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1 Opening items

1.1 Module introduction
Why study circular motion?

For the ancient Greeks the circle symbolized perfection. The fact that the Sun, Moon and stars appeared to move
around the Earth in circular paths was evidence of their status as ‘heavenly bodies’. Circular motion was
supposedly their natural state. Today we know that the Greek picture of how things move was wrong.
The ‘natural state’ of any body, heavenly or otherwise, is motion in a straight line at constant speed unless it is
subject to a force. Why then do we need to study circular motion?

Although we don’t regard movement in a circle with the same reverence as did the ancient Greeks, it is still a
very useful concept. If we restrict our discussion to circular motion at constant speed (called uniform circular
motion), then its mathematical description turns out to be quite straightforward. There are many situations in
nature which approximate to uniform circular motion; the motion of the Earth around the Sun, the orbits of the
Moon and artificial satellites around the Earth, fairground rides, cars going around bends and the internal
workings of washing machines are just some examples which come to mind.
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This module deals with the physics of uniform circular motion and its applications. Some examples of uniform
circular motion, e.g. artificial Earth satellites, are described in Section 2 to give you a ‘feel’ for what they have
in common. This leads in to a more rigorous, mathematical description of circular motion in Section 3, where the
terms angular speed and centripetal acceleration are introduced. Some practical applications of these ideas are
discussed in Section 4.

Before you start to work through the material, here are a couple of questions you might like to ponder.
By the time you reach the end of Section 3 you should be in a position to answer them yourself. Detailed
explanations of the answers to these questions are given in Section 4.

Suppose you are designing a motorway. How can you ensure that the bends will not cause vehicles
travelling at 701mph to skid?

Communications satellites are most effective if they are permanently positioned above a particular
point on the Earth’s surface. How is this possible? Can you position such a satellite above any point on
the Earth’s surface? Could you, for example, have one permanently stationed over Britain?

Study comment Having read the introduction you may feel that you are already familiar with the material covered by this
module and that you do not need to study it. If so, try the Fast track questions given in Subsection 1.2.  If not, proceed
directly to Ready to study? in Subsection 1.3.
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1.2 Fast track questions

Study comment Can you answer the following Fast track questions?. If you answer the questions successfully you need
only glance through the module before looking at the Module summary (Subsection 5.1) and the Achievements  listed in
Subsection 5.2. If you are sure that you can meet each of these achievements, try the Exit test in Subsection 5.3. If you have
difficulty with only one or two of the questions you should follow the guidance given in the answers and read the relevant
parts of the module. However, if you have difficulty with more than two of the Exit questions you are strongly advised to
study the whole module.

Question F1

Show, from first principles, that an object undergoing uniform circular motion must be experiencing an
acceleration which is directed towards the centre of the circle and has a magnitude v2/r where v is the speed of
the object and r is the radius of the circle.
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Question F2

A planet orbiting a star experiences a force of magnitude 3.02×210122
1N due to the gravitational attraction of the

star. If the planet has a speed of 2.02×210151m1s1−11 and it takes 2.62×210171s to complete one orbit, calculate the
mass of the planet and the radius of its orbit.

Study comment Having seen the Fast track questions  you may feel that it would be wiser to follow the normal route
through the module and to proceed directly to Ready to study? in Subsection 1.3.

Alternatively, you may still be sufficiently comfortable with the material covered by the module to proceed directly to the
Closing items.
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1.3 Ready to study?
Study comment To study this module you will need to understand the following terms: acceleration, arc length, force,
gravity, mass, Newton’s laws of motion, radian, radius, speed, tangent, velocity, weight. There are also some mathematical
topics with which you will need to be familiar before starting to study: derivative, magnitude of a vector, Pythagoras’s
theorem, scalar, triangle rule for addition of vectors, trigonometry, vector. If you are uncertain about any of these ideas then
you can review them now by reference to the Glossary, which will also indicate where in FLAP they are developed. The
following Ready to study questions (the answers for which are given in Section 6) will allow you to establish whether you
need to review some of the topics before embarking on this module.
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Question R1

A cyclist moving along a straight road accelerates uniformly from 5.001m1s1−11 to 10.01m1s1−11 in 10.01s. Calculate:

(a) the magnitude of the acceleration;

(b) the average speed over the interval;

(c) the distance travelled over the interval.
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Figure 13See Question R2.

Question R2

Figure 1 shows a graph of distance s travelled against
time for an aircraft on a runway, accelerating towards
take-off.

