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1 Opening items

1.1 Module introduction
The aim of this module is to explore the general principles governing rotational motion. We will explain why,
for example, a spinning skater rotates more quickly when her arms are pulled in closer to the axis of rotation,
and why a falling diver spins faster when he curls up. It turns out that the principles that are at work here also
give insights into the orbital motion of the planets and the ability of some stars, the pulsars, to behave as rapidly
pulsating sources of light. This module considers general types of rotation. In particular, we will investigate why
a rotating object, such as a gyroscope, displays a surprising degree of stability. These and other phenomena will
be interpreted in terms of the concept of rotational or angular momentum and its conservation under certain
conditions.

Section 2 will review the general features of uniform circular motion, concentrating on quantities that do not
change with time (the so-called constants of the motion) and introducing the angular velocity vector. Section 3 is
a brief mathematical interlude which reviews the use of unit vectors and vector products. In Section 4 the
concepts of angular momentum, moment of inertia and torque are introduced and the analogies with translational
motion explored. Newton’s second law of motion is then extended to rotational dynamics and the principle of
angular momentum conservation is introduced. In Section 5 a number of specific examples are discussed in
terms of the conservation of angular momentum; these include the motion of the planets around the Sun, rotating
dumb-bells, gyroscopes and helicopters.
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Study comment Having read the introduction you may feel that you are already familiar with the material covered by this
module and that you do not need to study it. If so, try the Fast track questions given in Subsection 1.2.  If not, proceed
directly to Ready to study? in Subsection 1.3.
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1.2 Fast track questions

Study comment Can you answer the following Fast track questions?. If you answer the questions successfully you need
only glance through the module before looking at the Module summary (Subsection 6.1) and the Achievements  listed in
Subsection 6.2. If you are sure that you can meet each of these achievements, try the Exit test in Subsection 6.3. If you have
difficulty with only one or two of the questions you should follow the guidance given in the answers and read the relevant
parts of the module. However, if you have difficulty with more than two of the Exit questions you are strongly advised to
study the whole module.

Question F1

A freely rotating polished turntable of radius 2.01m and mass 2001kg rotates in a horizontal plane about its central
axis at 14 revolutions per minute. A girl of mass 501kg steps on to the turntable at distance of 1.01m from the axis
of rotation. She slides on the turntable and only stops sliding when she grasps a rail on the extreme edge of the
turntable, 2.01m from the axis of rotation. Find (a) the angular speed of the turntable and girl after she stops
sliding; (b) the amount of energy dissipated during the process. (You may ignore friction at the axle of the
turntable. The moment of inertia of a homogeneous disc of mass M and radius a about its central axis is
I = 1

2 Ma2 .)



FLAP P2.8 Angular momentum
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

Question F2

An arrow of mass 1.01kg is fired into an unlatched door and strikes the door perpendicularly to its face, at a
distance 1.01m from the hinges and at an impact speed of 1001km per hour. The arrow embeds itself in the door,
which has a width of 1.31m and a mass of 601kg. Find the angular velocity of the door and the linear velocity of
the arrow just after impact. (The moment of inertia of the door of mass M about one edge is I = 1

3 Ma2  where a
is the width of the door. Ignore friction at the hinges.)

Study comment

Having seen the Fast track questions  you may feel that it would be wiser to follow the normal route through the module and
to proceed directly to Ready to study? in Subsection 1.3.

Alternatively, you may still be sufficiently comfortable with the material covered by the module to proceed directly to the
Closing items.
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1.3 Ready to study?

Study comment In order to study this module you will need to be familiar with the following terms: angular measure
(degree, radian, the relationship s = rθ between arc length s, radius r and angle swept out θ0), areas and volumes of regular
solids, Cartesian coordinate system, density, energy, force, kinetic energy, mass, Newton’s laws of motion, SI units (distance,
force and energy), translational equilibrium, uniform acceleration equations, uniform circular motion (angular speed, speed
and the relationship between these), vector notation (magnitude, vector component, component vector, addition, subtraction),
weight, work, algebraic and trigonometrical equations and manipulation of these and the notation of calculus, including
differention, and integration of simple polynomial functions. If you are uncertain about any of these terms then you can
review them now by referring to the Glossary, which will indicate where in FLAP they are introduced. The following Ready
to study questions will allow you to establish whether you need to review some of the topics before embarking on the
module.
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Figure 14See Question R2.

Question R1

What is the angular speed of a bicycle wheel of radius 341cm when the bicycle
is travelling forwards, without skidding, at a constant speed of 30 1km per hour?

Question R2

Find the components of the force F  of magnitude 121N along both the x- and
z-axes in Figure 1. If this force F were applied to a mass of 3.01kg, placed at A,
write down the  x- and z-components of the acceleration of the mass.

Question R3

A mains water pipe section is of length 241m, outer diameter 0.801m, inner
diameter 0.741m and density 2.4 × 103 1kg1m−3. Calculate its mass and the
magnitude of its weight (taking the magnitude of the acceleration due to
gravity to be 101m1s−2).
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2 Uniform circular motion
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Figure 24A particle
undergoing uniform circular
motion. The z-axis points out
of the page, towards you.

2.1 Basic definitions
When an object rotates steadily about a fixed axis, each of its constituent particles
undergoes uniform circular motion. We therefore begin with a review of uniform
circular motion, such as that shown in Figure 2. A mass m moves with constant
speed v around a circular path of radius r, in the (x, y) plane. The period of the
motion is T and the frequency of the motion is f = 1/T. The particle traces out the
circumference of the circle in time T so we have the relationship

v = 2πr/T

At a certain time t, the particle is at point P, described by the position vector r.
The particle’s position can also be represented by the angle θ relative to the x-axis
or by the arc length s travelled round the circle from the x-axis. The angular speed
is defined as ω = |1dθ1/dt1| and remains constant because we are dealing with uniform
circular motion. The particle makes one revolution, corresponding to ∆θ = 2π1rad,
in a time ∆t = T = 1/f, so we can also write

ω = 2π/T = 2πf
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Substituting in our expression for the speed then gives v = rω0, a result which can also be confirmed by
calculating the rate of change of the arc length:

  
v = ds

dt
= d(rθ )

dt
= r

dθ
dt

= rω (1)

The velocity of the particle is completely described by the velocity vector v which has magnitude v and is
tangential to the circle.

Uniform circular motion is accompanied by centripetal acceleration, of magnitude a = v2/r = rω02.
This acceleration is always directed towards the centre of the circle so we can write the vector equation

a = −ω02r (2)

Newton’s second law of motion, F = ma, requires there to be a centripetal force of magnitude
F = mv2/r = mrω12, which is again directed towards the centre of the circle. This too can be written as a vector
equation

F = −mω12r

making it clear that F and r are in opposite directions; both are perpendicular to the velocity vector v which is
tangential to the circle.
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2.2 Constants of the motion
In the discussion above we have listed several quantities, some of which are scalar quantities and others of
which are vector quantities.

✦ Of the quantities mentioned above, identify all the scalar quantities.

✦ Which of these quantities remain constant during uniform circular motion?

✦ Now identify all the vector quantities mentioned in the description of uniform circular motion given above.

Question T1

Which of these vector quantities remain constant during the motion?4❏
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Question T2

Consider the force F acting on the particle over a short time interval ∆t. (a) What is the work done ∆W by this
force? (b) What is the change in the particle’s kinetic energy in the time interval ∆t?4❏

In summary, uniform circular motion is motion at constant speed along a circular path. The plane containing the
path of the particle is called the plane of rotation. There are many scalar quantities which are constants of this
motion. However, we have so far failed to find a single vector quantity which is a constant of this uniform
circular motion. We shall now redress this shortcoming by defining a suitable angular velocity vector which
does remain constant throughout the motion.
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2.3 The angular velocity vector
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Figure 24A particle
undergoing uniform circular
motion. The z-axis points out
of the page, towards you.

Study comment If you have met the concept of angular velocity before you may skim
through, or omit, this subsection.

For a particle in uniform circular motion we wish to introduce a constant vector
quantity, the angular velocity w, such that its constant magnitude is the angular
speed ω = v/r and its direction is also constant.

✦ What direction can reasonably be chosen for w which remains fixed during the
rotation?

The direction of the angular velocity vector is still not completely specified.
The axis of rotation defines a single line, but is associated with two directions
pointing in opposite senses along the line. To define the angular velocity vector it is
necessary to choose one of these directions. The choice is made according to a standard convention, known as
the right-hand grip rule; if the fingers of your right hand are curled around in the sense of rotation, then your
extended thumb points along w. This direction is out of the plane of the diagram in Figure 2 (i.e. along the
positive z-axis).
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To summarize:

The angular velocity vector w has a magnitude equal to the angular speed ω. The direction of the angular
velocity vector, w is along the axis of rotation and is therefore perpendicular to plane of rotation and to the
vectors r and v. It points along the axis of rotation in a sense determined by the right-hand grip rule.

