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1 Opening items

1.1 Module introduction
The turning action of a force has been well known for thousands of years, since the first time a human used a
stick as a lever. The crowbar and the balance, which make use of this turning action, have been tools since the
beginning of recorded history. The scientific study of their effects dates back to Archimedes (287–212 BC), who
seems to have been the first to express the mathematical law of the lever, and Galileo Galilei (1564–1642) who,
in the early seventeenth century, formulated a clear measure of the turning action or torque produced by a force.
He popularized the expression moment of a force for this measure. Engineers and craftsmen involved in the
design and operation of rotating machinery, such as watermills, grain crushers, and lathes, had known informally
about the relations between torque, rotational acceleration and rotational inertia, but the first scientific and
mathematical study of these relations was carried out by Daniel Bernoulli (1700–1782) and Leonhard Euler
(1707–1783) in the early eighteenth century. The modern laws of rotational dynamics are mainly due to Euler.
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Rotational motion can be extremely complicated, with the axis of rotation changing orientation and moving
through space while the body, or parts of it, move around the axis (think of the contortions of a skilled high-
board diver, for example). To keep the discussion as simple as possible, this module restricts attention to the
special case of uni-axial rotation in which the axis maintains a fixed orientation. An opening door or a wheel
rolling down a hill provide good examples of this type of motion. It is important to bear this restriction in mind
because some of the statements made in this module cannot be extended to more general situations. The concept
of angular momentum, which allows us to discuss what happens when the axis of rotation changes its orientation
is introduced elsewhere in FLAP.

This module begins by considering the conditions needed for bodies to be static. Section 2 deals with the
equilibrium of bodies under the action of balanced torques and examines what determines the magnitude of a
torque and how it is measured and represented mathematically, in terms of scalars, using the concept of a
moment of a force. Section 3 extends the discussion to the vector representation of torque and introduces two
mathematical tools1—1unit vectors and vector or cross products. Section 4 introduces the kinematic equations of
uniform angular acceleration around an axis of fixed orientation and draws an analogy with uniform acceleration
along a straight line.
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In Section 5 we apply Newton’s laws of motion to uni-axial rotational motion and show that when a torque acts
on a body the resulting angular acceleration depends on the magnitude of the torque and also on the moment of
inertia of the body, which measures its intrinsic reluctance to undergo angular acceleration. Moments of inertia
are calculated for simple shapes. Section 5 also introduces rotational kinetic energy, and shows how to consider
this either as rotation about an axis which is instantaneously at rest or as translational energy of the centre of
mass together with rotational energy around the centre of mass. The parallel-axis theorem is used to establish
the connection between these two approaches.

Study comment Having read the introduction you may feel that you are already familiar with the material covered by this
module and that you do not need to study it. If so, try the Fast track questions given in Subsection 1.2.  If not, proceed
directly to Ready to study? in Subsection 1.3.
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1.2 Fast track questions

Study comment Can you answer the following Fast track questions?. If you answer the questions successfully you need
only glance through the module before looking at the Module summary (Subsection 6.1) and the Achievements  listed in
Subsection 6.2. If you are sure that you can meet each of these achievements, try the Exit test in Subsection 6.3. If you have
difficulty with only one or two of the questions you should follow the guidance given in the answers and read the relevant
parts of the module. However, if you have difficulty with more than two of the Exit questions you are strongly advised to
study the whole module.
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Figure 13See Question F1.

Question F1

Figure 1 shows a sketch of a forearm supporting the weight of an object.
(Assume that A and B are on the same horizontal level.) Suppose the
object has a mass of 21kg in this case. The biceps muscle, which exerts an
upwards force, is attached at point A, further forward than the elbow
joint B. Take g = 101m1s−2.
(a) Identify the fulcrum in this case.
(b) Draw an idealized diagram representing the fulcrum, arm and all

forces acting on the forearm. Explain qualitatively why there must
be a force on the forearm at the elbow joint B.

(c) Write down the equations of translational and rotational equilibrium for the forearm using scalar notation.
(d) Now use your own forearm to estimate the distance between the attachment point of the biceps muscle A

and the elbow joint B. Also estimate the weight of the forearm. Use these estimated values to find the
magnitude of the tension in the biceps muscle and the force on the forearm at the elbow joint.

(e) Add x-, y-, z-axes to your diagram, with origin at the elbow joint, and calculate the vector torque exerted by
the weight of the 21kg object using unit vectors, i, j, and k, and a vector cross product.
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Question F2

A concrete column of uniform circular section and density 2.4 × 1031kg1m−3 is 401m long and has a diameter of
1.51m. The column is rolling (without slipping) down a slope which is at 10° to the horizontal.

(a) Calculate the moment of inertia of the column about a central axis parallel to its length.

(b) Calculate the moment of inertia of the column about its line of contact with the sloping surface.

(c) Calculate the resultant torque vector acting on the column about the axis in (b).

(d) Find the angular acceleration vector of the column about this axis.

(e) What will be the angular velocity vector of the column about this axis 2.01s after being released from rest?
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Study comment Having seen the Fast track questions  you may feel that it would be wiser to follow the normal route
through the module and to proceed directly to Ready to study? in Subsection 1.3.

Alternatively, you may still be sufficiently comfortable with the material covered by the module to proceed directly to the
Closing items.
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1.3 Ready to study?

Study comment In order to study this module you will need to understand the following terms: angular measure (degree,
radian, the relationship s = rθ between arc length s, radius r and angle swept out θ), areas and volumes of regular solids,
Cartesian coordinate system, density, force, kinetic energy, mass, Newton’s laws of motion, SI units (distance, force and
energy), translational equilibrium, uniform acceleration equations, uniform circular motion (angular speed, speed and the
relationship between these), vector notation (magnitude, scalar component, component vector, vector addition, vector
subtraction), work, weight, algebraic and trigonometrical equations and manipulation of these. Note that although the
derivative notation  dx 0/dt is widely used in this module to represent the rate of change of x with respect to t, you are not
expected to be familiar with the techniques of differentiation. If you are uncertain about any of these terms then you can
review them now by referring to the Glossary, which will indicate where in FLAP they are introduced. The following Ready
to study questions will allow you to establish whether you need to review some of the topics before embarking on the
module.
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Figure 23See Question R2.

Question R1

When a mountain on the equator rotates through 2° because of the
revolution of the Earth, through what distance has it moved? Calculate its
angular speed and speed. The radius of the Earth is 6.38 × 1061m.

Question R2

Find the components of the force F of magnitude 121N along both the x-
and z-axes in Figure 2. If this force F were applied to an object of mass
3.01kg, placed at A, write down the components of the resulting
acceleration of the object.

Question R3

A mains water pipe section is of length 241m, outer diameter 0.801m, inner diameter 0.741m and density
2.4 × 1031kg1m−3. Calculate its mass and its weight (taking the magnitude of the acceleration due to gravity to be
101m1s−2).
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2 Torque

2.1 Introduction to torque
When we turn a tap on or off, or use a spanner or a screwdriver, we are applying a torque to a body. ☞
Torque is a measure of the turning effect of a force on a body. A torque is also sometimes referred to as the
moment of a force, which we will discuss in Subsection 2.3.

r

O

F

(a)

Figure 3a3Increasing the torque. If the
frictional torque between nut and bolt
balances the applied torque.

Figure 3a shows a torque applied with a spanner to loosen a nut, using a
force at right angles to the shaft of the spanner. The fulcrum of a torque
is the line around which the turning can be regarded as taking place,
sometimes called the axis of rotation.
In Figure 3a the fulcrum is naturally taken to be a line perpendicular to
the page that passes through the point O at the centre of the nut.
Suppose that the nut in Figure 3a is too tight and will not turn.
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The fact that the nut won’t turn implies that there is equilibrium between the applied torque and some other
torque, and this other torque can only be due to friction between nut and bolt. We might try to push harder by,
say, doubling the applied force to 2F (Figure 3b). Alternatively, we could use the same force but apply it at, say,
twice the distance from the fulcrum, 2r, with the help of an extension pipe (Figure 3c).

r

O

2F

(b)

O

F

(c)

2r

Figure 33Increasing the torque. The torque may be increased by increasing the force as in (b), or increasing the distance to
the fulcrum as in (c).
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Both methods increase the torque on the nut, but it could be that the nut still doesn’t turn! We might need both
strategies, with the doubled force at double the distance from the fulcrum. In a situation like this, where the
applied force acts at right angles to the line joining the fulcrum to the point at which the force acts, the
magnitude Γ of the torque is given by Γ  = r1F, where F is the magnitude of the force and r is the distance from
the fulcrum to the point at which the force is applied. Thus doubling the force, or doubling the distance from the
fulcrum, both double the torque, while performing both together quadruples the torque.