(a) Calculate the average speed between times t2=251s
and t2=2151s.

(b) Use the graph to estimate the instantaneous
speeds at the same two times.

(c) Estimate the average acceleration between t2=251s
and t2=2151s.
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Figure 23See Question R3.

Question R3

In Figure 2 if the arc length AB is 101cm, and the radius r is 121cm,
calculate the angle θ in radians.

Question R4

The vector a points North and has a magnitude of 4 units; the vector b
points East and has a magnitude of 3 units. Describe the vector c where
c2=2a2+2b.
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2 Characteristics of uniform circular motion
Uniform circular motion is simply motion in a circle at constant speed. In this section we will look at some of
the situations in which this kind of motion occurs and we will consider some of its characteristics.

(a)

N

Figure 3a3Launching a snowball .

2.1 A satellite in a circular orbit
Imagine yourself at the North Pole, throwing a snowball horizontally as
hard as you can. It would hit the ground some distance away from you
(Figure 3a) and if you knew its initial velocity you could easily work
out how far it would travel by considering it as a projectile, moving
along a parabolic path. ☞
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(b)

N

(c)

N

Figure 3b & 3c3Putting a snowball into
orbit.

If you were able to project it faster and faster (say from some kind of
gun), it would travel further and further before touching down. At
higher speeds you would have to take the curvature of the Earth into
account in order to predict where it would land (Figure 3b). Finally, if
you gave the snowball exactly the right horizontal velocity, you
would find that the Earth’s surface would ‘fall away’ from the
snowball, because of the curvature, at just the same rate as the
snowball falls towards the Earth. It would then describe a circle
around the Earth and arrive back at the starting point with exactly the
same speed as when it set out (Figure 3c). For its whole journey, the
snowball would be travelling at constant speed at the same fixed
height above the Earth’s surface.
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Figure 43Possible circular orbits for a
satellite. All have the centre of the Earth
at the centre of the orbital plane.

Could this really happen? I have to admit the answer is ‘No’.
The snowball would be slowed down by air resistance, its path would
be affected by the slightly non-spherical shape of the Earth and,
travelling just above the ground, it would almost certainly collide with
something. However, if it were to start off several hundred kilometres
above the Earth’s surface, air resistance and the non-spherical shape of
the Earth would be unimportant and a circular path would be feasible.

This is similar to an artificial Earth satellite (often abbreviated to
‘satellite’) being put into orbit. If it is sent up in a rocket to the desired
height and given the appropriate velocity it will start to circle the Earth
at constant speed.
Notice that I said ‘appropriate velocity’. This means that both direction
and speed must be correctly specified. The direction must be such that the satellite’s initial movement is parallel
to the Earth’s surface and the centre of the Earth must lie at the centre of the plane of the orbit, as in Figure 4.
The reason why the velocity has to be chosen so carefully will be explained in Subsection 4.2. For the moment,
it is enough to say that if either the initial direction or speed is wrong then the path of the satellite will not be
circular; such non-circular paths are outside the scope of this module.

We will now consider what controls this motion of the satellite; to do this we must revise briefly the idea of
forces and their consequences.
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2.2 A review of Newton’s first and second laws of motion
Newton’s insight into the motion of bodies was to recognize that if left to themselves bodies continue to move
uniformly, that is to say with constant velocity1—1with constant speed in a straight line. This is a statement of
Newton’s first law of motion.

To change the motion of a body requires the action of an unbalanced ☞ force. When such a force acts on a
body an acceleration of the body results, with the magnitude of the acceleration being proportional to the
magnitude of the force and inversely proportional to the mass of the body; the acceleration is also in the same
direction as the force. This is a statement of Newton’s second law of motion. This second law defines mass m
and force F together in a common statement which can be written in mathematical terms as

F = ma (1)

This concise statement summarizes our experience that:
o If no unbalanced force acts (including friction) then a body moves with constant speed in a fixed direction

(i.e. has zero acceleration).
o When an unbalanced force acts, the change in velocity (and therefore the acceleration) is along the direction

of the force.
o For any given body, the larger the unbalanced force acting, the larger the resulting acceleration.

o For any given unbalanced force, the more massive the body, the smaller the resulting acceleration. ☞
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Let us use these ideas to look at the satellite problem posed in Subsection 1.1, and in particular to consider what
forces and accelerations are present.

✦ What is the main force acting on the satellite and how does the direction of this force relate to the direction
of motion of the satellite?