Angular velocity is a vector in the full sense of the word. It turns out, for example, that if a spinning object is
placed on a rotating platform (say, the second hand of a watch on the arm of a child standing on a rotating
roundabout) the net effect of these two rotations is given by the vector sum of the two angular velocity vectors.
The vector nature of angular velocity is reflected in our notation: like any other vector, it is represented by a
directed line segment1—1that is by a straight line with an arrow. The length of the arrow is proportional to the
angular speed ω and the direction of the arrow is the direction of w. The sum of two angular velocity vectors can
then be carried out algebraically (by adding components) or geometrically (by the triangle rule).

Aside It is tempting to represent angular velocity by a curved line with an arrow indicating the sense of rotation, and to use
descriptive words, such as clockwise and anticlockwise, which carry this message. Such a representation is best avoided
because it does not adequately reflect the vector nature of angular velocity and is of no help when adding two angular
velocities together. ☞
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We have arrived at a sensible definition for the angular velocity vector in the special case of a particle
undergoing the uniform circular motion. It is natural to ask whether this concept can be profitably extended to
other types of rotation1—1for example, to the elliptical orbit of a planet around the Sun. Such extensions can
certainly be made but a completely general definition of angular velocity is complicated and is rarely found in
textbooks. You might think this to be a curious omission, but it actually is rather revealing: it betrays the fact
that angular velocity is of kinematic, rather than dynamic interest1— 1that is, it is rarely used in equations of
motion involving external influences, such as forces.

In Section 4 we will introduce a new vector quantity, the angular momentum, which plays a central role in
rotational dynamics: the rate of change of angular momentum is directly determined by the external influences
that are acting. Angular velocity is most useful when it is simply related to the angular momentum. However
when the relationship between angular velocity and angular momentum is complicated (as is the case for
planetary orbits) this may simply indicate that angular velocity does not provide a very convenient description of
the motion.

This discussion of the central importance of angular momentum and the more subsidiary role of angular velocity
is, of course premature, but it gives you some early insight of the central message of this module and provides a
signpost to future sections. In particular, the definition of angular momentum can be identified as an urgent
objective. This will be reached in Section 4, but first it is necessary to review some background material on
vectors. The two concepts we need to cover are those of unit vectors and vector products.
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3 Unit vectors and vector products
Study comment If you are familiar with the representation of vectors in terms of unit vectors and with the idea of a vector
product you will find this section contains much revision material and you may only need to glance at it. If you have not met
these concepts before you may find this section rather formal: if so, be prepared to read it briskly and to return to it later,
when you are in a position to appreciate how these mathematical ideas are used in the theory of rotation.

3.1 Unit vectors
A unit vector is a vector of unit magnitude: its magnitude is not equal to 1 metre, but to the pure number 1,
which has no units. This is rather an abstract idea, but it allows us to represent many other vectors in terms of
unit vectors. For example, suppose that the unit vector i points along the x-direction. Then the vector (51m)1i
represents a displacement of length 51m in the x-direction and the vector (51m1s−1)1i represents a velocity with
magnitude (speed) 51m1s–1 in the x-direction. The unit vector i indicates direction, but contains no information
about magnitude or units.
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It is useful to define three unit vectors, i, j and k, which point,
respectively, along the x-, y- and z-axes of a right-handed coordinate
system (Figure 3). Then any position vector r = (x, y, z) can be expressed
as a vector sum of xi, y1j and zk:

r = x0i + y1j + zk

Any other vector, such as a force vector, F  = (F x , F y , F z ) can be
represented in a similar way:

F = Fx0i + Fy01j + Fzk

Quantities like F x i are called component vectors. These are genuine
vectors with magnitude and direction and should not be confused with
scalar quantities such as Fx, which are called components.

Figure 34Fixed unit vectors in a right-handed coordinate system. (A coordinate system is said to be right-handed if a
corkscrew rotated from the x-axis towards the y-axis advances in the direction of the z-axis). The unit vectors i, j, and k
provide directional information only.
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Figure 24A particle
undergoing uniform circular
motion. The z-axis points out
of the page, towards you.

Question T3

Suppose that the particle in Figure 2 moves at 101m1s−1 in the (x, y) plane, along a
circular path of radius 2 m, and that its angular position is θ = 40°. Express 
(a) the position vector of the particle and (b) the velocity of the particle in terms of
unit vectors along the x-, y- and z-axes.4❏

Question T4

A particle moves at constant angular speed ω in a circle of radius r in the (x, y)
plane. The position vector describing this uniform circular motion is
r = r1[i1cos1(ω1t)0 + j1sin1(ω1t)1]. Confirm Equation 2

a = −ω02r (Eqn 2)

by differentiating this vector twice.4❏
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3.2 Vector products
The second concept we need is that of a vector product (sometimes called the cross product) of two vectors.

☞

Vector products

Given any two vectors, a and b, which are inclined at an angle θ to one another, their vector product is
written as a · b and has the following properties:

o it is a vector;

o it has magnitude ab1sin1θ0; ☞

o its direction is perpendicular to both a and b and is defined equivalently either by a corkscrew
rule (Figure 4a) or by the right-hand rule (Figure 4b). (see next page)
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Figure 44Defining the direction of the vector product a ¥ b of two vectors a and b according to the corkscrew rule and the

right-hand rule. (a) The corkscrew rule: when a corkscrew is turned from a to b through the angle θ, the tip of the corkscrew
advances in the direction of a ¥ b. (b) The right-hand rule: when the fingers of the right hand are curled in the direction from
a to b then the thumb points in the direction of a ¥ b (rather than in the opposite direction).
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Some properties of the vector product follow immediately from its definition.

14The order of the vectors in a vector product is important. If the order of the two vectors is reversed then the
sign of the vector product is reversed

b · a = −0a · b (3)

24Because sin10° = sin1180° = 0, the vector product of any two parallel (or antiparallel) vectors is zero.
Thus, for any scalar quantity λ  and any vector a we have

a · (λ a) = 0 (4)

and, in particular, the vector product of any vector with itself is zero:

a · a = 0
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34Using the right-hand rule and adopting a right-handed coordinate
system as in Figure 3, we can easily calculate the vector products of our
unit vectors:

      

i ¥¥ i = 0 j ¥¥ j = 0 k ¥¥ k = 0
i ¥¥ j = k k ¥¥ i = j j ¥¥ k = i
j ¥¥ i = −k i ¥¥ k = − j k ¥¥ j = −i

(5)

Figure 34Fixed unit vectors in a right-handed coordinate system. (A coordinate
system is said to be right-handed if a corkscrew rotated from the x-axis towards the
y-axis advances in the direction of the z-axis). The unit vectors i, j, and k provide
directional information only.
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These identities help us to calculate the components of a vector product. If we are given two vectors

a = ax0i + ay01j + az0k

b = bx0i + by01j + bz0k

their vector product is given by

a · b = (ax0i + ay01j + az0k) × (bx0i + by01j + bz0k)

= axby(i · j) + axbz(i · k) + aybx(1j · i) + aybz(1j · k) + azbx(k · i) + azby(k · j) ☞

So, using the known vector products of the unit vectors we obtain

a · b = (aybz − azby)1i + (azbx − axbz0)1j + (axby − aybx)1k (6)

This formula can be regarded as an alternative definition of the vector product of two vectors, based on algebra
rather than geometry. The geometric definition given in the box earlier is more immediately appealing but the
algebraic definition is sometimes easier to implement, especially when writing computer programs.
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44We often need the vector product of two vectors a and b that depend on time; the rate of change of the
vector product a · b is then given by the usual product rule of differentiation:

    

d

dt
(a ¥¥ b) = a ¥¥ db

dt






+ da
dt

¥¥ b



 (7) ☞

where, in view of Equation 3,

b · a = −0a · b (Eqn 3)

care must be taken to preserve the order of the vectors (a preceding b throughout).

Mike Tinker
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Question T5

In a triangle PQR the displacement vector from P to Q is a and the displacement vector from P to R is b.

What is the geometric significance, if any, of the quantity     
1
2 |a ¥¥ b |?4❏

Question T6

A particle travels at constant velocity v along a straight line. An origin of coordinates O is chosen that lies a
distance b away from this straight line. ☞ The position vector of the particle relative to O is r. Show that the
vector product r · v is independent of time. (Hint: As a first step, split r into two perpendicular vectors.)4❏
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4 Rotational dynamics and angular momentum
When an extended object is subjected to an external force several things may happen. The object may:

1 translate (i.e. move bodily) through space;

2 rotate about an axis of fixed or varying orientation;

3 distort in shape, as in a vibration.