Question T1

Make a rough estimate of the maximum frictional torque if, to loosen a car wheel nut, it requires your whole
weight, applied at the end of a horizontal spanner of length 0.401m.4❏

Question T2

In Question T1, not only the nut feels the torque. The torque is experienced also by the whole wheel. What
prevents the wheel from slipping in such circumstances?4❏



FLAP P2.7 Rotational mechanics
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

OF

(a)

θ

A

θ
∆φd

B r

Figure 43(a) Construction lines for
calculating torque magnitudes. AB represents
the line of action of a force F and d is the
perpendicular distance between the fulcrum and
AB.

Now suppose the force is applied not at right angles to the spanner
shaft, but at an angle θ to it, as in Figure 4a. Then the magnitude
of the torque will be less than before.

The construction line AB in Figure 4a, which extends (in both
directions) the vector arrow representing the force, is called the
line of action of the force. If we were foolish enough to apply the
force with its line of action along the shaft of the spanner then the
torque would be zero and the nut would never rotate, no matter
how large a force were applied: forces whose line of action passes
through the fulcrum produce no torque.

We can summarize these conclusions by stating that the torque
produced by a force depends on three factors:

o the magnitude of the force;

o the distance of the point of application of the force from the
fulcrum;

o the direction of the force.
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Figure 43(b) The decomposition of the
applied force into two component vectors
whose lines of action are (i) through the
fulcrum and (ii) perpendicular to this
direction.

We can make these observations more quantitative if we resolve the
force F acting in Figure 4a into component vectors perpendicular to
the shaft and along the shaft, as shown in Figure 4b. The force
component vector along the shaft has magnitude F 1cos1θ and that
perpendicular to the shaft has magnitude F1sin1θ, where θ is the angle
between the shaft and the original force direction. The force
component vector along the shaft produces no torque since its line of
action passes through the fulcrum. The force component vector
perpendicular to the shaft produces a torque of magnitude Γ  =
r1F1sin1θ. This is the magnitude of the total torque produced by F
about the fulcrum through O.
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This result can also be interpreted in a more geometric way. Noting that the perpendicular distance between the
fulcrum and the line AB is d = r1sin1θ, we can write:

torque magnitude33Γ = r1F1sin1θ = Fd (1)

where d is the perpendicular distance between the fulcrum and the line of action of the force.

This simple example of a spanner and a nut illustrates quite a lot of physics!

1 Although torques are caused by forces they are different from forces. It is possible to change the magnitude
of the torque without changing the magnitude of the force1—1simply by changing the direction of the force
or its distance from the fulcrum.

2 The magnitude of the torque is the product of the magnitude of the force and the perpendicular distance
between its line of action and the fulcrum1—1so the units of torque are those of force × distance, or N1m.
You may recall other quantities in physics which have units of force × distance. For example, the work done
by a force acting through a distance and the kinetic energy gained by a body subject to such work both have
units of force × distance. In the case of work or kinetic energy, this unit is called the joule (11J = 11N1m).
We must be very careful not to confuse the torque from a force with the work done by a force. These clearly
measure totally different quantities1— 1the turning effect and the energy transferred. Torque should be
expressed in N1m but never in J.
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3 When a torque is applied to a body it does not always produce rotation of the body. The frictional forces
between the surfaces of the threads on the nut and bolt can exert opposing torques about the same fulcrum
and only when the torque from the spanner exceeds the maximum frictional torque does the rotation begin.
This is analogous to attempting to slide a body on a rough surface where, in order to start the motion, we
need to apply a force that exceeds the maximum frictional force. It requires an unbalanced torque to cause
an initially non-rotating body to start to rotate, just as it requires an unbalanced force on an initially
stationary body to start it to move.

Question T3

An aerial mast 51m high is secured by a set of tie cords which are attached to the mast 11m from the top. If each
cord is secured to the ground 81m from the mast and stretched to a tension of 1201N, find the magnitude of the
torque exerted by a single cord about a fulcrum at the base of the mast.4❏

Question T4

For the aerial mast of Question T3, calculate the magnitude of the torque exerted by a single cord about a
fulcrum which is: (a) parallel to the ground and intersects the mast 11m above the ground, and (b) parallel to the
ground and intersects the mast at the point of attachment of the cord.4❏
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We again stress the difference between forces and torques. A force may be fully specified by giving its vector
(i.e. its magnitude and direction), but a torque is specified by giving the force vector and its line of action in
relation to some specified fulcrum. If the fulcrum is changed then the torque from a given force will change; it is
meaningless to speak of torque without also specifying the fulcrum. In particular:

There is no torque about a fulcrum that lies on the line of action of the force.
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2.2 Work and power

OF
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Figure 43(b) The decomposition of the
applied force into two component vectors
whose lines of action are (i) through the
fulcrum and (ii) perpendicular to this direction.

If we succeed in turning the nut of Subsection 2.1, we will do a
certain amount of work. This work is directly related to the torque
that is applied and to the angle through which the nut is turned. We
now calculate the work done by the force F in turning the nut
through a small angle ∆φ. We consider the general case in which
the force is not necessarily at right angles to the line from the
fulcrum to the point of application of the force (Figure 4).
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Figure 43(b) The decomposition of the
applied force into two component vectors
whose lines of action are (i) through the
fulcrum and (ii) perpendicular to this
direction.

When the spanner rotates through a very small angle ∆φ the distance
moved by the point of application of the force is ∆x = r1|1∆φ1|  ☞ and
the component of force in the direction of the displacement is F1sin1θ.

Since the work done by a force is given by the product of the distance
moved and the force component in the direction of the displacement,
we can state the following general result.

The work done by a torque of magnitude Γ in turning through a
small angle ∆φ is given by:

∆W = Fsin1θ01∆x = Fsin1θ01r11|1∆φ 1| = Γ 11|1∆φ1|  (2) ☞

where the angle ∆φ must be measured in radians. Because both
work and angle are additive quantities, the total work done when
a torque of constant magnitude Γ rotates the spanner through any
angle φ is given by

W = Γ 11|1φ1| (2b)
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If the small rotation ∆φ is completed in a time ∆t we can also derive an expression for the power supplied .

The power supplied by a torque Γ in turning through an angle ∆φ in a time ∆t is

P = ∆W

∆t
= Γ ∆φ

∆t
= Γω (3)

where the angular speed ω = ∆φ
∆t

 must be measured in radian1s−1. ☞

Of course, these results do not just apply to spanners and nuts! They apply to the rotation of any object which
can be regarded as being rigid. (A rigid body is one that cannot be squashed or stretched, so there is no need to
worry about the possible conversion of energy into forms associated with elastic deformation.)
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Question T5

Suppose that in the situation described in Question T1

it is found that once the nut begins to move, the average torque over one revolution is 1/4 of its initial value.
Calculate the work done in one

 
revolution of the spanner and the average power needed to complete this

operation in a time of 51s.4❏

[For reference: Question T1. Make a rough estimate of the maximum frictional torque if, to loosen a car wheel
nut, it requires your whole weight, applied at the end of a horizontal spanner of length 0.401m.]
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2.3 The centre of mass
The wheel nut is an example of a body subject to several forces,
including those from the spanner and from the bolt thread. If we apply
a single force to a free body, then we cannot produce a rotation alone,
since Newton’s second law tells us that the unbalanced force must
produce an acceleration of the body as a whole.

Although we cannot arrange for the single force to produce rotation
without translational acceleration, it is possible for a single force to
produce translational acceleration without causing any rotation,
provided the line of action of the force passes through a special point
for the body, called its centre of mass. Figure 5 shows this effect.

Figure 53Plan view of a spanner placed on a horizontal surface of very low
friction. If the line of action of the horizontal force F is to the right of the
centre of mass C the body will rotate anticlockwise and will translate. If it acts
to the left of C, then translation and clockwise rotation will occur. If it passes
through C then the spanner will translate but not rotate.
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The centre of mass of a rigid body is defined as the special point with the property that any force whose
line of action passes through the centre of mass produces translation but no rotation of the body. The centre
of mass is unique: each body has just one.

Just as mass is a fundamental property of any object, so too is the centre of mass. Precisely because the centre of
mass is unique, its location can often be anticipated in a symmetric body. For example, in a homogeneous
sphere, cube or rectangular cuboid the centre of mass is at the centre of the object1—1it could hardly be anywhere
else. For other bodies the centre of mass can be found experimentally or mathematically.