✦ How does the magnitude of the force on the satellite vary as the satellite moves around the orbit?
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2.3 A simple experiment
Here is a short experiment you can carry out to look at circular motion in a different context. Take a piece of
elastic about 201cm in length and tie one end of it securely to a pencil rubber. Now, while holding the elastic,
whirl the rubber round (carefully!) so that it moves in approximately horizontal circles at a uniform speed as in
Figure 5a. You can check that it is moving at a roughly uniform speed by doing the experiment in fluorescent
light. Because fluorescent light flashes on and off 100 times per second your eye should register a series of ‘still’
images of the elastic and rubber. If the images appear evenly spaced as in Figure 5b and the motion is circular,
the rubber must be moving with a uniform speed.

(a) (b)

Figure 53The ‘whirling pencil
rubber’ experiment. (a) How to do it.
(b) What you should see in fluorescent
light.
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We can ask the same questions here as we asked for the satellite in the previous section.

✦ What force causes the pencil rubber to move in a circle?

✦ How do the magnitude and direction of this force vary during the circular motion?

✦ What is the relationship between the direction of motion of the rubber and the direction of the force acting
on it?
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2.4 Circular motion in general
What we have been trying to show so far in this section is that the forces which cause uniform circular motion in
two very different examples have certain things in common. In both cases the force has a constant magnitude
and the direction of the force is always radially inwards towards the centre of the circle, which is to say
perpendicular to the direction of motion. It turns out that this is true for all examples of uniform circular motion,
so we can write a general statement:

An object moving in a circle at a constant speed is experiencing a force which is constant in magnitude and
directed radially inwards towards the centre of the circle. This force, whatever its cause, is called the
centripetal force.

Why is this always the case? To answer this question we need to look at things a little more deeply (and
mathematically). That is the subject of the next section.
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3 A mathematical description of circular motion

θ
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B

r

s

O

Figure 63An object undergoing
circular motion.

3.1 Speed, velocity and angular speed

In order to describe circular motion more precisely it will be useful to
think of the motion in terms of angles as well as distances. Figure 6
shows an object moving around the circumference of a circle.
Its position vector r   ☞ relative to the centre of the circle is initially
represented by OA™.

As the object moves from A to B along the arc of length s, the position
vector r sweeps out an angle θ. The relationship between s, θ and the
radius of the circle r is given by

s = rθ (θ in radians) (2) ☞

We can describe the progress of the object from A to B, either in terms
of the speed or the angular speed of the object. The speed is the rate of
coverage of distance measured along the arc, while the angular speed is
the rate of change of angle θ with time.
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Figure 63An object undergoing
circular motion.

If the speed or angular speed are varying we may define the average
speed 〈 1v1〉  and the average angular speed 〈 1ω1〉 , (the angular brackets 〈   〉
denote ‘the average of’) over the time interval t.

The average speed 〈 1v1〉  is defined by

  
v = s

t
= rθ

t
= r ω (3a) ☞

where 〈 1ω1〉  is defined as the average angle swept out by the position
vector in unit time; in Figure 6 this is

ω = θ
t

(4a)

Question T1

What are the units of angular speed?3❏
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We have written down expressions for the average speed and the average angular speed above but it is often
more useful to talk about the instantaneous values of these quantities at any particular point (say, at point A).
The usual way to arrive at an instantaneous value at a point is to take the average over a very small time interval,
∆t, during which the angle changes by ∆θ. Then we consider what happens to the quantity (∆s/∆t) as ∆t becomes
smaller and smaller. Mathematicians refer to this as a limiting process and use the derivative notation ds/dt to
represent the result of the limiting process. Thus

ds

dt
= the limit of 

∆s

∆t
 as ∆t approaches zero ☞

Using this standard notation the instantaneous speed at A, vA, is given as

  
vA = the limit of 

∆s

∆t
= the limit of 

r∆θ
∆t

 as ∆t approaches zero

and, since r is fixed

  
lim

∆t→0
r

∆θ
∆t





 = r lim

∆t→0

∆θ
∆t





 = r

dθ
dt

= rvA
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Thus using Equation 2

s = rθ (θ in radians) (Eqn 2)

the instantaneous speed is

  
vA = ds

dt
= r

dθ
dt

= rω (3b)

where the instantaneous angular speed ω is given by ☞

ω = dθ
dt

(4b)
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Question T2

The drum of a spin drier with an internal diameter of 0.501m rotates at a constant 3500 revolutions per minute.
Find

(a) the instantaneous angular speed ω of the drum in units of rad 1s1−11;

(b) the instantaneous speed (in m1s1−111) of a sock stuck to the inside surface of the drum of the drier.3❏

For uniform circular motion it makes no difference whether we speak of instantaneous or average speeds.
The speed and angular speed (by definition) are constant so the instantaneous and average values are the same.
However, it does make a difference to the velocity vector v because the direction of the motion is continually
changing.
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Figure 63An object undergoing
circular motion.