In general, these different types of motion will all take place together and it may not be easy to unravel them.
We shall simplify matters by concentrating on single particles and rigid bodies1—1that is, bodies that cannot be
distorted. The motion of a rigid body can always be regarded as a combination of a translation and a rotation.
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4.1 Centre of mass and translational motion
The distinction between translation and rotation is not entirely trivial. If you think of a spanner being thrown so
that it spins end-over-end, it is clear that each end of the spanner will both translate and rotate. Nevertheless,
there is one special point in the spanner which does not rotate, but which follows the parabolic path expected for
a projectile: this special point is called the centre of mass of the spanner. In general, any object has a special
point, called its centre of mass, whose rate of acceleration is determined by the total mass of the object and the
total external force acting on it, according to Newton’s second law of motion. The centre of mass of an extended
object can therefore be treated exactly like the idealized point particle encountered in elementary formulations of
Newtonian mechanics.

The centre of mass of an object can be characterized in a second way. In general, when a single force is applied
to an initially stationary body it causes translation of the centre of mass and rotation of the rest of the body
around the centre of mass. However, if the force acts along a line that passes through the centre of mass, no
rotational motion is generated: the body simply accelerates through space without changing its orientation.
The centre of mass is the only point that has this property.
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One further property of the centre of mass is useful in many problems. When a rigid body is placed in a uniform
gravitational field, such as that found near the Earth’s surface, the gravitational force acting on the body has
exactly the same effect as if it were a single force applied at the body’s centre of mass. By itself, gravity near the
Earth’s surface is therefore incapable of generating rotational motion: if you observe rotation developing when
an object is dropped, this must be due to other influences such as air resistance.

The centre of mass provides us with a convenient way of distinguishing between translation and rotation.
Motion of the centre of mass through space tells us about translation of the body and rotation about an axis ☞
through the centre of mass tells us about rotation of the body. Any motion of a rigid body can be regarded as a
combination of a translation of the centre of mass and a rotation about the centre of mass.

The translational motion of a single particle is conveniently analysed in terms of its linear momentum (usually
simply called momentum). For a single particle of mass m moving with velocity v, the momentum p is defined
as:

For a particle p = m0v (8a)
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Momentum is an important property for two main reasons:

1 Newton’s second law of motion can be expressed in terms of momentum:

For a particle F = dp/d0t (9a)

2 When the resultant external force F is zero, the rate of change of momentum is zero so p is a constant
vector1—1the particle’s momentum is conserved.

The fact that the centre of mass behaves as an idealized particle allows us to apply these ideas to an extended
body. If the object is regarded as a collection of N particles, its total momentum P is defined by adding together
the momenta of its constituent particles:

  
P = pi

i=1

N

∑

For an object of mass M, whose centre of mass moves at velocity vcm, this momentum is also given by

For an extended object P = Mvc0m (8b)

and, if the body experiences a resultant external force F, Newton’s second law gives

For an extended object F = dP/d0t (9b)
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When the resultant external force is zero, the rate of change of momentum is zero so P is a constant vector1—1the
object’s momentum is conserved.

We would like to establish analogous results for rotational motion. To do this we need to introduce two new
concepts, angular momentum and torque, which are the rotational analogues of (linear) momentum and force.
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4.2 Introducing angular momentum
We begin with a general definition of the angular momentum of a particle. Suppose that the particle has position
vector r (relative to a chosen origin O) and momentum p. Then

the angular momentum of the particle about the chosen origin O is defined as the vector product:

L = r · p ☞ (10)

This vector quantity has magnitude

L = r0p1sin1θ = m0vr1sin1θ

where θ is the angle between the directions of r and p.

Its direction is perpendicular to both r and p, in a sense determined by the right-hand rule.
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L = r × p
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Figure 54A particle of mass m undergoes
uniform circular motion in the (x, y) plane.
Relative to an origin O at the centre of the
circle the particle has position vector r and
its momentum is p.

The components of the angular momentum vector follow immediately
from its definition and from Equation 6

a · b = (aybz − azby)1i + (azbx − axbz0)1j + (axby − aybx)1k (Eqn 6)

which gives

L = r · p = (ypz − z0py)1i + (z0px − x0pz)1j + (x0py − ypx)1k

In order to see what this definition means in physical terms it is best
to consider some examples. We begin with the simple case of a
particle undergoing uniform circular motion at constant angular
velocity w in the (x, y) plane with the origin O at the centre of the
circle (Figure 5). This is the rotational equivalent of uniform linear
motion at constant velocity v.
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Figure 54A particle of mass m undergoes
uniform circular motion in the (x, y) plane.
Relative to an origin O at the centre of the
circle the particle has position vector r and
its momentum is p.

We note that

14Because L = r · p is perpendicular to both r and p, it must point
along the axis of rotation. Moreover, application of the right-hand
rule shows that L points in the same direction as w.

24Because the angle between r and p is 90°, the magnitude of the
angular momentum vector is L = r0p = mvr. Using Equation 1,

  
v = ds

dt
= d(rθ )

dt
= r

dθ
dt

= rω (Eqn 1)

this becomes
L = mr02ω

So the angular momentum is proportional to the angular speed. Since
L and w have been shown to point in the same direction this result
can be expressed in vector form:

L = mr2
w = Iw (11a)

where the constant of proportionality I = mr02 is called the moment of
inertia of the orbiting particle.
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L = r × p
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Figure 54A particle of mass m undergoes
uniform circular motion in the (x, y) plane.
Relative to an origin O at the centre of the
circle the particle has position vector r and
its momentum is p.

Because the scalars m , r  and ω are all constant, we see that the
angular momentum vector is constant in magnitude, as well as being
constant in direction. We therefore conclude that the angular
momentum vector of the particle in Figure 5 is constant: like angular
velocity the angular momentum in Equation 11a

L = mr2
w = Iw (Eqn 11a)

is a vector constant of the motion.
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These relationships form the basis of an analogy between uniform linear motion and uniform circular motion.
Table 1 shows the details.

Table 14Comparisons between uniform linear motion and uniform circular motion
(with the origin taken to be at the centre of the circle)

Uniform linear motion Uniform circular motion

position coordinate x angular position coordinate θ

speed v = |1dx/d0t1| angular speed ω = |1dθ1/dt1|

velocity v = dr/d0t angular velocity w

mass m moment of inertia I = m0r2

momentum p = mv
(a vector constant of the motion)

angular momentum L = r · p = Iw
(a vector constant of the motion)

For example, corresponding to mass (which measures the translational inertia of a particle in linear motion) we
have the moment of inertia I = mr 02 (which measures the rotational inertia of a particle in circular motion) and
corresponding to momentum p we have angular momentum L.
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L = r × p
ω

r

axis of 
rotation

O

p

Figure 54A particle of mass m undergoes
uniform circular motion in the (x, y) plane.
Relative to an origin O at the centre of the
circle the particle has position vector r and
its momentum is p.
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ω

Figure 64The same motion as in
Figure 5 but analysed using an origin O
which is on the axis of rotation, but not in
the plane of rotation. Relative to this new
origin the position vector of the particle
is r = r|1| + r⊥  where r|0| is a component
vector along the axis of rotation and r⊥  is
a component vector perpendicular to the
axis of rotation.

The analogy outlined in Table 1
masks one important difference:
the angular momentum vector L
depends on the choice of origin
of the coordinate system while
the linear momentum vector p
does not.

To illustrate this point, consider
the same motion as in Figure 5,
but suppose that the origin is at
the point O in Figure 6a, on the
axis of rotation but not in the
plane of rotation. The position
vector of the particle can then
be represented as the vector sum
of r|0| which is parallel to the
axis of rotation and r ⊥  which is
perpendicular to the axis of
rotation.
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Thus, L = r · p = (r|0| + r⊥ ) · p = (r|0| · p) + (r⊥  · p) (12)

The second vector product on the right-hand side of Equation 12 is clearly the same as the angular momentum
calculated for the situation in Figure 5. Since this contribution to the angular momentum is parallel to the axis of
rotation we denote it by L 0|0| and write

L0|0| = r⊥  · p = mr⊥
2
w (11b)

There remains the first vector product on the right-hand side of Equation 12. This vector product is
perpendicular to the axis of rotation, directed radially inwards along −r⊥ , and is therefore denoted by L⊥ . It is
certainly not zero and does not remain constant, but swings around in the plane of rotation at the same rate as the
orbiting particle. Thus, adding the two contributions L|0| and L⊥  together leads to a more complicated description
than before, one in which L is no longer parallel to w, and the simple analogy outlined in Table 1 is destroyed.
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L = r × p
ω
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Figure 54A particle of mass m
undergoes uniform circular motion in
the (x, y) plane. Relative to an origin O
at the centre of the circle the particle
has position vector r and its
momentum is p.

O

r⊥

p

r
r||

ω

Figure 64The same motion as in
Figure 5 but analysed using an origin O
which is on the axis of rotation, but not in
the plane of rotation. Relative to this new
origin the position vector of the particle
is r = r|1| + r⊥  where r|0| is a component
vector along the axis of rotation and r⊥  is
a component vector perpendicular to the
axis of rotation.