The centre of mass can also be defined for non-rigid bodies or even for a collection of particles or objects that
are not connected together. If the objects are imagined as being joined together for an instant (∆t = 0) by
massless rigid rods then the centre of mass of this imaginary system is at the same point as the centre of mass of
the collection of objects.
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It is worth noting that the centre of mass has a second important property which is not connected with rotation.
The centre of mass of an extended object, moves through space just like a particle that experiences the total
external force acting on the body. In other words, the centre of mass is guaranteed to behave just like the
mythical point-particle of Newtonian mechanics. For example, the centre of mass of a somersaulting gymnast
(somewhere near her navel) follows a parabolic path, although the same need not be true for other parts of her
body, such as her head or feet. This makes it convenient to describe the motion of an extended body in terms of
the motion of its centre of mass, together with any rotation that takes place about an axis through the centre of
mass. In fact Euler proved that such a description can always be given: the instantaneous motion of any rigid
body can always be described as a translation of its centre of mass, accompanied by a rotation about an axis
through the centre of mass.
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In general, the centre of mass of a body should not be confused with its centre of gravity. For the purposes of
calculating the gravitational force on an extended body it is possible to imagine the real body as being replaced
by a point mass, equal to the mass of the whole body, and placed at a special point, called the centre of gravity
of the body. This is the point at which the whole mass of the body can be considered to reside, as far as the
gravitational forces acting on it are concerned. If gravity is uniform, i.e. if the body is small, the centre of gravity
and the centre of mass coincide. In such a case, gravity exerts no torque about a fulcrum passing through the
centre of mass. This means that, although gravity causes an initially stationary rigid body to accelerate
downwards, it cannot cause it to rotate. More generally, though, gravity may vary from one part of the body to
another. In this case, the centre of gravity does not coincide with the centre of mass, and gravity can cause both
acceleration of the centre of mass and rotation around it.

Near the Earth’s surface, gravity is uniform so the centre of gravity does coincide with the centre of mass. This
forms the basis of an experimental method for determining the centre of mass of any rigid body by suspending it
from a single thread. Since the weight of the body acts, effectively, at the centre of mass, it produces no torque
about the centre of mass. When the body is static, the tension provided by the thread must also produce no
torque about the centre of mass and this means that its line of action must pass through the centre of mass.
Thus, the centre of mass can be located by suspending the body with the thread attached, in turn, to different
points on the body and then finding the common intersection point of the lines of action of all the various thread
tensions.
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Figure 63A rod (which is free to move) is acted upon by a couple.

We have seen that it is possible
for a single force to accelerate
the centre of mass of a body
without producing rotation, but
that is not possible for a single
force to produce rotation without
accelerating the centre of mass.
However, it is possible for two
or more forces to do this. This is
achieved by arranging for the
forces to act such that their
resultant force is zero but their
resultant torque is not zero.
The simplest case arises for two forces which have the same magnitude but point in opposite directions, as in
Figure 6. Clearly, these forces have zero resultant, so they do not accelerate the centre of mass C. However, their
torques reinforce one another (they both cause a clockwise rotation as we view the figure) so the resultant torque
is not zero, and this causes the body to start to rotate. In general, such a pair of ‘equal and opposite’ forces, with
a non-zero torque, is said to constitute a couple. For example, driving instructors recommend that a car be
steered by applying a couple to the steering wheel. Note that the concept of a couple is quite different (and more
restricted) than that of a torque.
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When several torques act together on a body, the question of adding their effects arises. Sometimes, the torques
reinforce one another, as in the case of a couple, and sometimes they cancel out. Two important questions arise
immediately. First, how should we add the individual torques to find the resultant torque? Secondly, how does
the body respond quantitatively to the resultant torque? We will deal with the first question in Subsection 2.4 and
in Section 3. The second question will be tackled in Sections 4 and 5.

2.4 Combining torques1—1a scalar approach
There is a convenient and simple method to deal with the problem of combining torques for the case where all
the vector forces act in a single plane (i.e. they are coplanar). In this case, we define the moment of a force to
be the magnitude of the torque due to the force (as given by Equation 1), together with a sign which represents
the sense in which the torque tends to promote rotation about the fulcrum. The resultant moment is then given
by the algebraic sum of the moments of the separate forces (i.e. by adding the separate torques as signed scalar
quantities). In these additions it is a common convention to take moments associated with anticlockwise
rotations as being positive and those associated with clockwise rotations as negative, but there is no fundamental
significance in this convention1— 1the signs simply help us to see whether the different torques reinforce one
another or not. At the end of the calculation, the magnitude of the resultant moment is equal to the magnitude of
the resultant torque and the sign of the resultant moment tells us whether the promoted rotation is clockwise or
anticlockwise. ☞
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Figure 63A rod (which is free to move) is acted upon by a couple.

✦ From Figure 6 calculate the
magnitude of the total torque
(or moment) about a horizontal
axis perpendicular to the rod and
passing through (i) point A,
(ii) point B, (iii) point C, and
(iv) point D
(Ignore the weight of the rod.)
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2.5 Translational and rotational equilibrium
When a body is acted on by a set of forces whose resultant force is zero we say that the forces are balanced.
According to Newton’s second law this situation corresponds to translational equilibrium1— 1a state in which
there is no acceleration, and the body moves at constant velocity or remains permanently at rest. An acceleration
results when unbalanced forces act.

In the previous subsection we met the case of a body which was acted on by a couple. Since a couple produces a
torque but no resultant force, the body must remain in translational equilibrium, even though the body rotates
faster and faster, under the action of the torque. It is apparent that we need to extend our notion of equilibrium to
include rotational equilibrium: full equilibrium implies both translational equilibrium and rotational
equilibrium.

It is first necessary to agree on the distinction between translation and rotation. This is not entirely trivial.
For example, when a door opens it is tempting to describe this as a pure rotation about a vertical axis through the
hinges, but it is equally possible to describe the same motion as a translation of the centre of mass of the door
(into the room), accompanied by a rotation of the door about a vertical axis through the centre of mass.
Following Euler, we will generally use the latter description, keeping track of the translational motion of the
centre of mass and then specifying the rotational motion about an axis through the centre of mass.
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This leads to the following definitions:

o A body is said to be in translational equilibrium if its centre of mass remains at rest or moves with
constant velocity. This condition implies that no unbalanced force acts on the body (the resultant force on
the body is zero).

o A body is said to be in rotational equilibrium if it does not rotate or if it rotates at a constant rate about an
axis of fixed orientation that passes through the centre of mass. This condition requires that no unbalanced
torque acts on the body (the resultant torque on the body is zero).

o A body is in mechanical equilibrium if it is in translational equilibrium and rotational equilibrium. In
mechanical equilibrium, there is no change in the state of motion of the centre of mass and no change in the
state of rotation about the centre of mass. Mechanical equilibrium requires there to be no unbalanced force
or torque acting on the body (the resultant force and resultant torque are both zero).
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(a)

A B

For coplanar forces, rotational equilibrium occurs when the resultant
moment of all forces about the fulcrum is zero. This is known as the
law of static moments. For example, in the beam balance in Figure 7a the
moments of the two weights on the two scale pans must be of equal
magnitude but of opposite sign for rotational equilibrium to be established.
Since the two pans are at equal distances from the pivot as fulcrum and the
two weights act at equal angles of 90° to the beam, the weights themselves
must be equal.

Figure 7a3Rotational equilibrium with two weighing instruments. In the beam
balance the moment of the weight on pan A about the pivot must balance the
moment of the weight on pan B about the pivot.
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For the steelyard balance, in Figure 7b, equilibrium is achieved by moving
the fixed weight rider, so that its torque is varied until a balance is reached.
Here the rider is much further from the fulcrum than is the load, so the
balance is achieved when their distances from the fulcrum are in inverse
proportion to their two weights.

Figure 7b3Rotational equilibrium with two weighing instruments. In the steelyard
balance the moment of the larger weight must balance that of the smaller weight
(the rider).
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Question T6

In the steelyard balance in Figure 7b the balance arm is 1.51m long and is
suspended from its centre of mass. If a mass of 201kg, placed 301cm from
one end, is balanced by a mass of 31kg placed 101cm from the other end,
find the position of the point of support P, which is also where the fulcrum
intersects the balance arm.4❏

Figure 7b3Rotational equilibrium with two weighing instruments. In the steelyard
balance the moment of the larger weight must balance that of the smaller weight
(the rider).



FLAP P2.7 Rotational mechanics
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

3 Torques using vector notation

The approach used in Subsection 2.5 represented the torques as moments of forces, which were signed scalar
quantities. This is fine for coplanar forces, where rotations involve a single axis, but it is not satisfactory in other
cases. When a number of forces act in different planes it is no longer adequate to take the axis of rotation for
granted and to use ± signs to indicate the sense of rotation about this fixed axis. With each torque tending to
promote rotation about a different axis it is essential to give a more complete description: we need to know the
magnitude of the torque, the direction of the axis of rotation which it tends to promote and the sense of rotation
around this axis. It might seem a tall order to build all this information into a single mathematical quantity but it
can be accomplished by representing each torque as a vector. What is more, the process of combining torques to
find the resultant torque can be accomplished by the familiar operation of vector addition.
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3.1 Unit vectors and vector products

Study comment

If you are already familiar with vectors and vector products you can omit this subsection.