Let us work out the direction of the instantaneous velocity vector at A in

Figure 6. As θ gets smaller and smaller, the angle OÂB  gets closer and

closer to 90°. In the limit as θ approaches zero, OÂB  = 90°. In other
words, the direction of the velocity vector at A is perpendicular to the
position vector at A, which means it must point along the tangent at A.
There is nothing special about point A, so this must be true at any point
on the circle.

For an object in uniform circular motion, the instantaneous velocity
(a vector quantity) at any point is tangential to the circle at that
point and its magnitude is equal to the product of the radius and the
angular speed; v = rω.



FLAP P2.6 Circular motion
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

3.2 The period of circular motion
If we know the angular speed and that the motion is uniform, we can work out the time required to complete one
revolution. This is known as the period of the motion. The period is usually represented by the letter T.

✦ For uniform circular motion, the period T and the angular speed ω  should be related. What is the exact form
of the relationship?

Question T3

Given that the radius of the Earth is 6.382×210161m and that the radius of the Earth’s orbit around the Sun is
1.502×21011

1m, calculate both the speed and angular speed for (a) a point on the Earth’s Equator, due only to the
rotation of the Earth on its axis, and (b) the centre of the Earth, due to the motion of the Earth around the
Sun.3❏
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Figure 73An object undergoing
uniform circular motion with velocity
vectors shown at A and B.

3.3 Centripetal acceleration
Having considered speed, velocity and angular speed, we are now in a
position to think more clearly about acceleration. For an object in
uniform circular motion, its acceleration is known as the centripetal
acceleration.

Question T4

How is it possible to talk about the acceleration of an object that is
moving at constant speed?3❏

Let us think again about the orbiting object shown in Figure 6.
It has been redrawn in Figure 7 with arrows representing the velocity
vectors at A and at B (vA and vB). As is usual in drawing a vector, the
arrow points in the direction of the vector and its length represents the
magnitude of the vector. ☞
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Figure 73An object undergoing
uniform circular motion with velocity
vectors shown at A and B.

We are interested in the instantaneous value of the acceleration at A, so
let’s look at what happens in a small time interval ∆t, as the object
moves from A to B. Using the same notation as before, the average
acceleration over the small distance AB can be written as

  
aAB = ∆vAB

∆t
(6)

where ∆vAB is the change in velocity in the small time interval ∆t.
Equation 6 shows that if we can work out ∆vAB we can use it to
calculate aAB.

To calculate ∆vAB we have to carry out a vector subtraction

∆vAB = vB − vA

We can treat this as the addition of the vector vB and the vector −vA,
added according to the triangle rule for vectors

∆vAB = vB + (−vA)
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Figure 73An object undergoing
uniform circular motion with velocity
vectors shown at A and B.

∆θ

vA

vB
∆θ

–vA

∆vAB

Figure 83Triangle
rule for the subtraction
of vA from vB.

−vA has the same magnitude as vA but
points in the opposite direction. This
addition is illustrated in Figure 8.

Notice that the angle between vA and vB is
the same as the angle between the lines
OA and OB in Figure 7. This is because
vA and vB are at the same angle of 90° to
OA and OB respectively. As the position
vector sweeps round through θ, from OA
to OB, so the instantaneous velocity must

also turn through an identical angle. We can use Figure 8 to find both
the direction and the magnitude of the instantaneous acceleration.
We shall do this in two separate steps, considering in each what happens
as ∆θ approaches zero:

Step 1: the direction of the centripetal acceleration3In the limit as ∆θ
tends to zero, the angle between ∆vAB and vA becomes 90°. Since vA
points along the tangent to the circle at A, ∆vAB must point towards the
centre of the circle. Comparison of Figures 7 and 8 should convince you of this.
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Figure 73An object undergoing
uniform circular motion with velocity
vectors shown at A and B.

∆θ

vA

vB
∆θ

–vA

∆vAB

Figure 83Triangle
rule for the subtraction
of vA from vB.