You might suppose that the
chameleon-like nature of the
angular momentum vector
(depending on the choice of origin
of coordinate system) would
undermine its use in descriptions
of rotational motion. Figures 5 and
6 correspond to alternative
outlooks on the same motion, so it
might seem unreasonable for the
angular momentum vector to have
very different properties in these
two cases. Surprisingly, this is not
so. The next section will show why
angular momentum plays a central
role in rotational motion and why
the differences that arise from
different choices of origin turn out
to be unimportant after all.
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Figure 74See Question T7.

Question T7

A particle of mass 51kg is in uniform circular motion in the
(x, y) plane with speed 101m1s−1 on a path of radius 41m.
The motion is analysed using an origin on the axis of
rotation but displaced 31m from the plane of rotation
(Figure 7). Calculate (a) the magnitude of the angular
momentum about O, (b) the z-component of the angular
momentum about O, (c) the maximum value of the x-
component of the angular momentum, Lx, and
(d) the minimum value of Lx.4❏
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4.3 Rate of change of angular momentum and torque
For both single particles and extended bodies you have seen that the rate of change of linear momentum is
determined by the total external force (Equations 9a and 9b).

For a particle F = dp/d0t (Eqn 9a)

For an extended object F = dP/d0t (Eqn 9b)

The great importance of angular momentum stems from the fact that it obeys a similar law: the rate of change of
angular momentum is determined by the external forces on the system.

To establish this fact we differentiate both sides of Equation 10

L = r · p (Eqn 10)

with respect to time, using Equation 7

    

d

dt
(a ¥¥ b) = a ¥¥ db

dt






+ da
dt

¥¥ b



 (Eqn 7)

to help us differentiate the vector product.
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This gives

    

dL
dt

= d

dt
(r ¥¥ p) = r ¥¥ dp

dt




 + dr

dt
¥¥ p



 ☞

By Newton’s second law, dp/d0t = F and from the definitions of velocity and momentum dr/d0t = v and p = mv.
Substituting these results in the above equation gives

    
dL
dt

= (r ¥¥ F) + (v ¥¥ mv)

Because v is parallel to mv, the second term on the right-hand side vanishes (see Equation 4)

a · (λ a) = 0 (Eqn 4)

and we are left with

    
dL
dt

= (r ¥¥ F)

The vector quantity (r · F 0) which appears on the right-hand side of this equation is called the torque and is
denoted by the symbol G.  ☞
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Thus

torque G = r · F (13) ☞

and

for a single particle
    
dL
dt

= GG (14a)

The torque vector is a measure of the turning influence experienced by the particle and Equation 14a can be
regarded as the rotational analogue of Newton’s second law, dp/dt = F. Just as changes in (linear) momentum
are caused by forces, so changes in angular momentum are caused by torques.

Equation 14a has been derived for a single particle but a very similar result applies to an extended object.
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If the object is regarded as a collection of N particles, its total angular momentum L is defined by adding
together the angular momenta of its constituent particles:

  
L = L i

i=1

N

∑

Then the rate of change of the total angular momentum is given by

for an object
    
dL
dt

= GG (14b)

where G is now the total external torque (given by the vector sum of all the external torques that are applied to
the object).☞ Note that only external torques need be considered here, in spite of the fact that internal torques
are also present. An extended object can be regarded as a collection of many different particles which exert
forces on one another and these forces produce torques. However, the important point is that these internal
torques cancel out and do not affect the total angular momentum. (A rigid body cannot start to rotate unless
torques are applied to it from the outside.)
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Question T8

State in words, as fully and concisely as you can, the physical content of Equation 14b.

for an object
    
dL
dt

= GG (Eqn 14b)

4❏

for a single particle
    
dL
dt

= GG (Eqn 14a)

Equations 14a and14b are the most important results of this module. They are the analogues of Equations 9a and
9b for linear motion

For a particle F = dp/d0t (Eqn 9a)

For an extended object F = dP/d0t (Eqn 9b)

 and reveal the central role played by angular momentum and torque in discussions of rotational motion. Angular
momentum has already been discussed at some length but the concept of torque needs further explanation.
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Figure 84(a) The turning effect or torque produced by a force F applied at
position r from an origin O. The plane containing the vectors r and F is shown
and θ is the smaller angle between these two vectors. (b) Closing a heavy door
with the optimum position and angle of an applied force. The torque G acts up the
axis of the hinge, towards you.

As an example, consider Figure 8a
which shows a single force F
which is applied to an extended
object and whose point of
application has position vector r
relative to a chosen origin.
The direction of the torque is
perpendicular to both r and F and
therefore points along the axis of
the rotation that the force would
promote if the object were pivoted
about the origin. The magnitude of
the torque is

Γ = r0F1sin1θ (15)

where F is the magnitude of the
force, r is the distance of the point
of application of the force from the
origin and θ is the smaller angle
between the vectors r and F.
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Figure 84(a) The turning effect or torque produced by a force F applied at
position r from an origin O. The plane containing the vectors r and F is shown
and θ is the smaller angle between these two vectors. (b) Closing a heavy door
with the optimum position and angle of an applied force. The torque G acts up the
axis of the hinge, towards you.

Figure 8a shows that the magnitude
of the torque can also be
interpreted as the product of the
magnitude of the force and the
perpendicular distance between its
line of action and the origin.
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Figure 84(a) The turning effect or torque produced by a force F applied at
position r from an origin O. The plane containing the vectors r and F is shown
and θ is the smaller angle between these two vectors. (b) Closing a heavy door
with the optimum position and angle of an applied force. The torque G acts up the
axis of the hinge, towards you.

Notice that the magnitude of the
torque depends on three factors:

1 The magnitude F  of the
applied force;

2 The distance r from the chosen
origin O to the point of
application of the force. (This
distance is sometimes called
the lever arm.)

3 The direction of the applied
force. The greatest turning
effect is experienced when r
and  F  are mutually
perpendicular (θ = 90°) but no
turning effect is felt if θ = 0°
or θ = 180° (i.e. if the line of
action of the applied force
passes through the pivot).
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Figure 84(a) The turning effect or torque produced by a force F applied at
position r from an origin O. The plane containing the vectors r and F is shown
and θ is the smaller angle between these two vectors. (b) Closing a heavy door
with the optimum position and angle of an applied force. The torque G acts up the
axis of the hinge, towards you.

These factors are in accord with
common experience. For example,
a heavy door is most easily closed
if the force is applied as far as
possible from the hinge and
perpendicular to the face of the
door, as in Figure 8b. By contrast,
if the line of action of the force
were to pass through the hinge
then the door could not be closed,
however large the force.

As in the case of angular
momentum it is also possible to
express the torque vector in
component form.
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Using Equation 6

a · b = (aybz − azby)1i + (azbx − axbz0)1j + (axby − aybx)1k (Eqn 6)

we have

      GG = r ¥¥ F = (yFz − zFy )i + (zFx − xFz ) j + (xFy − yFx )k (16)

where r = (x, y, z) is the position vector of the point of application of the force F = (Fx, Fy, Fz).

Question T9

The hour hand on a clock has a uniform cross section, is of mass 3.61kg and is 0.41m long. Taking the origin to be
the centre of the clock face, what is the torque about the central axis through the clockface due to the weight of
the hand when the clock reads 4 o’clock? Answer this question using (a) Equation 15,

Γ = r0F1sin1θ (Eqn 15)

and

(b) Equation 16. (Hint: Take g = 9.81m1s−2.)4❏
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L = r × p
ω
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Figure 54A particle of mass m undergoes
uniform circular motion in the (x, y) plane.
Relative to an origin O at the centre of the
circle the particle has position vector r and
its momentum is p.

One of the most fundamental and far-reaching consequences of
Equations 14a and 14b

for a single particle
    
dL
dt

= GG (Eqn 14a)

for an object
    
dL
dt

= GG (Eqn 14b)

arises when the total external torque is zero. When this happens,
dL/dt is zero so the angular momentum vector L remains constant.

The law of conservation of angular momentum states that
when no resultant external torque acts on a body, its angular
momentum stays constant.

It is important to realize that the condition of no resultant torque does
not imply the absence of a resultant force. Returning to the example
of a particle in uniform circular motion (Figure 5) it is clear that a
force is acting on the particle: this is the centripetal force needed to
deflect the particle from straight-line motion and to hold it on a
circular path.
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Figure 64The same motion as in
Figure 5 but analysed using an origin O
which is on the axis of rotation, but not in
the plane of rotation. Relative to this new
origin the position vector of the particle
is r = r|1| + r⊥  where r|0| is a component
vector along the axis of rotation and r⊥  is
a component vector perpendicular to the
axis of rotation.

(The centripetal force is an example of a central force1—1that is, a force
whose line of action passes through a fixed point.) The centripetal force
always points towards the centre of the circle so it produces no torque
about an origin at the centre of the circle.

The law of conservation of angular momentum then guarantees that the
angular momentum of the particle is constant (again referred to an
origin at the centre of the circle). The angular momentum is constant in
magnitude (mrω2 remains fixed) and constant in direction (the motion is
confined to a single plane, the plane of rotation).