Before explaining how to represent torques by vectors, it is worth reviewing some general definitions and
properties of vectors. This is a diversion from the main subject of this module, but provides essential
mathematical background. The main concepts we need to cover are those of unit vectors and vector products.

A unit vector is a vector of unit magnitude: its magnitude is not equal to 1 metre, but to the pure number 1,
which has no units. This is rather an abstract idea, but it allows us to represent many other vectors in terms of
unit vectors. For example, suppose that the unit vector i points along the x-direction. Then the vector (51m)1i
represents a displacement of length 51m in the x-direction and the vector (51m1s−1)1i represents a velocity with
speed 51m1s−1 in the x -direction. The unit vector i indicates direction, but contains no information about
magnitude or units.
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It is useful to define three unit vectors, i, j and k, which point,
respectively, along the x-, y- and z-axes of a right-handed coordinate
system (Figure 8). Then any position vector r = (x, y, z) can be expressed
as a vector sum of x1i, y 1j and z1k:

r = x1i + y1j + z1k

Any other vector, such as a force vector F  = (F x, F y, F z), can be
represented in a similar way:

F = Fx1i + Fy01j + Fz1k

Quantities like Fx 1i are called component vectors. These are genuine
vectors with magnitude and direction and should not be confused with
scalar quantities such as Fx, which are just called components.

Figure 83Fixed unit vectors in a right-handed coordinate system. (A coordinate system is said to be right-handed if a
corkscrew rotated from the x-axis towards the y-axis advances in the direction of the z-axis). The unit vectors i, j, and k
provide directional information only. Although they are shown here located at the origin of the coordinate system, they may
be attached to any fixed body placed at any point in the frame of reference.
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Figure 203See Answers T3, T4, T7 and
T8. This shows a mast with one of its tie
cords.

Question T7

In Question T3 and Figure 20 express the force vector exerted by the
cord on the mast, in terms of unit vectors along the x-, y - and z-
axes.4❏

[For reference: Question T3. An aerial mast 51m high is secured by a
set of tie cords which are attached to the mast 11m from the top. If
each cord is secured to the ground 81m from the mast and stretched to
a tension of 1201N, find the magnitude of the torque exerted by a
single cord about a fulcrum at the base of the mast.]
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The second concept we need is that of the vector product (sometimes called the cross product) of two vectors.

☞

Given any two vectors, a and b, which are inclined at an angle θ to one another, their vector product is
written as a1·1b and has the following properties:

(i) it is a vector;

(ii) it has magnitude ab1sin1θ ; ☞

(iii) its direction is perpendicular to both a and b and is defined equivalently either by a corkscrew rule
(Figure 9a) or by the right-hand rule (Figure 9b)  (next page)
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Figure 93Defining the direction of
the vector product a 1¥1b  of two
vectors a  and b  according to the
corkscrew rule and the right-hand
rule. (a) The corkscrew rule: when a
corkscrew is turned from a  to b
through the smaller angle θ, the tip of
the corkscrew advances in the
direction of a1¥1b. (b) The right-hand
rule: when the fingers of the right
hand are curled in the direction from
a  to b then the thumb points in the
direction of a1¥1b (rather than in the
opposite direction).
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Notice, in particular, that the order of the vectors in a vector product is important. If the order of the two vectors
is reversed then the sign of the vector product is reversed:

b1·1a = − a1·1b

Also, the vector product of any two parallel vectors is zero
a · b = 0 (because θ = 0)

and, as a special case, the vector product of any vector with itself is zero

a1·1a = 0



FLAP P2.7 Rotational mechanics
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

F
θ

r

P

O

Figure 103Representing torque by a
vector. The z-axis, which points out of
the page towards you, is the axis of
rotation.

3.2 The torque vector
With these definitions of unit vectors and vector products in place, it is
possible to return to the main issue of using vectors to represent torques.
To specify a torque vector, we must define its magnitude and direction.
The magnitude is easily dealt with1— 1we just use the previous
expression:

Γ = r1F1sin1θ (Eqn 1)

To identify a sensible direction for the torque vector, it is helpful to
consider again the case of the spanner and the nut shown in Figure 3a.
Suppose we apply a force of constant magnitude F which acts at a
constant angle θ (say 90°) to the handle of the spanner. Then the
magnitude of the torque remains constant as the spanner turns.
In the absence of other torques (such as those provided by friction) the
nut would turn faster and faster about a fixed axis that runs through the
centre of the nut, perpendicular to both the handle of the spanner and the
applied force. Under such circumstances it makes sense to represent the torque by a constant vector G.
We choose a Cartesian coordinate system with origin at the centre of the nut. The point of application of the
force F is then represented by the position vector r. This notation is shown in Figure 10.
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✦ In this situation of constant G, are the vectors r and F also constant?

✦ If the vector G stays constant in this situation then its magnitude and direction must stay constant.
What direction for G can be chosen so that it remains fixed throughout the rotation?

These considerations lead us to choose the direction of the torque vector G to be perpendicular to the plane
containing F and r (i.e. along the axis of rotation of the nut).

It remains to be decided which of the two possible directions along the axis should be chosen for the torque
vector. This is a matter of convention. The convention that is adopted is to use the corkscrew or right-hand rule
so that a corkscrew turning from the direction of r to the direction of F advances in the direction of the torque.

Now let us review the elements in our definition of the torque vector: it has magnitude Γ  = r1F1sin1θ and a
direction that is at 90° to both r and F . This fits in precisely with the definition of a vector product
(Subsection 3.1). Thus the concept of a vector product gives us a very convenient way of defining the torque
vector G.
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The torque vector is defined as the vector product of the position vector r of the point of application of the
force and the force vector F (in that order):

G = r1·1F (4)

This vector has magnitude Γ = r1Fsinθ 4(from Equation 1)

and its direction is perpendicular to r and F in a sense determined by the corkscrew or right-hand rule.

It is worth noting that the torque vector of Equation 4 is defined relative to a given point1— 1the origin of
coordinates used to specify the position vector r. This origin can be chosen arbitrarily and need not lie on the
axis of rotation. This is useful because one does not always know, at the outset, what the axis of rotation is!

Like any other vector quantity, a torque vector can be represented by a directed straight line segment.
One sometimes sees curved arrows being used to indicate a sense of rotation, but a curved arrow should never be
used to represent the torque vector itself, which should always be shown as a straight line with an arrow. The
length of the line is proportional to the magnitude of the torque vector and the direction of the arrow is the
direction of the torque vector. ☞
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Since torque is a vector, it must have definite components relative to the x-, y- and z-axes of the chosen Cartesian
coordinate system. It is natural to ask what the relationship is between the components of the torque vector and
the components of the position vector r = (x, y, z) and of the force vector F  = (Fx, Fy, Fz0). To answer this
question it is helpful to write the position and force vectors in unit vector notation:

r = x1i + y1j + z1k

F = Fx1i + Fy01j + Fz1k

It follows that

      GG = r ¥¥ F = x i + y j + z k( ) ¥¥ Fx i + Fy j + Fz k( )
This may be expanded as follows

      

GG = xFx i ¥¥ i( ) + xFy i ¥¥ j( ) + xFz i ¥¥ k( )
+ yFx j ¥¥ i( ) + yFy j ¥¥ j( ) + yFz j ¥¥ k( )
+ zFx k¥¥ i( ) + zFy k¥¥ j( ) + zFz k¥¥ k( )
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Since the unit vectors are mutually perpendicular and point along the axes
of a right-handed Cartesian coordinate system (Figure 8)

we have

      

i ¥¥ i = 0 j ¥¥ j = 0 k¥¥ k = 0

i ¥¥ j = k j ¥¥ k = i k¥¥ i = j

j ¥¥ i = −k k¥¥ j = −i i ¥¥ k = − j

(5)

so that

    GG = yFz − zFy( ) i + zFx − xFz( ) j + xFy − yFx( ) k (6)

which provides an explicit expression for the components of the torque
vector.

Figure 83Fixed unit vectors in a right-handed coordinate system. (A coordinate system is said to be right-handed if a
corkscrew rotated from the x-axis towards the y-axis advances in the direction of the z-axis). The unit vectors i, j, and k
provide directional information only. Although they are shown here located at the origin of the coordinate system, they may
be attached to any fixed body placed at any point in the frame of reference.
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Figure 103Representing torque by a
vector. The z-axis, which points out of the
page towards you, is the axis of rotation.
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Figure 113The relationship between the
torque vector and the moment of a force.