From the definition of acceleration
(Equation 6)

  
aAB = ∆vAB

∆t
(Eqn 6)

the acceleration vector a at A must point
along the vector ∆vAB and so it too must
point towards the centre of the circle.
Again, there is nothing special about point
A and so this must be true generally at any
point on the circle. So, in uniform circular
motion, the centripetal acceleration always
acts radially inwards, towards the centre
of the circle.
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Figure 73An object undergoing
uniform circular motion with velocity
vectors shown at A and B.

∆θ

vA

vB
∆θ

–vA

∆vAB

Figure 83Triangle
rule for the subtraction
of vA from vB.

Step 2: the magnitude of the centripetal
acceleration3Look again at Figure 8.

Question T5

Write down an expression for the
magnitude |1∆vAB1|  ☞  in Figure 8, in
terms of the constant orbital speed
v (= vA = vB) and the angle ∆θ.3❏
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The expression (as given in Answer T5)

∆vAB = v∆θ ☞

leads to the required result for the magnitude of the average centripetal acceleration, where the averages are
taken over the time interval ∆t

  
a = v

∆θ
∆t

= v ω (8)

Again, taking the limit as ∆t tends to zero gives us the magnitude of the instantaneous centripetal acceleration at
any point in the motion

  
a = v

dθ
dt

= vω (9a)

where we have used Equation 4b

ω = dθ
dt

(Eqn 4b)

to identify ω.
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Now we have the whole story for the centripetal acceleration.

The instantaneous centripetal acceleration acts radially inwards and its magnitude is equal to the product of
the speed and the angular speed; a = vω. ☞

Question T6

We can now use Equation 3b (v2=2r1ω) to express Equation 9a

  
a = v

dθ
dt

= vω (Eqn 9a)

in two other ways. Derive the two alternative versions of Equation 9a, one expressing the centripetal acceleration
in terms of v and r only and the other in terms of ω and r only.3❏
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As you have just discovered in Answer T6, the two alternative expressions for the magnitude of centripetal
acceleration are

  
a = v2

r
(9b)

and a = rω 2 (9c) ☞

  
a = v

dθ
dt

= vω (Eqn 9a)
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3.4 Centripetal force
We have worked out the magnitude and direction of the centripetal acceleration which an object experiences
during uniform circular motion. From Newton’s second law (Equation 1) we know that this centripetal
acceleration must be caused by a force, the centripetal force, which we have already considered qualitatively in
Subsection 2.4. Newton’s second law allows us to quantify this force.

Since F = ma (Eqn 1)

the force must be parallel to the centripetal acceleration and its magnitude F must equal the product of m and the
magnitude of the centripetal acceleration. Thus:

The centripetal force must be directed towards the centre of the circle.



FLAP P2.6 Circular motion
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

Its magnitude may be represented by any of the following three equivalent expressions

F = ma = mvω (10a)

or
  
F = ma = mv2

r
(10b)

or F = ma = mrω 2 (10c) ☞

This mathematical description of centripetal force ties in very nicely with the observations in Subsection 2.2.
Recall that in all the examples of uniform circular motion described, there was a force of constant magnitude
which was acting perpendicular to the direction of motion. In Section 3 we have shown, from first principles,
that the force should indeed be perpendicular to the direction of motion and, as v and r are constant for uniform
circular motion, this force must also have a constant magnitude.
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Question T7

Calculate the magnitudes of the centripetal acceleration and centripetal force for a person of mass 801kg standing
on the Earth’s Equator, given that the radius of the Earth is 6.382×210161m. What provides the centripetal force in
this case?3❏

Question T8

Estimate the magnitudes of the centripetal accelerations and forces experienced by (a) the sock in Question T2
and (b) the pencil rubber which you used during the experiment in Subsection 2.3.3❏
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Question T9

A student looking at Equation 9b

  
a = v2

r
(Eqn 9b)

concludes that centripetal acceleration decreases as the distance r increases because r appears in the denominator
of the equation. Another student looking at Equation 9c

a = rω 2 (Eqn 9c)

reasons that the centripetal acceleration increases with increasing r because in this equation r appears in the
numerator. Who is right?3❏
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Equations 10a, b and c

F = ma = mvω (Eqn 10a)

  
F = ma = mv2

r
(Eqn 10b)

F = ma = mrω 2 (Eqn 10c)

give the magnitude of the force required to keep an object moving with speed v (or angular speed ω) in a
circular path of radius r. Of course they can be rearranged to give the speed if r and F are known1—1or the radius
if v and F are known.