It is worth emphasizing that the above discussion relies on the origin
being at the centre of the circle. In Figure 6 a different origin O has been
chosen, on the axis of rotation but out of the plane of rotation.
In this case you have already seen (Equation 12)

L = r · p = (r|0| + r⊥ ) · p = (r|0| · p) + (r⊥  · p) (Eqn 12)

that the angular momentum has a component L⊥  = r | 0| · p  which is
perpendicular to the axis of rotation and is not conserved. This is not a
problem because, relative to the origin of Figure 6, the particle
experiences a torque G⊥  = r|0| · F where F is the centripetal force acting
along −r⊥ .
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Moreover, because r|0| is constant we have

      
dL⊥

dt
= r| | ¥¥ dp

dt
= r| | ¥¥ F = GG ⊥

so the rate of change of L⊥  is explained by the existence of G⊥ . At the same time, the component of angular
momentum parallel to the axis of rotation remains constant because there is no torque in that direction.

Two morals may be drawn from this. First, Equations 14a and 14b

for a single particle
    
dL
dt

= GG (Eqn 14a)

for an object
    
dL
dt

= GG (Eqn 14b)

are valid no matter which fixed point is chosen as origin: this allays the fears expressed at the end of
Subsection 4.1 because the chameleon-like nature of angular momentum is matched by that of the torque.
Second, we note that an appropriate choice of origin can simplify the analysis. In the above example, it is
sensible to choose the origin to be at the centre of the circle because this ensures a vanishing torque and allows
the law of conservation of angular momentum to be used. Other choices are not wrong, but they lead to more
work.
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4.4 Uni-axial rotation
The simplest type of rotational motion that involves a non-zero torque occurs when the axis of rotation is fixed
relative to the rotating body and maintains a fixed orientation. A good example is provided by an opening door,
where the axis of rotation runs down one side of the door and maintains a vertical orientation. Such a motion is
said to be a uni-axial rotation.

Uni-axial rotation is simple because the angular velocity vector points along the known, fixed axis. The angular
momentum and torque vectors need not point along this axis (because they depend on the choice of origin) but
we are really only interested in the components of these vectors along the axis. Isolating the component vectors
in Equation 14b

for an object
    
dL
dt

= GG (Eqn 14b)

that point along the axis of rotation gives

    

dL | |

dt
= GG | | (17)
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If the axis of rotation is taken to be the z-axis, the same result can also be expressed in terms of scalar
components:

dLz

dt
= Γ z

We now concentrate on Lz and Γz to see whether they can be simplified in the uni-axial case. From Equation 16

      GG = r ¥¥ F = (yFz − zFy )i + (zFx − xFz ) j + (xFy − yFx )k (Eqn 16)

we see that

Γz = xFy − yFx

Note that neither the z-component of the force nor the z-coordinate of the point of application of the force enter
this expression. (When opening a door, it does not matter how much vertical force is applied or whether the door
is pushed at the top, bottom or middle.) The same result can be written as a component vector in the general
form

G|0| = r⊥  · F⊥

where r⊥  = xi + y1j and F⊥  = Fxi + FyÊj are the component vectors perpendicular to the axis of rotation.
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The angular momentum component along the axis of rotation can be simplified by regarding the rotating object
as a huge collection of particles. Each particle travels on a circular path around the axis of rotation with the same
angular speed ω, but different particles have different radii of orbit. The advantage of this representation is that
we already know how to calculate L0|0| for each particle. According to Equation 11b,

L0|0| = r⊥  · p = mr⊥
2
w (11b)

for a single particle L0|0| = mr⊥
2
w

Suppose that the rotating object consists of N particles and that the ith particle has mass mi and is orbiting at a
radius (r⊥ )0i from the given axis. Then the total angular momentum along the axis is found by adding together
contributions from all the particles. This gives

    
L | |= mi (r⊥ )i

2ww
i=1

N

∑ = mi (r⊥ )i
2

i=1

N

∑








ww

where we have used the fact that all the particles have the same angular velocity vector to extract this common
factor from the sum. The term within square brackets on the right-hand side is called the moment of inertia ☞
of the body for rotation about the given axis, and is given the symbol I.
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Thus L0|0| = Iw (18)

where

I = mi (r⊥ )i
2

i=1

N

∑ (19)

The moment of inertia I is a characteristic property of the rotating body which depends on how the matter in the
body is distributed relative to the axis of rotation. A large moment of inertia indicates that a lot of matter is a
long way from the axis, while a small moment of inertia indicates the opposite. It clearly depends on the body
and on the axis of rotation.

Substituting Equation 18 for the angular momentum into Equation 17

    

dL | |

dt
= GG | | (Eqn17)

gives
  

d(Iww )
dt

= GG | |  (20)
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In uni-axial rotation, the moment of inertia remains constant (each particle in the body remains a constant
distance from the axis of rotation) so we finally obtain

  

I
dww
dt

= GG | |  (uni-axial rotation) (21)

where the quantity dw/dt is called the angular acceleration of the body. Thus, to set alongside the familiar form
of Newton’s second law (mass × acceleration = resultant force), we now have an the analogous result for uni-
axial rotation

moment of inertia × angular acceleration = resultant torque component

This analogy is so striking that there is a danger of using it too enthusiastically. Equation 21 has only been
established for uni-axial rotation. If the axis of rotation changes, the moment of inertia I will change, so
Equation 21 will not follow from Equation 20.

  

d(Iww )
dt

= GG | |  (Eqn 20)

Worse than this, the axis of rotation may not be known at the outset of a calculation, so we may not be in a
position to exploit Equation 20.
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Figure 94A body rotating about a
symmetric axis. Particle A is in the plane
of the page and moving towards you;
particle B is in the plane of the page and
moving away from you.

You might also ask whether it is legitimate to use Equation 14b

    
dL
dt

= GG (Eqn 14b)

with L  = Iw. The case of a body spinning about a symmetric axis
deserves special mention here (Figure 9). Regarding the body as a
collection of particles, we see that any particle A is matched by a
similar particle B, such that the perpendicular components of the
angular momentum of the pair of particles cancel out. Treating the
whole body as a collection of such particle pairs it follows that the
total angular momentum is parallel to the axis of rotation. So, in this
case, we can write

rigid body, symmetric axis L = Iw (22)
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Figure 94A body rotating about a
symmetric axis. Particle A is in the plane
of the page and moving towards you;
particle B is in the plane of the page and
moving away from you.

At first sight, this result seems to be more general than others in this
subsection, applying even if the axis of rotation changes. This is not
really true. If the axis in Figure 9 were to swing away from the vertical
there would inevitably be a sideways component of angular velocity,
hence the true axis of rotation would not remain symmetric and the
argument which led to Equation 22

rigid body, symmetric axis L = Iw (Eqn 22)

would not apply. In practice, you will sometimes see Equation 22
being used beyond its strict domain of validity, especially for bodies
that spin rapidly about an axis that varies very slowly. Nevertheless,
you should be aware that this involves an approximation. A lack of
symmetry (or a varying axis of rotation) takes us back to the situation
encountered in Equation 12:

L = r · p = (r|0| + r⊥ ) · p = (r|0| · p) + (r⊥  · p) (Eqn 12)

in general, L can have a component that is perpendicular to w. So

L ≠ Iw
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Table 24Further comparisons between translational motion and rotational motion.

Translational motion Rotational motion

p = (0px, py, pz) L = r · p = (ypz − z0py, z0px − x0pz, x0py − ypx)

F = (Fx, Fy, Fz) G = r · F = (yFz − z0Fy, z0Fx − xFz, xFy − yFx0)
dp0/dt = F dL/dt = G

If F = 0, then p is conserved If G = 0, then L is conserved

p = mv If the axis is symmetric L = Iw

If the axis is fixed L|0| = Iw

m dv/dt = F If the axis is fixed Idw0/dt = G|1|

In spite of these warnings, strong similarities between rotational and translational motion persist and are
summarized in Table 2. In many ways, the analogy is carried most safely and generally using (linear)
momentum and angular momentum as in the third and fourth rows of the table. The special cases of symmetric
and fixed axes allow us to go further, as in the last three rows, but this analogy is more dangerous because it has
a narrower domain of validity.
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5 Examples of rotational dynamics
The general principles developed in the previous section lead to some fascinating results. In this section we will
look at many examples of rotational motion in order to illustrate how the general theory is used in practice.

O

m

a

v

Figure 104A particle is
initially in uniform circular
motion about the origin O.
What happens to its angular
momentum and angular speed
after the string is cut?

5.1 Circular and linear motion
When a particle of mass m is attached to a string and swung round in a circle of
radius a at speed v we have no difficulty in assigning an angular speed or angular
momentum to the particle. What happens if the string that supplies the centripetal
force is cut? Physically, the particle flies off at a tangent and, in the absence of
any forces, travels in a straight line at the constant speed v (Figure 10). What can
we say about its angular speed and angular momentum after the string has been
severed?

