−1 and the racquet is travelling at 101m1s−1 at impact. Calculate the
velocity of the returning ball, assuming elastic conditions.4❏
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3.2 Inelastic collisions in one dimension
We now extend our discussion to include cases where the total kinetic energy changes during the one-
dimensional collision.

Completely inelastic collisions

First we return to our original case, where the two particles stick together on impact; this is an example of a
completely inelastic collision, which occurs with the maximum loss of kinetic energy consistent with momentum
conservation. As a simple example, suppose we have two bodies of equal mass, with one initially at rest. If the
initial velocity of the other is ux, the initial momentum is mux; the final momentum must be the same so, since
the mass has been doubled, the final velocity is ux0/02 and the final kinetic energy is 2m(ux0/02)2/02

 
= mux

2/4.
Half the original kinetic energy has been transformed into other forms, mainly heat, during the collision.

For the more general case where the colliding masses are unequal, but they stick together at collision, we still
have v1x = v2x = vx and so Equation 12 simplifies to our earlier Equation 6

m1u1x + m2u2x = (m1 + m2)vx (Eqn 6)

and provides a full solution of the problem, without recourse to energy.
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Question T10

A mass m1 travels along the x-axis with speed u1x and collides with a mass m2 at rest. If the two masses stick
together on impact derive an expression for the fraction of the original kinetic energy lost in the collision.
What happens when m2 >> m1?4❏

The general case of an inelastic collision in one dimension

To complete the picture, let us mention the general case where two particles collide but where the transfer of
kinetic energy into other forms is less than that for the completely inelastic case. This problem has no general
solution without more information, such as the fraction of kinetic energy converted. Such problems have
solutions which lie between those for the two extremes of elastic and completely inelastic collisions but they
must be tackled on an individual basis, using the general principles of conservation of momentum and energy.

You will see that in all these calculations we have not needed to invoke the rather complicated forces involved in
the interaction of the two particles, but rather have been able to solve the problems using only the principles of
conservation of momentum and energy. This is a great simplification and illustrates the power of using
conservation principles whenever possible.
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3.3 Collisions in two or three dimensions
The same principles apply when we look at collisions in two or three dimensions. We have already considered
this in Subsection 2.5, for the case of completely inelastic collisions. The extension to include elastic collisions
is straightforward. We simply treat the motions in each dimension as independent motions, as we did in
Subsection 2.5, and apply momentum conservation separately along each Cartesian coordinate axis, with the
scalar quantity of kinetic energy and its conservation providing one additional equation relating the squares of
the particle speeds. Once again, since we have been careful to use vector notation throughout, this extension to
two or three dimensions is easily made.

Elastic collisions between two equal masses, with one mass at rest

Consider the elastic collision between two identical bodies of mass m, one at rest and the other approaching with
velocity u1. The particles are no longer confined to move in one dimension, so our x-component equations
(Equations 9 and 10), embodying momentum and kinetic energy conservation,

mu1x = mv1x + mv2x (Eqn 9)

  
1
2 mu1x

2 = 1
2 mv1x

2 + 1
2 mv2 x

2 (Eqn 10)
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Figure 24(a) Elastic collision
between equal masses, with one
at rest; (b) the corresponding
vector triangle.

become full vector equations:

mu1 = mv1 + mv2 (18)

and   
1
2 mu1

2 = 1
2 mv1

2 + 1
2 mv2

2 (19)

These can be simplified to:

u1 = v1 + v2 (20)

and   u1
2 = v1

2 + v2
2 (21)

Equation 20 tells us that all three velocity vectors must lie in a single plane, in
order for their vector sum to be zero. These equations are most easily
interpreted by a diagram. Figure 2 shows how the three vectors u1, v1 and v2 are
related to one another. They form a triangle which must be a right-angled
triangle, since the sides obey Pythagoras’s theorem. The implication of this is
striking; when two equal masses collide elastically they move away at 90° to
each other. This is the simplifying feature of equal-mass collisions in two or
three dimensions, corresponding to the simple result of the exchange of
velocities, which we found in one dimension. ☞



FLAP P2.5 Momentum and collisions
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

y

x

u1
v1

v2

u1

v1 v2

(a)

(b)

Figure 24(a) Elastic collision
between equal masses, with one
at rest; (b) the corresponding
vector triangle.

u1

v1

v2

2

1

Figure 34When ball 1 strikes
ball 2, the reaction forces at the
contact ensure that ball 2 is
propelled away along the line of
centres, as in snooker.