Question T10

Derive an expression for the speed v of an object moving uniformly around a circle of radius r under the
influence of a force with magnitude F. Your expression should involve only r, F and m.3❏
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Question T11

Calculate the speed with which the snowball in Subsection 2.1 must be thrown to orbit just above the Earth’s
surface. (Neglect air resistance and anything else which gets in the way.)3❏
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4 Applications of circular motion
The analysis of uniform circular motion as outlined in Sections 2 and 3 can be applied to many practical
problems. As a source of examples, we will return to the problems posed in Subsection 1.1 and see how the
understanding developed in Sections 2 and 3 can be applied.

4.1 Designing safe bends for motorways
It is common knowledge that taking a bend too fast can cause a car to skid and the tighter the bend the more
likely it is that skidding will occur. For a bend on a motorway to be ‘safe’, the curve must be sufficiently gentle
that a car will not skid when travelling at the maximum allowable speed of 70 mph (given reasonable
assumptions about the state of the road and car tyres). So how do we work out the tightest safe bend?
To keep things simple we will assume a bend is always part of a circle, so the tightness of a bend is represented
by the radius of the circle of which it forms a part. This is known as the radius of curvature of the bend.
We will also assume the car is travelling at uniform speed.

The first question to ask is what provides the centripetal force which causes a car to follow the curved path?
If the road surface is horizontal then the force comes entirely from friction between the wheels and the road.
If the road is ‘banked’ or has a ‘camber’, other forces come into play which reduce the size of the frictional force
needed1—1but that is beyond the scope of this module.
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The reason why a car skids is that there is a limit to the size of the force that can be generated by friction
between two surfaces. Fortunately, there is an easy way to calculate the magnitude of the maximum frictional
force between two horizontal surfaces. In the case of a car on a horizontal road surface, the appropriate equation
is

Fmax = µW

where Fmax is the magnitude of the maximum frictional force, W is the magnitude of the car’s weight and µ is a
constant called the coefficient of static friction. The value of µ depends on the nature of the two surfaces. ☞
The weight of an object is the force exerted on it by the Earth’s gravity. From Newton’s second law, the
magnitude of the weight of an object of mass m is

W = mg (11)

where g is the magnitude of the acceleration due to gravity at the point. This gives the magnitude of the
maximum frictional force (and therefore the magnitude of the maximum centripetal force) as

Fmax = µmg
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How does this relate to the radius of curvature of the bend? The answer is found by combining this expression
for Fmax

Fmax = µmg

with Equation 10b

  
F = ma = mv2

r
(Eqn 10b)

  
Fmax = µmg = mv2

r




 max

= m
v2

r




 max

(12)

Equation 12 tells us that for a particular value of Fmax there is a limit on the size of v2/r which can be sustained;
for a given speed there will be a minimum radius rmin1, or for a given radius there will be a maximum permissible
speed vmax to avoid skidding.
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Fmax = µmg = mv2

r




 max

= m
v2

r




 max

(Eqn 12)

Equivalently, we can write

for a given radius r, 
  
vmax = rFmax

m
= rµmg

m
= rµg (13)

or for a given speed v, 
  
rmin = mv2

Fmax
= mv2

µmg
= v2

µg
(14)

Even before we substitute values, Equations 13 and 14 tell us quite a lot. First, in Equation 14, the speed appears
as a square. This means that the minimum r increases very rapidly as v increases. Secondly, in both equations, m
has cancelled out1—1so there is no dependence on mass. Heavy cars are just as likely to skid as light cars and the
coefficient of friction plays the crucial role.

In calculating a suitable value for rmin (the tightest allowable bend in our motorway design), we obviously want
to build in a suitable margin of safety. We should take a value for µ corresponding to poor tyres on a wet road
surface (µ2=20.30) and then do the calculation say for 90 mph (i.e. 401m1s1−11), rather than 70 mph, to allow a
safety margin. From Equation 14 this gives r2=25.42×2102

1m.
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Question T12

Calculate the maximum constant speed with which a car can take a bend with radius of curvature 3.02×2102
1m

without skidding, if the value of µ is 0.40. (Take the value of g as 9.81m1s1−12.)3❏
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4.2 Satellites and communication satellites
Before discussing communication satellites in particular, we will return to a general point about satellite orbits
which was raised in Subsection 2.1. There we said that for a satellite to be put into a circular orbit it must be set
moving at the correct speed in a direction parallel to the Earth’s surface and with the centre of the Earth at the
centre of the plane of the satellite’s orbit. We are now in a position to appreciate why this is so.