It is interesting to compare the
definition of the torque vector
with our previous discussion
of the moment of a force in the
context of coplanar forces.
In the situation shown in
Figure 10, the right-hand rule
immediately gives a torque
vector of magnitude r1F sinθ
that points away from you
(i.e. along the negative z-axis).
The x- and y-components of
the torque vector are therefore
zero, while the z-component is
equal to −r1F sin1θ.

This calculation can also be carried out using components, with the aid of Figure 11. Since z = 0 and Fz = 0 we
have Γx = Γy = 0.
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We also find that

Γz = xFy − yFx = r1cos1(φ1) F1sin1(φ2) − r1sin(1φ1) F1cos1(φ2)

= Fr1(sin1φ2 cos1φ1− cos1φ2 sin1φ1) = Fr sin(φ2 − φ1) = −Fr sin 1θ

as before. Compare this with the moment of the force, which is easily seen to be −Fr1sin1θ (the moment is
negative because the force tends to induce a clockwise rotation). This example illustrates a general point:

In the special case of coplanar forces, where torques are conveniently represented by moments of forces,
each moment can be interpreted as the component of the torque vector along an axis perpendicular to the
plane of the forces. The other components of the torque vector vanish.

When a number of coplanar forces act on a body, the resultant moment is found by adding all the moments
together, taking account of their signs. More generally, the turning action of each force is represented by a
torque vector and it is necessary to combine these torque vectors to find the net turning effect of all the forces.
How should this be done? The answer is remarkably simple: the net turning effect is found simply by taking the
vector sum of all the individual torque vectors
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Thus, if the individual torque vectors are G1, G2, … we form the resultant torque vector

    
GG = GG n

n
∑ = GG 1 + GG 2 +K (7)

and this represents the net torque due to all the forces. The vector addition can be performed geometrically,
using the triangle rule, or algebraically, by adding components like those appearing in Equation 6.

    GG = yFz − zFy( ) i + zFx − xFz( ) j + xFy − yFx( ) k (Eqn 6)

Rotational equilibrium then requires the resultant torque vector to vanish:

    
GG = GG n = 0

n
∑ (8)

Study comment Because this module concentrates on uni-axial rotation, it is generally concerned with coplanar forces
which are efficiently dealt with using moments, as in Subsection 2.3. This should not obscure the fact that the representation
of torques by vectors has a more fundamental and general significance: no matter what forces are acting, it is always possible
to find the corresponding torque vectors and then use vector addition to find the resultant torque vector. More general
methods can be used in cases where the axis of rotation changes its orientation. These methods are introduced in the FLAP
module dealing with angular momentum.

Mike Tinker


Mike Tinker


Mike Tinker
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Figure 203See Answers T3, T4, T7 and
T8. This shows a mast with one of its tie
cords.

Question T8

(a) Using the axes you have drawn for Question T7 (Figure 20),
represent the position vector of the point of attachment of the cord to
the mast in unit vector notation, choosing the base of the mast as the
origin of coordinates. (b) Now find the vector torque of the force
about the base of the mast, in unit vector notation.4❏
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4 Rotational kinematics
In linear motion it is possible to develop a set of kinematic ☞  equations, called the uniform acceleration
equations, which describe how a body’s position and velocity depend on time when it is undergoing uniform
acceleration. As a second stage it is possible to understand the process of acceleration itself in terms of the
resultant force acting on the body of mass m.

The equations of dynamics which describe this are Newton’s laws of motion. In this approach, force is that
quantity which causes acceleration and uniform motion occurs when there is no resultant force acting on the
body. This analysis can be extended to two- or three-dimensional motion by casting the uniform acceleration
equations and Newton’s laws of motion in terms of vectors. In general, vector methods provide a powerful
technique for extending results into three dimensions.
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In this module we have been studying rotational motion rather than linear motion, but you may have seen many
similarities to linear motion1—1for example, in the discussion of equilibrium (Subsection 2.5). Our task now is to
draw out these similarities and then to apply the familiar ideas of linear motion to the new situation of rotational
motion. In this section we will develop the equations of rotational kinematics in terms of angular position,
angular speed, angular velocity and angular acceleration. In the next section we will consider rotational
dynamics and develop the rotational equivalent of Newton’s laws of motion for the special case of uni-axial
motion. We have already suggested that torques are responsible for changing the rotational state of a body, just
as forces are for changing the uniform motion of a body. It should come as no surprise to you to find that torques
are responsible for angular acceleration, just as forces are for acceleration in a straight line. However this is for
Section 5!

Our first task in this section is to give a clearer definition of the basic terms describing angular motion and, in
particular, to present them in vector form where possible.
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Figure 123A particle moving in a
circle. The (x, y) plane forms the plane
of rotation and the z-axis points towards
you. Looking down onto the (x, y) plane
from the positive z-axis, the angle θ
increases for anticlockwise rotations.

4.1 Angular speed and angular velocity
It is easy enough to define the angular speed of a particle that moves in a
circle. Figure 12 shows a point mass m moving in a circle of radius r in
the x-y plane. The z-axis, which points out of the plane of the page
(towards you), is the axis of rotation. The particle is at point P, with an
angular position θ measured from the x-axis and an angular speed ω
defined by

ω = dθ
dt

☞

Clearly, the SI unit of angular speed is radian1s−1. The speed v of the
particle along its circular path is determined by the radius of the circle
and the angular speed:

v = r
dθ
dt

 = rω

Note that angular speed is the magnitude of the rate of change of angular
position; it is a positive quantity and, of itself, contains no information
about the axis of rotation or the sense of rotation around it (clockwise or
anticlockwise).
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Figure 123A particle moving in a
circle. The (x, y) plane forms the plane
of rotation and the z-axis points towards
you. Looking down onto the (x, y) plane
from the positive z-axis, the angle θ
increases for anticlockwise rotations.

By analogy with the treatment of torques, we now investigate whether it
is possible to give a more complete description of circular motion, by
defining an angular velocity vector. The magnitude of the angular
velocity vector is, of course, taken to be the angular speed ω, but what
about its direction?

In Subsection 3.1 we introduced vector notation for torques and aligned
the torque vector with the axis of the implied rotation. We made this
choice because this was the only line which had a special significance for
the rotation. As a matter of convention, we also used a corkscrew rule or
a right-hand rule to determine the orientation of the torque vector along
the axis, thereby providing a unique definition for the torque vector.
Exactly the same considerations apply to the choice of a direction for the
angular velocity vector; it is taken to be along the axis of rotation and in
a direction defined by the right-hand grip rule. (Let the fingers of your
clenched right hand follow the motion of the particle and your
outstretched thumb will point along the angular velocity vector, rather
than in the opposite direction.) Applying this rule to the motion shown in
Figure 12, the direction of the angular velocity vector is out of the page,
towards you.

Mike Tinker
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In terms of unit vectors, w = ω1k and this vector provides a complete description of the circular motion,
encapsulating the rate of rotation (of magnitude ω0), the orientation of the axis of rotation (along the z-axis) and
the sense of rotation (anticlockwise as seen from the positive z-axis because ωz is positive).

The angular velocity vector is particularly useful when dealing with rigid bodies. Suppose that a rigid body
rotates about an axis that is fixed within it, for example, passing through its centre of mass. Then, precisely
because the body is rigid, each of its constituent particles has the same angular speed, axis of rotation and sense
of rotation. Thus, each particle in the rigid body has the same angular velocity vector. It is therefore natural to
think of the angular velocity vector as being a property of the rigid body as a whole. To illustrate the use of the
angular velocity in this context, we will quote one famous formula. If a rigid body has angular velocity w and its
axis of rotation is fixed in space, the velocity v of any one of its particles is given by a vector product:

for a rigid body rotating about a fixed axis

      v = ww ¥¥ r (9)

where r is the position vector of the particle relative to an origin that lies on the axis of rotation.
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Figure 13 indicates why this formula

      v = ww ¥¥ r (Eqn 9)

is valid in this case.

The radius of orbit of the particle is r1sin1θ so its speed is (r1sin1θ0) × ω, which is the
magnitude of w1 ·  r . You can check for yourself that the right-hand rule gives the
correct direction for the velocity vector v.  ☞

The angular velocity vector provides a convenient and natural way to describe
rotations. It turns out, for example, that if a spinning object is placed on a rotating
platform (say, a CD spinning on the surface of the revolving Earth) the net effect of
these two rotations is given by the vector sum of the two angular velocity vectors.

Figure 133A rigid body spins about an axis that is fixed within it. With the origin located on the axis of rotation, the
velocity vector of any particle within the body is given by the vector product of the angular velocity vector w and the
particle’s position vector r.
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Figure 123A particle moving in a
circle. The (x, y) plane forms the plane
of rotation and the z-axis points towards
you. Looking down onto the (x, y) plane
from the positive z-axis, the angle θ
increases for anticlockwise rotations.