You may have noticed that this result
does not tell us exactly where the bodies
go after the collision. Any pair of final
velocities which can be represented by
Figure 2 will be equally satisfactory, and
there are an infinite number of these.
The reason for this is that we have said
nothing about the shape or size of the
bodies, and just how they collide. If we
have any information about how the
bodies collide, as for example in the
situation shown in Figure 3, then we will
usually be able to find the final velocities.

Question T11

In the example above (illustrated in Figure 2), if the moving body has an
initial speed of 101m1s−1, and is deflected through 20° in the collision, find
the magnitudes and directions of the velocities v1 and v2.4❏
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Question T12

In the example above (illustrated in Question T11), if instead of the conditions in Question T11 the speed of the
moving body is reduced from 101m1s−1 to 61m1s−1 by the collision, find the final velocities.4❏

When the two masses are unequal the algebraic manipulations required to solve collision problems become
rather complex, but no new physics is involved in the solution and we will not pursue such problems here.
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3.4 Relativistic momentum
It is now quite easy to study collisions in which the particles are travelling at a significant fraction of c, the speed
of light in vacuum. These experiments fall mainly into the realm of nuclear and particle physics and an example
might be the elastic collision between a very fast electron from a particle accelerator and an electron in the
material of a stationary target. From what we have said in Subsection 3.3 we would predict that the angle
between the outgoing tracks of the scattered electron and the target electron ought to be 90°. The prediction
proves correct at low impact speeds but as this speed is increased the angle becomes less than 90° and the
reduction in the angle increases with the impact speed. At the highest attainable speeds the incident electron is
barely deflected at all by its collision with the target electron while the target electron also moves off in about
this same direction. The collision essentially reverts to a one-dimensional bat–ball type of collision. From our
discussions in Subsections 3.1 and 3.3 we recognize that this is exactly what would happen if the incoming
electron had a mass which increases with speed, so that its mass eventually becomes much greater than that of
the target electron and it is essentially unaffected by the collision. This suggestion, that the mass of a particle is
not a constant but rather increases with speed is one of the possible interpretations of this experiment. However,
this experiment does not measure mass but rather momentum and so its interpretation is best made in terms of
the momentum, rather than in terms of either mass or speed separately. All we can be sure of is that if
momentum conservation is valid then the magnitude of the momentum at high speeds cannot simply be given by
the product of mass and speed.
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The magnitude of the momentum of a particle with mass m and speed v must always be greater than mv.
Although mv is a good approximation at sufficiently low speeds, it underestimates the momentum
progressively as the speed increases.

In 1905 Albert Einstein (1879–1955) postulated his special theory of relativity and amongst its consequences
was a new definition for the momentum of a moving particle. The new definition of the relativistic momentum
of a mass m when moving with velocity v is:

relativistic momentum

    

p = mv

1 − v2

c2

(22) ☞

This definition incorporates the features required to explain our experiment.

✦ What is the expression for the relativistic momentum of a particle moving at low speeds, so that v/c << 1?
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✦ What is the magnitude of the relativistic momentum of a particle moving at a speed of, (a) v/c = 0.1,
(b) v/c = 0.9, and (c) what happens as v/c approaches 1?

The result for part (c) (i.e. where v/c = 1) illustrates why it is not possible to accelerate a body to c, the speed of
light in vacuum; to do so would require either an infinite force or an infinite time. Note, however, that it is the
speed of light in a vacuum which is the limiting speed, not the speed of light in any other material, which is
always less than c. So, it is perfectly possible to have a body travelling faster than the speed of light in glass or in
water or even in air! ☞ This discussion is only the briefest mention of relativity, about which more is said
elsewhere is FLAP.
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4 Closing items

4.1 Module summary
1 The momentum of a body, a vector quantity, is defined as the product of its mass and its velocity in classical

Newtonian mechanics

p = mv (Eqn 1)

At high speeds this definition must be modified into that for relativistic momentum

    

p = mv

1 − v2

c2

(Eqn 22)

2 The force acting on a body is equal to the rate of change of momentum

  
F = dp

dt
(Eqn 2) ☞

This statement is a more fundamental statement of Newton’s second law of motion than that in which force
is equated to the product of mass and acceleration, since the latter form is applicable only for situations in
which mass is constant.
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3 The principle of conservation of momentum for an isolated system can be derived from Newton’s second
and third laws of motion.