The satellite moves under the force due to Earth’s gravity, which acts towards the centre of the Earth.
The satellite will only travel in a circular orbit if the magnitude and direction of this force exactly match the size
and direction of the centripetal force required for that orbit. Therefore the satellite must be set moving in a way
to ensure that this happens. How can this be done?

First, think about the direction of the satellite. In Subsection 3.4 you saw that for uniform circular motion the
centripetal force must act towards the centre of the orbit. ☞ As the gravitational force acts towards the centre of
the Earth, the centre of the orbit must coincide with the centre of the Earth. Also, as the orbit is circular, the
satellite’s path will be everywhere parallel to the Earth’s surface. An orbit which passes over both North and
South poles is one example of such an orbit.
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Now think about the speed of launch. The required centripetal force on the satellite must be provided by the
gravitational force from the Earth. We can calculate this force by using Newton’s law of gravitation, which
gives the magnitude of the gravitational force on a mass m1 due to another mass m2 (say satellite and Earth,
respectively) separated by a distance r as

Fgrav = Gm1m2

r2
(15) ☞

where G  is the gravitational constant, which has an approximate value of 6.672×2101−111
1N1m2

1kg1−12.
If we equate the magnitude of this force with that of the centripetal force given in Equation 10b,

  
F = ma = mv2

r
(Eqn 10b)

with m set equal to the satellite mass m1, we find

  

Gm1m2

r2
= m1v2

r

Dividing both sides by m1, 
  

Gm2

r2
= v2

r
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and rearranging this equation, we can write the satellite’s speed as

  
v = Gm2

r
(16)

Substitution of v = rω from Equation 3b gives the satellite’s angular speed as

  
ω = v

r
= Gm2

r3
(17)

If we substitute T = 2π1/ω from Equation 5, we find the satellite’s orbital period is

T = 2π
ω

= 2π r3

Gm2
(18)

Equations 16, 17 and 18 are general results. Although we have derived them for a satellite in circular orbit
around the Earth, they are generally true for any satellite or moon of any mass m1 in any circular orbit around
any planet of mass m2. They are also equally valid for the planets themselves in orbit around the Sun, providing
m2 is then taken as the mass of the Sun ☞.
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Question T13

Calculate the speed of a satellite in circular orbit 10001km above the Earth’s surface. Take the mass of the Earth
as 5.982×21024

1kg.3❏



FLAP P2.6 Circular motion
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

We will now consider communication satellites and the many meteorological satellites in orbit around the Earth.
In these cases it is usually an advantage if they orbit so that they are permanently located above a particular
point on the Earth’s surface. These satellites must travel with the same angular speed and in the same direction
as the Earth itself. An orbit of this kind is called a geosynchronous or geostationary orbit and the satellites in
such orbits are said to be geosynchronous or geostationary satellites.

Since the centre of any orbit around the Earth must be the centre of the Earth and since a geostationary satellite
has its rotation matched to that of the Earth itself, it follows that such a satellite must be directly above the
Equator. The direction of rotation and the angular speed of rotation of the satellite must also be the same as that
of the Earth. ☞
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If we use the general result given in Equation 17

  
ω = v

r
= Gm2

r3
(Eqn 17)

with ω set equal to the Earth’s angular rotation speed (2π radians in 24 hours) we can calculate the orbital radius
necessary for a geostationary satellite.

Equation 17 squared is ω 2 = Gm2

r3

or r = Gm2

ω 2

3 = 6. 67 × 10−11 N m2 kg−2 × 5. 98 × 1024 kg

7. 27 × 10−5 rad s−1( )2
3 = 4. 23 × 107 m

However, this is the distance from the centre of the Earth. To find the height of the satellite above the Earth’s
surface we have to subtract the Earth’s radius of 6.382×210161m. This gives the height for a geostationary orbit as
3.592×2107

1m, or about 3610001km.
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Question T14

Mars has a mass of 6.422×21023
1kg and rotates with a period of 1.03 Earth days. At what distance from the centre

of Mars should a satellite be put into orbit so that it remains located above a fixed point on the Martian
surface?3❏
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5 Closing items

5.1 Module summary
1 The analysis of uniform circular motion is important because there are many situations in the world around

us which approximate to this kind of motion. The mathematics of uniform circular motion is relatively
straightforward.