Question T9

Suppose that Figure 12 corresponds to the wheel of a car travelling along
the negative x-axis at 1001km1hr−1. The wheel diameter is 701cm.
Calculate: (a) the speed (relative to the car) of a point on the outer edge
of the wheel; (b) the speed (relative to the road) of the point on the wheel
which is in momentary contact with the road; (c) the angular speed of the
wheel; (d) the angular velocity of the wheel (in unit vector notation).
State clearly which units you are using.4❏
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4.2 Angular acceleration
Angular acceleration a, is defined as the rate of change of angular velocity with time:

  

aa = dww
dt

(10)

This is clearly a vector quantity with SI units of rad1s−2. Angular acceleration can take place either because the
angular speed ω changes, or because the direction of the axis of rotation changes (or possibly because both
changes occur together). In this module, we are concerned mainly with uni-axial rotation, in which the axis of
rotation maintains a fixed orientation. Under such circumstances, angular acceleration can only be caused by a
change in angular speed. In particular, if the fixed axis of rotation is taken to be the z-axis, the angular
acceleration vector has components

α 0x = 0, α 0y = 04and4α 0z = 
dω z

dt
(11)

Notice that, even in the case of uni-axial motion, we still keep the x, y and z subscripts. This allows us to
distinguish between the scalar component α 0z (which may be positive or negative) and the magnitude α (which
cannot be negative). It also helps to ease the transition from uni-axial rotation to more general situations.
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In the spirit of this notation we have also written

ω z = dθz

dt
where θz is the angle of rotation around the z-axis. This is consistent with our treatment of linear motion, where
we use symbols such as sx or vx even when the motion was known to be confined to the x-axis.

There is a close parallel between uni-axial rotation and linear translation which is seen most clearly in the
equations that describe uniform angular acceleration about a fixed axis (αz = constant), and those that describe
uniform linear acceleration along a fixed line (ax = constant).
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Table 13Comparison of equations for linear motion and uni-axial rotation.

Linear motion with
uniform translational acceleration

Uni-axial rotational motion with
 uniform angular acceleration

vx = dx0/dt

ax = dvx0/dt

vx = ux + ax t

∆x = (ux + vx) t0/02
vx

2 = ux
2 + 2a0x ∆x

∆x = ux0t + ax t
2/ 02

ω0z = dθz/dt

αz = dω0z 0/dt

ω0z = µ0z + αz t

∆θ0z = (µ0z + ω0z)t/02
ω0z2 = µz

2 + 2αz∆θz

∆θ0z = µ0z t + αz t
 2/ 02

Table 1 compares the two sets of equations. Here, ∆x represents the linear displacement along the x-axis
(sometimes denoted by sx) and ∆θz represents the angular displacement around the z-axis. The initial and final
linear velocities are ux and vx and the initial and final angular velocities are µ0z and ω0z. The constant linear
acceleration is ax, the constant angular acceleration is αz and the time elapsed is t. The first two rows are
definitions. The last four equations in the right-hand column follow from the definitions of ωz and αz for the
same reasons that the last four equations in the left-hand column follow from the definitions of vx and ax.
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Note The similarity between uni-axial rotation and linear translation is impressive1—1so impressive that you might be
tempted to take the analogy one stage too far. It is essential to realize that our discussion has been hedged by restrictions
which confine attention to uni-axial rotations. If these restrictions are lifted, significant differences between translational and
rotational dynamics can arise. To illustrate this point, I shall give an example. You have seen that translational equilibrium
implies zero resultant force and rotational equilibrium implies zero resultant torque. The first of these conditions can be
reversed: zero resultant force certainly guarantees translational equilibrium. But the same cannot be said for torques!
It is possible to have zero resultant torque and yet fail to have rotational equilibrium (in the sense that we have defined it).
For example, if you throw a rapidly spinning (preferably unbreakable!) plate into the air, its axis of rotation may appear to
wobble. Because gravity acts through the centre of mass, there is no torque about any axis through the centre of mass, yet the
plate does not rotate steadily round an axis of fixed orientation. We need a new concept1—1angular momentum1—1which is
introduced elsewhere in FLAP and will help to explain such phenomena. It will then be possible to draw a deeper analogy
between angular and linear motion, based on similarities between linear and angular momentum.

Question T10
Suppose the car in Question T9 (travelling along the negative x-axis at 1001km1hr−1 with a wheel diameter of
701cm) comes to rest with a uniform linear deceleration in 61s. Calculate: (a) the angle swept out by each wheel
in 61s; (b) the magnitude of the angular acceleration of the wheels; (c) the angular speed after 31s.4❏
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5 Introducing the laws of rotational dynamics
Now that we have established the kinematic equations of uni-axial uniform angular acceleration, we return to the
question of the origins of angular acceleration. You will recall that the linear acceleration of a body depends not
only on the resultant force but also on an intrinsic property of the body1—1its inertial mass (usually called mass
for short)1—1which measures the body’s intrinsic reluctance to accelerate. Newton’s second law allows us to
calculate the acceleration produced by a given resultant force acting on a given mass. In uni-axial rotational
motion we have identified torque as the driving mechanism of angular acceleration, analogous to force in linear
motion. As you might expect, there is a quantity analogous to mass which measures rotational inertia1
—1the reluctance of the body to undergo angular acceleration about a given axis. This quantity, which is called
the moment of inertia, will be defined in the next subsection and used to obtain a rotational analogue of
Newton’s second law.
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Γ

Γ

(a)

(b)

Figure 143A rod is acted on by a torque
which spins it (a) around its long axis, (b)
perpendicular to its long axis.

5.1 Moment of inertia
Suppose that we have a long cylindrical rod which is initially at rest,
and that we apply a torque to it. If the resultant torque vector is parallel
to the rod, the rod will start to rotate around its long axis (Figure 14a).
We could carry out a series of experiments investigating the link
between the resultant torque applied and the angular acceleration of the
rod. These would show that the initial angular acceleration is:

1 proportional to the magnitude of the torque;

2 dependent on the nature of the rod: large, dense rods tend to have
lower angular accelerations.

We could also apply the torque so that the resultant torque vector is
perpendicular to the rod. In this case, the rod starts to spin end over end
(Figure 14b) and we can make a third observation.

3 For a torque of given magnitude the angular acceleration of the rod is smaller when the torque is
perpendicular to the rod than when it is parallel to it.
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Question T11

In trying to model this situation mathematically, a theoretician suggests the following equation: G = ma where m
is the mass of the body. Which of the observations 1 to 3 above is inconsistent with the suggestion?4❏

From Answer T11 it is clear that rotational inertia cannot be measured by a single property of the body
(like its mass) because it depends on how the mass of the body is distributed relative to the axis of rotation.
We can see this principle at work using the following thought-experiment.

Imagine a roundabout in a children’s playground, complete with some volunteer children to use it. Suppose that
we try to push the roundabout up to speed, first with an empty roundabout, then with the children on board,
huddled near the centre, and finally with the same children, but now around the outer circumference.

✦ If we apply our maximum torque to the roundabout in each case, in which of these three situations would
the magnitude of the angular acceleration be greatest and in which one would it be smallest?
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The roundabout example shows that the rotational inertia is larger when the mass is larger (i.e. with the children
on board) and is larger if the mass is distributed further from the axis of rotation. We can now define moment of
inertia. Our definition will apply to any body that rotates about an axis that is fixed within the body and
maintains a fixed orientation (the uni-axial case). Suppose that the resultant torque acting on the body is G and
that the angular acceleration is a . Then the moment of inertia of the body about the given axis is the
proportionality constant I in the equation

G  = Ia  = I 
  

dww
dt

(12)

Equation 12 expresses Newton’s second law of motion for uni-axial rotational motion. The similarity between
Equation 12 and Newton’s second law of motion for linear motion, F  = m 0a = mdv/dt, is striking. As we
suggested in Subsection 2.5 there is a role for torque in rotational motion which mirrors that of force in linear
motion. Here we also see that there is a role for moment of inertia in uni-axial rotational motion which mirrors
that of mass in linear motion.
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Question T12

(a) Prove that moment of inertia, as defined by Equation 12,

G  = Ia  = I 
  

dww
dt

(Eqn 12)

has dimensions [M] [L2]. ☞  

(b) If a roulette wheel has a frequency of 1/2 a revolution per second, a moment of inertia about its axis of
rotation of 251kg1m2 and takes 121s to come to rest, calculate the magnitude of the torque acting on it during

deceleration. (You may assume that its angular acceleration is constant.)4❏

Answer T12 establishes the dimensions of moment of inertia, but we need a formula for calculating moment of
inertia. Dimensional analysis cannot be relied upon to do this because it leaves out dimensionless constants such
as 1/2 or π , and also there could be other cancellations of dimensions of the quantities involved.
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P

θ

r

x

y

Figure 123A particle moving in a
circle. The (x, y) plane forms the plane
of rotation and the z-axis points towards
you. Looking down onto the (x, y) plane
from the positive z-axis, the angle θ
increases for anticlockwise rotations.