Question T10

Relative to an origin at the centre O of the circular orbit, derive expressions for
the magnitude of the angular momentum and the angular speed of the particle at a
time t after the string is cut, if no forces act on the particle.4❏
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Figure 114An ellipse can be traced
out by plotting the locus of all points
(P) such that the sum of the distances
from two fixed foci (F and F′) is a
constant. The ellipse is described in
terms of a major axis of length 2a and
a minor axis of length 2b. The ratio
b/a = (1 – ε02)1/02, where ε is called the
eccentricity of the ellipse.

5.2 Planetary motion and Kepler’s laws

In the early 17th century the German astronomer, Johannes Kepler (1571–
1630) made a major advance in astronomy, based on an analysis of
planetary data from the observations of the Danish astronomer
Tycho Brahe (1546–1601). These data were very precise and a careful
analysis persuaded Kepler to abandon the idea of circular orbits of the
planets around the Sun, in favour of elliptical orbits, with the Sun at one
focus of the ellipse ☞ . In 1609 Kepler published his first two laws of
planetary motion, and in 1619 he added a third:
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Figure 114An ellipse can be traced
out by plotting the locus of all points
(P) such that the sum of the distances
from two fixed foci (F and F′) is a
constant. The ellipse is described in
terms of a major axis of length 2a and
a minor axis of length 2b. The ratio
b/a = (1 – ε02)1/02, where ε is called the
eccentricity of the ellipse.

o Kepler’s first law:4Every planet moves around the Sun in a
planar orbit that is an ellipse, with the Sun located at one
focus.   ☞

o Kepler’s second law:4A straight line from the Sun to the
planet sweeps out equal areas in equal time intervals.

o Kepler’s third law:4The ratio of the square of the period of
a planet in its orbit to the cube of the length of the semi-
major axis of its orbit is the same for all planets.
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Figure 124Geometrical construction for
Kepler’s second law: 
hatched area = 1

2 base × height of triangle

  =   
1
2 r(v∆t sinθ )

Kepler’s second law is of particular significance for this module,
o Kepler’s second law:4A straight line from the Sun to the

planet sweeps out equal areas in equal time intervals.

since it is a consequence of the law of conservation of angular
momentum. Figure 12 shows a section of a planetary orbit with the Sun
at one focus of the ellipse. During a short time interval ∆t, the position
vector of the planet from the Sun moves through an angle ∆φ and
sweeps out an area ∆A which can be approximated by

  ∆A = 1
2 r(v∆t sin θ )

where v  is the speed of the planet and θ is the angle shown in
Figure 12.

This approximation becomes increasingly accurate as the time interval
is reduced. In the limiting case of a vanishingly small time interval the
rate of change of area swept out by the planet is

  

dA

dt
= lim

∆t→0

∆A

∆t




 = 1

2 rvsin θ
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Using the definition of angular momentum about an origin at the centre of the Sun, |1L1| = r0v0r1sin1θ, we therefore
have

  
dA

dt
= | L |

2m
(23)

So, it is the angular momentum that controls dA/d0t. The only force acting on the planet is due to the Sun’s
gravitational pull whose line of action always passes through the Sun. This central force produces no torque
about our origin so the law of conservation of angular momentum can be applied. This tells us that angular
momentum about the Sun must be a constant vector hence dA/d0t must also be constant, which is Kepler’s second
law.

Conservation of angular momentum under a central force is the general principle behind Kepler’s second
law. ☞

Aside Kepler’s observational laws are not completely accurate because they assume that the Sun occupies a fixed point
which can be used as a fixed origin. This is not true because the Sun itself experiences gravitational forces due to all the
planets and therefore accelerates. Because of its very large mass the Sun’s acceleration is small and very little error is made
by ignoring it; nevertheless Kepler’s laws should only be regarded as approximations, valid within a simplified model of the
solar system.
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A full treatment of the solar system is tremendously difficult ☞ but the model of an isolated star, orbited by a
single planet can be analysed in detail (this is the so-called two-body problem). In this case, the centre of mass
of the star–planet provides a suitable origin and both bodies can be thought of as orbiting their common centre of
mass. Kepler’s first two laws then take the modified form:

o Kepler’s first law (modified):4The planet moves in an elliptical path, with the focus at the position of
the centre of mass of the planet–star system.

o Kepler’s second law (modified):4The position vector for a planet, measured from the centre of mass
of the planet–star system, sweeps out equal areas in equal time intervals.

Question T11

An artificial satellite has an elliptical orbit around the Earth. Its distance from the centre of the Earth is 68001km
at its nearest point to the Earth (the perigee) and 1012001km at its furthest point (the apogee). Assuming that the
Earth remains stationary (as its mass is so large compared to that of the satellite) calculate: (a) the ratio of the
magnitudes of the angular momentum of the satellite about the Earth centre at perigee to that at apogee;
(b) the ratio of the speed of the satellite along the orbital path at perigee to that at apogee.4❏
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Figure 134A symmetric dumb-bell

rotating with angular speed ω about the
central z-axis. At the instant shown, the
masses are in the plane of the page; the
left-hand mass is coming out of the page,
towards you and the right-hand mass is
travelling into the page, away from you.

5.3 A rigid dumb-bell
We will now examine the rotational behaviour of rigid bodies.
The important point about a rigid body is that its motion can always be
described in terms of a translational motion of its centre of mass and a
rotational motion of the whole body about an axis through the centre of
mass. In general the axis may vary with time, but at each instant all the
particles in the body have the same angular velocity about the same
instantaneous axis of rotation1—1that is what being rigid implies.

Perhaps the simplest extended rigid body consists of two identical small
objects, each of mass m, linked by a rigid rod of length 2r and negligible
mass. Such a body is called a dumb-bell. Figure 13 shows the case of a
symmetric dumb-bell in which the dumb-bell rotates at constant angular
speed ω about its midpoint (O) and the rod joining the two masses lies
in the plane of rotation. For the motion shown in Figure 13 the angular
velocity points along the z-axis and the angular velocity vector is ω0k.
We choose our origin to be at the midpoint of the dumb-bell (which is
its centre of mass). Then the angular momentum contributed by each
mass is mr 02ω 0k and the total angular momentum of the dumb-bell is
found by adding together these contributions.
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Figure 144An asymmetric dumb-bell

rotating with angular speed ω about the
central z-axis. At the instant shown, the
left-hand mass is moving out of the
page towards you and the right-hand
mass is moving into the page away
from you.

This gives

  L = mr2ω k + mr2ω k = 2mr2ω k = Iω k

where the moment of inertia of the symmetric dumb-bell is given by

I = 2mr02

which is the sum of the moments of inertia of the individual masses.
If no torques act on the dumb-bell its angular momentum will be
conserved1—1it will carry on rotating at constant angular speed about the
z-axis.

The behaviour of a symmetric dumb-bell is not very surprising and agrees
with our earlier discussion of rotation about a symmetric axis. However, a
very different situation arises if the rod joining the masses is tilted out of
the plane of rotation to form an tilted symmetric dumb-bell as in
Figure 14. Suppose that the dumb-bell is rotating with angular speed ω
about the z-axis and that the origin is again chosen to be on the z-axis at
the midpoint of the rod.
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Figure 144An asymmetric dumb-bell

rotating with angular speed ω about the
central z-axis. At the instant shown, the
left-hand mass is moving out of the
page towards you and the right-hand
mass is moving into the page away
from you.
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Figure 64The same motion as in
Figure 5 but analysed using an origin O
which is on the axis of rotation, but not in
the plane of rotation. Relative to this new
origin the position vector of the particle
is r = r|1| + r⊥  where r|0| is a component
vector along the axis of rotation and r⊥  is
a component vector perpendicular to the
axis of rotation.

Then the right-hand rule shows
that, relative to the origin O,
each mass has an angular
momentum in the direction
shown (cf. Figure 6) ☞.

The total angular momentum of
the rod therefore has a
component L|0| along the z-axis
which remains constant and a
component L⊥  perpendicular to
the z-axis which rotates around
with the dumb-bell.
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Figure 134A symmetric dumb-bell

rotating with angular speed ω about the
central z-axis. At the instant shown, the
masses are in the plane of the page; the
left-hand mass is coming out of the page,
towards you and the right-hand mass is
travelling into the page, away from you.