2 To keep an object in uniform circular motion, there must be a centripetal force which is constant in
magnitude and always perpendicular to the direction of motion, directed radially inwards towards the centre
of the circle.

3 The angular speed, ω = dθ/dt, of an object in uniform circular motion is equal to the angle swept out in unit
time by the position vector from the centre of the circle to the object.

4 The speed v and angular speed ω of an object in uniform circular motion are constant and related by the
equation

v = rω3 (ω in rad11s−1) (Eqn 3)

where r is the radius of the circle.
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5 The period T of uniform circular motion is related to the angular speed by the equation

T = 2π
ω

(ω in rad11s−1) (Eqn 5)

6 The acceleration which is necessary to keep an object in uniform circular motion is known as the centripetal
acceleration. It is directed radially inwards and has a magnitude given by the following equivalent
expressions

a = vω (ω in rad11s−1) (Eqn 9a)

or
  
a = v2

r
(ω in rad11s−1) (Eqn 9b)

or a = rω12 (ω in rad11s−1) (Eqn 9c)
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7 The centripetal force is the force which gives rise to the centripetal acceleration. It is directed radially
inwards with magnitude given by the following equivalent expressions

F = mvω (ω in rad11s−1) (Eqn 10a)

or
  
F = mv2

r
(ω in rad11s−1) (Eqn 10b)

or F = mrω12 (ω in rad11s−1) (Eqn 10c)

8 The analysis of uniform circular motion can be applied to many practical problems such as the radius of
curvature for ‘safe’ bends on roads, and the orbits of geostationary and geosynchronous satellites.
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5.2 Achievements
Having completed this module, you should be able to:

A1 Define the terms that are emboldened and flagged in the margins of the module.

A2 Demonstrate that for uniform circular motion the direction of the acceleration is radially inwards.

A3 Recall that period T and angular speed ω  are related by Equation 5.

A4 Derive from first principles Equations 3, 9 (in each of its three forms) and 10 (in each of its three forms).

A5 Carry out manipulations of the above equations and use them in simple calculations.

Study comment  You may now wish to take the Exit test for this module which tests these Achievements.
If you prefer to study the module further before taking this test then return to the Module contents  to review some of the
topics.
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5.3 Exit test

Study comment  Having completed this module, you should be able to answer the following questions each of which tests
one or more of the Achievements.

Question E1

(A1  and A3)3A computer hard disk has a radius of 51cm and rotates at 3000 revolutions per minute.
Find the period of rotation of the disk and the speed of a point on the outer edge of the disk.

Question E2

(A1 and A5)3An aircraft is circling over an airport, waiting for permission to land. If its speed is 1201m1s1−11 and
it is executing circles of radius 5.001km, calculate its angular speed, period and centripetal acceleration.



FLAP P2.6 Circular motion
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

Question E3

(A1)3In each pair of statements below, one is incorrect; say which you think it is, and why it is incorrect.

(a) (i) Uniform circular motion is any kind of motion where the path forms a perfect circle.

(ii) Uniform circular motion is motion in a circle at a constant speed.

(b) (i) Centripetal force is the force exerted by gravity on an object at the Earth’s Equator.

(ii) Centripetal force is the force required to maintain an object in uniform circular motion.

(c) (i) The period of a circular motion is the total length of time for which an object undergoes motion in a
circle.

(ii) The period of a circular motion is the length of time required to complete one revolution.

(d) (i) The angular speed of an object in uniform circular motion is the angle swept out by its position vector in
unit time.

(ii) The angular speed of an object in uniform circular motion is the length of time required for its position
vector to sweep out an angle of 1 radian.
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Question E4

(A4)3Starting from the definitions of speed v and angular speed ω, show that for uniform circular motion the
relationship between them is v2=2rω, where r is the radius of the circle.

Question E5

(A 1  and A5)3The strength of the gravitational force experienced by Io, one of Jupiter’s moons, is
5.192×210122

1N. If it has a period of orbit of 1.77 Earth days and its distance from the centre of Jupiter is
4.222×210181m, calculate its mass.

Question E6

(A1)3Explain why a satellite cannot be put into a geostationary orbit directly over London.
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Study comment  This is the final Exit test question. When you have completed the Exit test go back to Subsection 1.2 and
try the Fast track questions if you have not already done so.

If you have completed both the Fast track questions and the Exit test, then you have finished the module and may leave it
here.
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