Question T13 ☞
Look again at Figure 12 and now suppose that it represents a firework
exhibit. A rocket is strapped to a small platform of mass m at P and OP is
an arm of negligible mass, free to rotate about O without friction. The
firework itself has negligible mass and is placed such that it produces a
thrust of constant magnitude F, perpendicular to the arm at P and so
tangential to the circle of the motion produced. Suppose that the arm is
initially at rest when the rocket ignites.
(a) Show that the kinetic energy of the platform can be written as

Ekin = 1
2  mr2ω2 and that the rate of change of kinetic energy is

dEkin

dt
 = mr2ω1α 0.

(b) Find an expression for the moment of inertia by equating 
dEkin

dt
 with

the power input by the thrust

P = ∆W

∆t
= Γ ∆φ

∆t
= Γω (Equation 3).4❏
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It follows from the answer to Question T13 that:

for a point mass m rotating at a distance r from the axis of rotation, the moment of inertia is

I = mr2 (13)

In principle, Equation 13 forms the basis for calculating the moment of inertia of any body about any fixed axis,
since any body can be regarded as being composed of a collection of point masses at various radii of rotation
about the axis. Suppose an extended rigid body is rotating about an axis at an angular speed ω. We can regard
the body as being composed of a large number of particles (say, N0) each rotating round the same axis with the
same angular speed ω.

If particle i has mass mi and is at distance ri from the axis of rotation, then its contribution to the moment of
inertia is Ii = m0iri

2. The total moment of inertia is then found by summing over all the particles so

for an extended body33 I = Ii
i=1

N

∑ = mi (ri
2 )

i=1

N

∑ (14)

In practice, it is usually necessary to convert this sum into an integral. The details of this conversion will be dealt
in Subsection 5.3 in the context of a specific example.
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5.2 Rotational kinetic energy
Returning to Question T13 part (a), and using the result I = mr2 for the moment of inertia of a point mass, we
can immediately obtain an expression relating the rotational kinetic energy of the particle to its moment of
inertia and angular speed:

for a particle3Erot = 1
2 1I1ω2

This expression for the rotational kinetic energy of a point mass is equally valid for a rotating extended body.
To see why, let’s divide the body up (notionally) into individual particles and then add together the individual
rotational kinetic energies of all these particles. Following an approach similar to that used in Subsection 5.1 we
note that if particle i has mass mi and is at distance ri from the axis of rotation, then its contribution to the kinetic
energy is 1

2 miri
2ω2. The total rotational kinetic energy is then found by summing over all the particles to give

Erot = 1
2

i=1

N

∑ miri
2ω 2

Using the fact that all particles in a rigid body have the same angular speed ω, together with Equation 14

for an extended body33 I = Ii
i=1

N

∑ = mi (ri
2 )

i=1

N

∑ (Eqn 14)
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for the total moment of inertia I of the body, we finally obtain

for an extended body3Erot = 1
2 I1ω02 (15)

Sometimes objects move through space and rotate at the same time. It is therefore useful to know that the kinetic
energy of any rigid body can be found by adding the translational kinetic energy of its centre of mass to the
rotational kinetic energy associated with instantaneous rotation about an axis through the centre of mass.

5.3 Examples of moment of inertia and rotational kinetic energy

Study comment This subsection shows how moments of inertia can be calculated in some simple cases for rotating bodies.
The methods of integral calculus are used and will be meaningful only if you have had some previous experience of this
technique. ☞

You should remember that although a body has only one mass, it has an infinite number of moments of inertia,
depending on the axis of rotation. The moment of inertia of a body should never be quoted without also giving
the axis of rotation. For example, if we support a bicycle wheel from its rim with a screwdriver and rotate it
about that axis, the moment of inertia is much larger than with its normal axis of rotation since more of its mass
is further from the axis of rotation.
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a

∆r

h

r

A homogeneous thin-walled cylinder (or ring) about its central
axis

A thin-walled cylinder has all its mass elements at the same distance from
the central axis of rotation. If this distance is a and the mass of the thin-
walled cylinder is M then Equation 14 immediately gives:

For a homogeneous thin-walled cylinder about its central axis

I = Ii
i=1

N

∑ = miri
2

i=1

N

∑ = a2 mi∑ = Ma2 (16)

(Exactly the same formula applies for a ring about a central axis, since a
ring is just a short thin-walled cylinder and the height of the cylinder does
not appear in Equation 16.)

Figure 153Moment of inertia of a solid cylinder of radius a about its central
axis.
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a

∆r

h

r

A homogeneous solid cylinder (or disc) about its central axis

A solid cylinder of height h and radius a can be regarded as being formed
from a set of concentric thin-walled cylinders (see Figure 15). A typical
thin-walled cylinder from this set has radius r, height h and thickness ∆r
so its volume is 2πr0h1∆r. Taking the density of the cylinder to be ρ, the
mass of each thin-walled cylinder is ρ × 2πr0h1∆r and its moment of inertia
is ρ × 2πr0h1∆r × r2 (Equation 16).

I = Ii
i=1

N

∑ = miri
2

i=1

N

∑ = a2 mi∑ = Ma2 (Eqn 16)

The moments of inertia of all the thin-walled cylinders must now be
added together (Figure 15). We should consider the limiting case where
the thickness of each thin-walled cylinder tends to 0 and the number of
thin-walled cylinders tends to infinity.

Figure 153Moment of inertia of a solid cylinder of radius a about its central
axis.
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Under these circumstances, the sum becomes an integral and the moment of inertia of the solid cylinder becomes

I = ρ2πr3h dr
0

a

∫ = 2πρh r3 dr
0

a

∫ = 2πρh
r4

4




0

a

= πρha4

2

Since the mass of the cylinder is M = ρ × πa2h we can write I as:

For a homogeneous solid cylinder about its central axis:

I = πρha4

2
=

πa2ρh( )a2

2
= 1

2 Ma2 (17)

The same formula also applies to a flat disc about its central axis, since a disc is just a short cylinder and the
height of the cylinder does not appear in Equation 17.

Similar methods can be applied to calculate the moment of inertia of other shapes with other axes of rotation,
although the calculation is often more difficult. ☞
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R R1 R2

R

hoop or 
cylindrical 
shell

(a)

I =

(b)

1
2 M(R1 + R2)

2 2

hollow cylinder

I = MR2

solid cylinder 
or disk

(c)

I = 1
2 MR2

a(d)

rectangular plate
I = 1

12 M (a2 + b2)

b

Figure 16 gives some examples for
homogeneous bodies rotating about
highly symmetric axes.

Figure 16a-d3Moments of inertia of
some homogeneous bodies about
indicated axes.
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LL

long thin rod

(e)

I = 1
12 ML2

(f)

long thin rod
I = 1

3 ML2

solid sphere

(g)

I = 2
5 MR2

(h)

thin spherical 
shell
I = 2

3 MR2R R

Figure 16e-h3Moments of inertia of
some homogeneous bodies about
indicated axes.
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Although we will not discuss details here, there are a few concepts and rules which can simplify the calculations
and use of these moments of inertia.

1 The moment of inertia I of a real extended body of mass M  rotating about a given axis is sometimes
represented by an equivalent point mass of the same mass M, rotating with the same moment of inertia I
about the same axis. In order to secure this equivalence the point mass must be placed a special distance k
from the axis, where I = Mk2. The distance k is called the radius of gyration of the body and its use often
simplifies the algebra of rotational dynamics.

2 The combined moment of inertia of several objects about the same axis, for example the wheels and axle of
a car, is just the sum of the moments of inertia of the individual objects. For example, to calculate the
moment of inertia of a hollow cylinder with thick walls, we may subtract the moment of inertia of an
imaginary cylindrical plug which would fill the hollow part, from the moment of inertia of a solid cylinder.

3 If the moment of inertia of a body about an axis running through its centre of mass is Icm then the moment
of inertia about any axis parallel to this, but displaced by a distance b, is given by I = Icm + Mb2.