The existence of a time-varying component L⊥  has some interesting
consequences. First, suppose that the dumb-bell is rotating steadily
around the z-axis, as we have described above. Then the time-variation
of L⊥  implies that dL⊥ /dt ≠ 0 and Equation 14 shows that an external
torque must be acting.

for an object
    
dL
dt

= GG (Eqn 14b)

Such a torque could be provided if the z-axis were a physical shaft and
the dumb-bell were attached to it by axial bearings. However, these
torques would entail forces and hence friction and wear at the bearings.
If possible, it would be preferable to avoid them by ensuring that the
rotational axis is perpendicular to the rod axis, as in Figure 13, and that
the tilt angle is zero. A similar problem occurs with a tilted dumb-bell if
it is  asymmetric, so that either m1 ≠ m2 or |1r11| ≠ |1r21|. Similar
considerations apply to wheels, especially if the rotation rates are high.
This is why special care is taken to ensure that car wheels and flywheels
are not ‘out of balance’.
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What would happen if no torques were applied to the tilted dumb-bell1—1for example, if the spinning dumb-bell
were launched into the air and were subject only to the force of gravity? Gravity acts as if it were applied at the
centre of mass O and so produces no torques about O. In this case, the law of conservation of angular
momentum tells us that the total angular momentum of the spinning dumb-bell must remain constant.

✦ How can the total angular momentum of the dumb-bell remain constant when we have already seen that
rotation around the z-axis entails a time-varying component vector L⊥ ?

Very similar effects occur when a spinning plate is thrown into the air (try it out if you have any plates you are
tired of). To witness this effect, and understand its physical origins, illustrates the almost magical power of
physics ☞. The wobbling of a spinning plate must seem deeply mysterious to the uninitiated1—1no amount of
commonsense seems to explain it, but a physicist will happily account for the phenomenon on the back of an
envelope.
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5.4 The gyroscope
One of the most useful applications of angular momentum conservation is provided by the gyroscope.
This is a wheel which spins rapidly about an axle, mounted on very low friction bearings, called gymbals.
The gymbals allow the axle to maintain its direction, even if the support of the gyroscope and gymbals alters its
orientation.

If the axle is initially pointing in a fixed direction, the angular momentum of the gyroscope points along the axle
(which is an axis of symmetry). The gyroscope is normally mounted so that the gymbals support the weight of
the gyroscope, but cause no torques about its centre of mass. Because the gyroscope experiences no external
torque, its angular momentum is conserved and the axle maintains its initial orientation. This allows the
gyroscope to be used as a navigational device on ships, aeroplanes, and spacecraft.

A gyroscope becomes even more wonderful when it is mounted in a different way, so that a torque does act on
it. This can be achieved by moving the gymbals to one end of the gyroscope, so that relative to the fixed
gymbals, the force of gravity provides an unbalanced torque. In this situation, the gyroscope undergoes a
characteristic type of motion called precession, in which the axis of rotation swings around as if on the surface
of a cone ☞.
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Figure 154(a) A gyroscope suspended at one end only, precessing
about its support.

In the most perplexing example of precessional
motion (Figure 15a), the spin axis is horizontal
and precesses in a horizontal circle around the
fixed gymbals. This is unexpected because we
might expect the gyroscope to fall down under
the gravitational force. Instead, the gymbals
support the weight of the gyroscope while the
gravitational torque causes the gyroscope to
change its angular momentum, which is
accomplished by changing the orientation of the
axle.



FLAP P2.8 Angular momentum
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

ω

ψ

Γ

x

grav

O

t = 0

L = spin angular momentum

y

x

y

t = ∆t

(b)

∆

∆L

L

We will now calculate the angular frequency of the precessional
motion. In a short time ∆t the angle swept out by the axis of the
gyroscope is ∆ψ (Figure 15b): because

the angular momentum vector is swinging round the arc of a circle,
the change in angular momentum has magnitude

  | ∆L | = | L | ∆ψ = Iω ∆ ψ

Here we have made an approximation (of the kind we warned you
about in Subsection 4.4). Because the gyroscope is assumed to spin
rapidly about its axle, and to precess much more slowly than it
spins, we have taken the angular momentum to point along the axle
and to have magnitude Iω.

Figure 154(b) Plan view of the motion of the

gyroscope axis. Between t = 0 and t = ∆t the

gyroscope gains angular momentum ∆L which has
the same direction as the gravitational torque Ggrav.
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Dividing through by the time interval ∆t, we then have

  

∆L
∆t

= Iω ∆ψ
∆t

and, in the limit of a very small time interval,

  

dL
dt

= Iω dψ
dt

Finally, we can use the relationship between torque and angular momentum to deduce that

  

dL
dt

= Γ = Mga

where M is the mass of the gyroscope and a the distance of the centre of mass from the support. 
Defining the precessional angular speed to be Ω = dψ dt , we conclude that

Ω = Mga

Iω
= torque magnitude

spin angular momentum magnitude
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You may come across several examples of gyroscopic motion in physics. In addition to the mechanical
gyroscope discussed above, there is an ordinary top, the Earth spinning in the Sun’s gravitational field, a magnet
spinning about its axis in a magnetic field, and a nucleus spinning in the magnetic field within the atom.
All these precess about the direction in which they would experience no torque if the spin axis were aligned with
this direction.

5.5 Other illustrations of angular momentum conservation

The spinning Earth

To a good approximation the Earth experiences no external resultant torque and so rotates with constant angular
momentum. It spins about an axis of symmetry so its angular velocity remains constant; there are 24 hours in
every day. This is not quite true, as there are two separate small astronomical effects which produce resultant
torques on the Earth. First, the tides raised by the Moon’s gravity cause a very slight slowing down due to a
frictional torque along the axis of rotation; the day is getting longer by about 21milliseconds per century.
Secondly, the fact that the Earth is not a perfect sphere, but bulges at the equator, and also that the plane of its
spin differs from the plane of its orbit means that the gravitational influence of the Sun and Moon causes the axis
of rotation to precess slowly, with a period of about 261000 years.
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A helicopter

When a helicopter is in mid-air it experiences negligible external torque so its total angular momentum is
conserved. If the pilot changes the angular velocity and angular momentum of the overhead rotor blades the rest
of the helicopter must change its angular momentum by rotating in the opposite sense. Clearly, it would not be
desirable for the passenger and crew to go round in circles. To counteract this effect it is necessary to have a
small propeller on the tail, or to use a pair of counter-rotating blades.
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Figure 164The angular speed of a skater increases when she
raises her arms above her head or lowers them to her sides.
Because her moment of inertia I decreases, her angular speed ω
increases to ensure that her angular momentum L = Iω is
conserved. You can experience a similar effect by extending your
arms and legs while sitting on a rotating rotating swivel chair1—
1but take care not to break a limb!

A spinning skater or a springboard diver

Both these examples can be modelled by
articulated bodies (that is bodies that are made
up of a small number of rigid parts which are
free to move relative to one another). When a
spinning skater pulls her outstretched arms
inwards, towards her body, her angular speed
increases (Figure 16). There is no resultant
external torque about the skater’s centre of mass
because the external forces (gravity and the
upward reaction force from the ice) both have
lines of action that pass through her centre of
mass. The law of conservation of angular
momentum then ensures that the skater has a
constant angular momentum. The component of
angular momentum parallel to the axis of
rotation, Iω, is therefore constant.
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By bringing her arms closer into her body, the skater reduces her moment of inertia, leading to an increase in her
angular speed.

If her moment of inertia changes from I1 to I2 and her angular speed changes from ω01 to ω02 we have

I1ω1 = I2ω2

so her final angular speed is

ω2 = I1

I2
ω1

A similar argument explains why a diver speeds up when he coils up in mid-air.

A falling cat

A falling cat is reputed always to land on its feet. High speed photography suggests that, even if its initial
angular momentum is zero the cat rotates its tail rapidly to give the rest of its body a counter rotation so that it
can land on its feet. Maybe the cat could not write down the equations, but it certainly understands the
principles!
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The birth and death of a star

One theory of the evolution of our solar system assumes that the Sun and the planets formed from a giant cloud
of cosmic gas and dust, with some large scale rotation. As the cloud contracted under its own gravity, angular
momentum was conserved and, as the distance of each particle from the centre of mass was decreased, the
angular speeds of the particles increased. As a result, the whole mass rotated more rapidly. Because of local
condensations the proto-solar system finally resolved itself into the Sun and a series of planets orbiting and
spinning in roughly the same direction and with the same axis as the original angular momentum of the dust
cloud.

Some massive stars will end their lives by collapsing to form very condensed neutron stars, with radii of only
100–151km. These neutron stars show rapid flashes of light and radiowaves, caused by the neutron star rotating
and sending out a beam of radiation, somewhat like a lighthouse. Such objects are known as pulsars. The rapid
rotation of pulsars, which may have periods as short as a few hundredths of a second, is understood in terms of
angular momentum conservation in the collapsing star (cf. the spinning skater).
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Question T12

A turntable of mass 301kg and radius 0.51m is supported by an effectively frictionless bearing. A man of mass
701kg standing at the centre of the turntable can be modelled as a solid cylinder of radius 0.151m. He switches on
a vertically directed high speed drill which is directly above his head. The drill rotates at 40 revolutions per
second, and its rotating parts may be modelled as a solid cylinder of mass 2001g and radius 2 1cm. Estimate the
resulting angular speed of rotation of the man + turntable. (A solid cylinder of mass M and radius a has a
moment of inertia 1

2 Ma2 .)4❏

Question T13

If our Sun were to collapse, without significant loss of mass, into a star of radius 50001km, estimate the period of
rotation of that star. The Sun’s mass is 1.99 × 10301kg, the radius of the Sun is 6.95 × 1081m and its period of
rotation is approximately 25 days ☞ . The moment of inertia of a sphere of radius a about a diameter is
I = 2

5 Ma2 .4❏
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6 Closing items
6.1 Module summary
1 In uniform circular motion, with the origin at the centre of the circle, many scalar quantities are constants of

the motion. In addition, two vector quantities are constants of the motion1—1the angular velocity w and the
angular momentum L, both of which are directed along the axis of the rotation.