4 The principle of conservation of momentum plays an essential part in the solution of collision problems.

5 Translational kinetic energy is the energy that a body has as a result of its motion. In classical Newtonian
mechanics

  Etran = 1
2 mv2 (Eqn 8)

6 One-dimensional problems involving elastic collisions, in which kinetic energy is conserved, may be solved
completely.

7 Problems involving motion in more than one dimension can only be solved fully if some details of the
collision are known. One example is the elastic collision between two equal masses, where one mass
initially is at rest. Here, the departing trajectories always make an angle of 90°.
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4.2 Achievements
Having completed this module, you should be able to:

A1 Define the terms that are emboldened and flagged in the margins of the module.

A2 Determine the momentum of a body or system of bodies, given the mass and velocity of each body.

A3 State and apply Newton’s second law in terms of momentum.

A4 Show that the force acting on a body can be expressed as the sum of two terms, one involving rate of change
of velocity and the other involving the rate of change of mass.

A5 Derive the principle of conservation of momentum from Newton’s second and third laws of motion.

A6 Describe the essential features of elastic and inelastic collisions.

A7 Use the principle of conservation of momentum to solve problems involving completely inelastic collisions
in one- or two-dimensional motion or ones involving the disruption of a single mass by explosion or decay.

A8 Use the principles of conservation of momentum and kinetic energy to solve elastic collision problems.

Study comment  You may now wish to take the Exit test for this module which tests these Achievements.
If you prefer to study the module further before taking this test then return to the Module contents  to review some of the
topics.
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4.3 Exit test

Study comment Having completed this module, you should be able to answer the following questions, each of which tests
one or more of the Achievements.

Question E1
(A2)4Find the ratio of the magnitudes of the momenta associated with a rifle bullet of mass 30 × 10−31kg
moving at 4001m1s−1 and a brick of mass 11kg moving at 101m1s−1.

Question E2

(A3 and A4)4Explain quantitatively how it is possible for a body on which a resultant force acts to move with
constant velocity.
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Question E3

(A7 and A8)4A particle of mass m moves along the x-axis with velocity ux and collides head-on with a
stationary particle of mass 2m. If in the collision the first particle is brought to rest, find the velocity of the
second particle. This second particle then collides head-on with a stationary third particle of mass 3m.
If the second and third particles stick together on impact, find their subsequent velocity after the collision.

Question E4

(A3)4Two balls of the same mass travelling at the same velocity strike a window perpendicularly.
The first bounces back but the second breaks the window. Explain how this could be so.

Question E5

(A3)4A car travelling at 151m1s−1 goes out of control and hits a tree, with the car and driver coming to rest in 0.6
s. What is the initial momentum of the driver, whose mass is 701kg? What is the magnitude of the average force
exerted on the driver during the crash, and how does this force compare with the magnitude of the driver’s
weight?
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Question E6

(A8)4A spacecraft approaches the planet Jupiter, passes round behind it, and departs in precisely the opposite
direction to that with which it approached. Initially, when the spacecraft is a large distance from the planet, the
spacecraft is moving in the negative x-direction at a speed of 101km1s−1, and Jupiter is moving in the positive x-
direction at 131km1s−1. Assuming elastic conditions, find the final speed of the spacecraft when it is once again at
a large distance from the planet. ☞

Question E7

(A8)4Two steel balls travelling at the same speed collide elastically head-on. One of them is stationary after the
collision. If its mass is 9001g, what is the mass of the other?



FLAP P2.5 Momentum and collisions
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

Question E8

(A7)4A block of stone at a quarry is blown up into three separate pieces of masses 101tonnes, 81tonnes, and
61tonnes (11tonne = 10001kg). The 101tonne piece moves off in the positive x-direction at a speed of 81m1s−1, and
the 8 tonne piece moves in the negative y-direction at 51m1s−1. Find (a) the momentum of the third piece, and
(b) the energy of the explosion, which must be equal to the extra kinetic energy after the explosion.

Study comment  This is the final Exit test question. When you have completed the Exit test go back to Subsection 1.2 and
try the Fast track questions if you have not already done so.

If you have completed both the Fast track questions and the Exit test, then you have finished the module and may leave it
here.
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