The last result is called the parallel-axis theorem. It can be used, for example, to calculate the moment of
inertia of a cylinder about an axis of rotation given by its line of contact with a surface. This is appropriate
because, if the cylinder rolls without slipping, the line of contact is instantaneously at rest (see Answer T9) and
so can be thought of as the instantaneous axis of rotation.
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It is perhaps more normal to regard the motion of a rolling cylinder as comprising a translation of its centre of
mass, accompanied by a rotation about a horizontal axis through the centre of mass. It is important to realize that
either this or the line of contact approach will give the same answers to any given problem. For example, if a
wheel of radius a is rolling, without slipping, at a speed v, the angular speed of rotation is ω = v/a. If the
moment of inertia about the central axle is Icm and the mass of the wheel is M, the moment of inertia about the
instantaneous line of contact with the ground is found using the parallel-axis theorem. This gives

Icontact = Icm + Ma2

so that the kinetic energy is

  
1
2 Icontactω 2 = 1

2 Icm + Ma2( )ω 2 = 1
2 Icmω 2 + 1

2 Ma2ω 2 = 1
2 Icmω 2 + 1

2 Mv2

We can recognize this as the sum of the kinetic energy of rotation of the wheel about its axle and the kinetic
energy of translation of the centre of mass, so agreement is reached. Take care if using the instantaneous line of
contact approach: the above comparison makes it clear that this approach automatically includes the translational
kinetic energy1—1it would be a mistake to add it in again!
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Question T14

We may idealize a car wheel as a solid flat disc of mass 121kg and diameter 601cm.

(a) Calculate its moment of inertia about an axis parallel to its central axis and through its point of instantaneous
contact with the ground.

(b) Calculate its radius of gyration.

(c) Calculate its kinetic energy when it is rotating at 3 revolutions per second.4❏
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6 Closing items

6.1 Module summary
1 Torque measures the turning effect of a force about an axis or fulcrum. The magnitude of the torque Γ is the

product of the magnitude of the force F  and the perpendicular distance between the axis and the line of
action of the force. This can be written as Γ = r1F1sin1θ = Fd.

2 The work done when a constant torque turns an object through a small angle is equal to the product of the
magnitude of the torque and the angle.

3 The centre of mass of a body is the unique point such that any force directed through the point produces
translation of the body but no rotation. The centre of mass moves through space just like a particle that
experiences the resultant external force acting on the body.

4 A couple is a combination of two opposing forces of equal magnitudes which produces rotation without
translation.

5 A body is said to be in translational equilibrium if its centre of mass remains at rest or moves with constant
velocity. It is said to be in rotational equilibrium if it does not rotate, or rotates at a constant rate about an
axis that passes through the centre of mass and maintains a fixed orientation. Mechanical equilibrium entails
both translational and rotational equilibrium.
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6 For translational equilibrium, the resultant force must be zero and for rotational equilibrium the resultant
torque must be zero.

7 When a body is acted on by a set of coplanar forces, each torque can be represented by the moment of a
force. This is given by the magnitude of the torque, together with a sign which indicates the sense of the
implied rotation (anticlockwise usually being taken as positive).

8 Any vector can be represented in terms of unit vectors in the directions of the coordinate axes, usually
written as i, j and k.

9 The vector product of two vectors a and b is written as (a1·1b) and is a vector whose magnitude is ab1sin1θ,
where θ is the smaller angle between the two vectors. The direction of the vector product (a1·1b) is
perpendicular to both a and b in a sense defined by a corkscrew or right-hand rule. This definition means
that (b1·1a) = −(a1·1b).

10 In general, torque is represented by the torque vector G = r1·1F, which is the vector product of r, the
position vector of the point of action of the force, and F, the force itself. This is also known as the moment
of the force.

11 The kinematic equations of uni-axial rotation have a formal analogy with those of uniform linear
acceleration.
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12 Newton’s laws of motion can be applied to uni-axial rotational motion. The resultant torque vector G is
related to the angular acceleration a by G = Ia, where I is the moment of inertia of the body about the given
axis of rotation.

13 The moment of inertia of a single particle of mass m at a distance r from the axis of rotation is mr2. The
moments of inertia of bodies with simple shapes may be calculated by summation or by using integral
calculus.

14 According to the parallel-axis theorem, if the moment of inertia of a body about an axis running through its
centre of mass is Icm then the moment of inertia about any axis parallel to this, but displaced by a distance b,
is given by I = Icm + Mb2.

15 The kinetic energy of a rigid body can be regarded as the sum of the translational kinetic energy of the
centre of mass and the rotational kinetic energy around the centre of mass. Alternatively, if an axis in the
body is instantaneously at rest, the kinetic energy of the body is just the rotational energy about this axis;
Erot = 1

2 1I1ω2
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6.2 Achievements list
Having completed this module, you should be able to:

A1 Define the terms that are emboldened and flagged in the margins of the module.

A2 Recall and use the expression Γ  = r1Fsinθ = Fd, which gives the magnitude of the torque acting about a
given axis.

A3 Derive and use the law relating rotational work done to torque and angle described.

A4 Apply the law of static moments to situations of rotational equilibrium.

A5 Show how the vector product is defined, both diagrammatically and in terms of unit vectors.

A6 Represent torque, angular velocity and angular acceleration as vectors, and show these diagrammatically in
relation to the plane of rotation.

A7 Calculate the magnitude and direction of a torque using vector products.

A8 Recall and use the kinematic equations for uniform acceleration in linear motion and in uni-axial rotational
motion and identify their similarities.

A9 Describe the concept of rotational inertia and show in principle how the moment of inertia of an extended
body is defined.
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A10 Use the parallel-axis theorem and the concept of the radius of gyration.

A11 Recall and use the equation G = Ia = I1(dw0/dt), which corresponds to Newton’s second law of motion, as
applied to uni-axial rotational motion.

A12 Describe the concept of rotational kinetic energy and how it is related to the moment of inertia and the
angular speed.

Study comment  You may now wish to take the Exit test for this module which tests these Achievements.
If you prefer to study the module further before taking this test then return to the Module contents  to review some of the
topics.
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6.3 Exit test

Study comment Having completed this module, you should be able to answer the following questions, each of which tests
one or more of the Achievements.

Question E1

(A2 and A3)3Estimate the torque which you apply to the trunk of your body when you begin to sit upright,
moving from a prone position, lying on your back. How much work do you do in sitting upright?
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Figure 173A crane-truck for Questions
E2 and E3. The z-axis points towards you.

Question E2

(A2 and A4)3The 40001kg crane-truck in Figure 17 has a centre of
mass 1.31m behind the front wheels. The distance between front and
rear wheels is 4.51m. If the top of the crane is 61m above ground level
and 71m behind the front wheels calculate the maximum safe load
which it can lift. Use scalar notation.

Question E3

(A5, A6 and A7)3Consider again the crane-truck in Figure 17 and let the position vector r join the point of
contact of the rear wheels to the top of the crane. Express r in terms of unit vectors of the given coordinate
system and calculate the vector product of r and the maximum safe weight vector WL.
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Question E4

(A5, A6, A7, A8, A10, A11 and A12)3If you allowed yourself to fall flat from a standing position, keeping rigid,
on to a soft mattress, estimate (a) your angular speed and 
(b) the magnitude of your angular acceleration as you hit the mattress. 
Write down vector expressions in a specified coordinate system for (c) your angular velocity and 
(d) angular acceleration at impact.

For the purposes of this question, you may treat yourself as a thin uniform rigid rod. The moment of inertia of a
thin rod of mass M and length L about an axis through its centre of mass and perpendicular to its length is:

Icm = 1
12 ML2
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Question E5

(A12)3(a) Write down a general expression relating the kinetic energy of a cylinder rolling down a plane to its
translational kinetic energy and its rotational kinetic energy about its central axis. (b) From this expression,
deduce a general formula relating the angular speed to the effective vertical height fallen and the moment of
inertia.

Question E6

(A9 and A12)3When a cylinder or sphere rolls down an inclined surface under gravity the gain in kinetic energy
is equal to the loss in gravitational potential energy. Suppose three cylinders are made from different materials
such that they have identical external dimensions and mass. They differ in that one cylinder is solid, one is
hollow and thick-walled, while the other is hollow and thin-walled. All three cylinders are started together at the
top of an inclined plane and roll down the slope, without slipping. Do they all arrive at the bottom
simultaneously, or, if not, what is their arrival sequence? Explain your reasoning.
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Question E7

(A3, A11 and A12)3(a) Calculate the rotational kinetic energy of the Earth, assuming it is a uniform solid
sphere of mass 5.98 × 10241kg and radius 6.38 × 106 1m. (b) Tidal friction and other factors cause the Earth’s
rotation to slow down and the day is lengthening at the rate of 0.71s every century. Calculate the power loss.

Study comment  This is the final Exit test question. When you have completed the Exit test go back to Subsection 1.2 and
try the Fast track questions if you have not already done so.

If you have completed both the Fast track questions and the Exit test, then you have finished the module and may leave it
here.
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