2 The angular velocity vector has a magnitude equal to the angular speed ω and points along the axis of
rotation in a sense determined by the right-hand grip rule.

3 The centre of mass of a body is the unique point such that any force directed through the point produces
translation of the body but no rotation. The centre of mass moves through space just like a particle that
experiences the resultant external force acting on the body.

4 Any vector such as F = (Fx, Fy, Fz ) can be represented as F = Fx0i + Fy01j + Fz0k where i, j and k are unit
vectors along the coordinate axes.

5 The vector product or cross-product of two vectors a and b is written as (a · b) and is a vector whose
magnitude is a0b1sin1θ, where θ is the smaller of the angles between the two vectors. The direction of the
vector product is perpendicular to both a and b in a sense determined by the right-hand rule. This definition
means that

b · a = −0a · b (Eqn 3)
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6 In terms of unit vectors

a · b = (aybz − azby)1i + (azbx − axbz)1j + (axby − aybx)1k (Eqn 6)

7 The angular momentum of a particle about a given origin O is given by the vector product L = r · p where
r is the position of the particle relative to O and p is its momentum. The vector L has magnitude r0p1sin1θ,
where θ is the angle between r and p. It points in a direction perpendicular to r and p in a sense determined
by the right-hand rule.

8 The angular momentum of an extended body is the vector sum of the individual angular momenta of its
constituent particles.

9 Torque is represented by the vector product

G = r · F (Eqn 13)

where r is the position vector of the point of application of the force F relative to a chosen origin O. The
vector G has magnitude r0F1sin1θ, where θ is the angle between r and F. It points in a direction perpendicular
to r and F in a sense determined by the right-hand rule.

10 The rotational motion of any object is governed by the law

    
dL
dt

= GG (Eqn 14)

where G is the resultant external torque acting on the object and L is its total angular momentum.
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11 The law of conservation of angular momentum states that when no unbalanced external torque acts on a
body, its angular momentum stays constant.

12 When a body rotates about a fixed axis the law of rotational motion can be expressed as

    

dL | |

dt
= GG | | (Eqn 17)

with

L0|0| = Iw (Eqn 18)

G|0| = r⊥  · F⊥

The quantity I is called the moment of inertia of the body about the given axis of rotation. It measures the
reluctance of the body to change its state of rotational motion. Regarding the body as a collection of N
particles, where the ith particle has mass mi and is  a distance (r⊥ )i from the axis of rotation,

I = mi (r⊥ )i
2

i=1

N

∑ (Eqn 19)

and for uni-axial rotation
  

I
dww
dt

= GG | | (Eqn 21)
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13 If a body rotates about a symmetrical axis of rotation its angular momentum is aligned with its angular
velocity:

L = Iw (Eqn 22)

If the axis is not symmetrical, or changes its orientation, this simple result beaks down because the angular
momentum has components perpendicular to the angular velocity.

14 Angular velocity and angular momentum can be associated with linear motion.

15 Kepler’s second law states that the line joining the planet to the Sun traces out equal areas in equal times;
this observational law is a consequence of the conservation of angular momentum.

16 The law of conservation of angular momentum explains why an object that spins about an asymmetric axis
also wobbles.

17 The gyroscope is an important instrument based on angular momentum conservation. When subjected to a
gravitational torque the gyroscope precesses (its spin axis swings round in the vertical axis).
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6.2 Achievements
Having completed this module, you should be able to:

A1 Define the terms that are emboldened and flagged in the margins of the module.

A2 For a particle or a rigid body, evaluate the angular velocity vector about a given axis of rotation and show
its direction on a diagram.

A3 Evaluate the angular momentum vector of a particle about a given origin and show its direction on a
diagram.

A4 For a particle or a rigid body rotating about a fixed axis, calculate the angular momentum component
vector along this axis in terms of the angular velocity and the moment of inertia about the axis.

A5 Express angular velocity and angular momentum in terms of unit vectors and use these expressions in
calculations.

A6 Evaluate the torque vector about a given origin and show its direction on a diagram.

A7 Express torque in terms of unit vectors and use the expression in calculations.

A8 Recall and use the vector expressions which relate torque to rates of change of angular momentum.
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A9 Describe planetary motion in terms of Kepler’s laws and show how the second law relates to angular
momentum conservation.

A10 Describe how conservation of angular momentum relates to some practical situations, including the
behaviour of a gyroscope.

Study comment  You may now wish to take the Exit test for this module which tests these Achievements.
If you prefer to study the module further before taking this test then return to the Module contents  to review some of the
topics.
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6.3 Exit test

Study comment Having completed this module, you should be able to answer the following questions, each of which tests
one or more of the Achievements.

Question E1

(A2, A3 and A4)4According to one (classical) model of the hydrogen atom, a single electron is in uniform
circular motion around a central nucleus. In the lowest energy state of this system the magnitude of the angular
momentum of the electron about the nucleus is L = h/2π, where h is Planck’s constant, h = 6.63 × 10−341J1s.
Given that the radius of the orbit is a = 5.31 × 10−111m and that the mass of the electron is 9.11 × 10−311kg,
calculate: (a) the electron speed, (b) the electron angular speed, (c) the moment of inertia of the electron about
the central axis through the nucleus. (d) Show the angular velocity and angular momentum vectors on a diagram
(for an origin at the centre of the circular orbit). ☞
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Question E2

(A3, A4 and A10)4A student in a swivel chair, holding at arms length two skittle bowls, each of mass 4.51kg, is
spun at a speed of 1.0 revolution per second. He quickly brings the bowls to his waist. Estimate the final speed
of rotation. You may assume that the moment of inertia of the student and swivel chair (excluding the bowls) is
71kg1m2 and you may ignore friction. ☞

Question E3

(A6 and A7)4A model aircraft is tethered to a post and moves along a circular path in the (x, y) plane with
centre O and radius r. The engine exerts a force of magnitude F in a direction which is along the path.
Air resistance may be ignored. Relative to the origin at O and using unit vector notation, write down expressions
for (a) the resultant torque vector about O; (b) the change of angular momentum of the aircraft about O during a
short time interval ∆t.
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Question E4

(A3, A4 and A10)4A student, sits on a swivel chair and holds a heavy-duty electric fan above his head. Initially,
the student is at rest and the fan is rotating at a speed of 50 revolutions per second about a horizontal axis.
He slowly turns the fan so that it is rotating clockwise about a vertical axis  as viewed from below. Determine
the magnitude and direction of the angular velocity of the student and chair after the fan has been turned,
assuming that friction is negligible. You may take the moment of inertia of the fan about its axle to be 0.11kg1m2

and that of the student plus the swivel chair to be 31kg1m2. What happens if the student turns the fan so that it
again rotates about a horizontal axis, but with the opposite angular velocity to that at the outset?

Question E5

(A6, A8 and A10)4Explain as fully as you can why a coin, rolling rapidly on a pavement, is stable against small
surface irregularities.
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Question E6

(A3, A4 and A10)4A roller skater of mass 601kg, travelling at 101km1h−1 in a circle in the (x, y) plane is attached
by a rope to a winch at the centre of the circle. He orbits in an anticlockwise sense as seen from above.
The winch slowly winds in the rope, from an initial length of 151m to a final length of 51m. Friction is negligible.
Using unit vector notation write down expressions for (a) the initial angular velocity vector, (b) the initial
angular momentum vector, (c) the final angular momentum vector, (d) the final angular velocity vector.

Question E7

(A5 and A10)4Two freewheeling roller skaters of equal mass M approach each other on parallel paths a
distance b apart with opposite velocities, v and −v. As they pass each other they lock hands together. Using unit
vector notation, obtain an algebraic expression for the final angular velocity of the skaters. Explain whether there
is a change in the kinetic energy of the system? You may ignore friction at the skates.
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Question E8

(A4 and A10)4Given that the rotational kinetic energy of a body rotating with angular speed ω, about an axis
about which its moment of inertia is I, is Iω02/2. Show that, for the example of the spinning skater, there must be
an increase in kinetic energy when her arms are drawn inwards.

Study comment  This is the final Exit test question. When you have completed the Exit test go back to Subsection 1.2 and
try the Fast track questions if you have not already done so.

If you have completed both the Fast track questions and the Exit test, then you have finished the module and may leave it
here.
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