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1 Opening items

1.1 Module introduction
In 1687 Newton formulated his law of universal gravitation in which he asserted that there is a gravitational
interaction between all masses. In this module, we apply Newton’s law of gravitation to a variety of situations,
beginning in Section 2 with the Cavendish experiment to measure the universal gravitational constant, G.

In Section 3 we concentrate on gravitational effects due to the Earth and see that, for an object close to the Earth,
the gravitational force due to the Earth itself is much greater than that due to any other body. We see how the
weight of an object on Earth is related to the Earth’s surface gravity (i.e. the surface gravitational field, or
acceleration due to gravity). We also see that close to the Earth, the gravitational field can be treated as uniform,
giving rise to a simple expression for changes in gravitational potential energy. However, for an object that
travels from the Earth’s surface to an infinite distance from the Earth we need to take account of the variation in
field strength with distance in order to derive an expression for the escape velocity.

In Section 4 we apply the law of gravitation and ideas about circular motion to the orbits of planets and
satellites, and hence explain the basis of Kepler’s laws of planetary motion. We then use ideas about orbital
motion to account for ocean tides and to explain how astronauts in an orbiting vehicle might detect the presence
of a gravitational field despite feelings of ‘weightlessness’.
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Sections 2 to 4, are concerned with the gravitational effects of those extended bodies which may be regarded as
spheres, but we represent them by point masses located at their geometric centres. In Section 5, we use ideas
about gravitational potential together with the principle of superposition to justify this procedure.  This is a
more technical section which assumes a greater knowledge of calculus and trigonometry than the rest of the
module, but the method it uses and the result it derives are of importance in many areas of physics.

Study comment Having read the introduction you may feel that you are already familiar with the material covered by this
module and that you do not need to study it. If so, try the Fast track questions given in Subsection 1.2.  If not, proceed
directly to Ready to study? in Subsection 1.3.
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1.2 Fast track questions

Study comment Can you answer the following Fast track questions?. If you answer the questions successfully you need
only glance through the module before looking at the Module summary (Subsection 6.1) and the Achievements  listed in
Subsection 6.2. If you are sure that you can meet each of these achievements, try the Exit test in Subsection 6.3. If you have
difficulty with only one or two of the questions you should follow the guidance given in the answers and read the relevant
parts of the module. However, if you have difficulty with more than two of the Exit questions you are strongly advised to
study the whole module.

Question F1 ☞

Calculate the surface gravity (acceleration due to gravity at the surface) of the Moon.

Question F2

Calculate the radius of the orbit of a geostationary satellite orbiting the Earth.
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Question F3

Calculate the escape speed from the surface of the Moon.

Study comment

Having seen the Fast track questions  you may feel that it would be wiser to follow the normal route through the module and
to proceed directly to Ready to study? in Subsection 1.3.

Alternatively, you may still be sufficiently comfortable with the material covered by the module to proceed directly to the
Closing items.
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1.3 Ready to study?

Study comment In order to study this module you will need to be familiar with the following terms: acceleration,
conservation of energy, density, force, kinetic energy, mass, Newton’s laws of motion, position vector, potential energy,
torque and work.  You will be required to plot graphs, particularly straight-line graphs, and to use them to investigate
relationships between variables. You will also need to be familiar with vectors, including the concept of a unit vector.
Integration is used at one point in Section 3, but apart from this the use of calculus is confined to Section 5, which also uses
implicit differentiation and the cosine rule of trigonometry. All the necessary concepts concerning gravitational field,
gravitational potential and circular motion (angular speed, centripetal acceleration and centripetal force) are introduced at
the appropriate points in this module, but some of those introductions are rather rapid and you will find it beneficial if you
have studied such concepts before; they are all discussed in greater detail elsewhere in FLAP. If you are uncertain about any
of these terms then you can review them now by reference to the Glossary, which also indicates where in FLAP they are
developed. The following Ready to study questions will help you to establish whether you need to review some of the above
topics before embarking on this module.

Question R1

Evaluate the following integral between the limits given 
dx

x2
∞

a

∫ .
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Question R2

(a) Sketch a graph of y against x for y2 = 2x03.

(b) What would you plot in order to obtain a straight-line graph from a set of (x, y) values that obeyed y2 = 2x3?
What would be the intercept and gradient of your graph?

−F(F = 7N)

F(F = 7N)

r =10.21m

Figure 14See Question R3.

Question R3

Calculate the magnitude of the torque (turning effect) produced by the
forces shown in Figure 1 about a point midway between the lines of
action of the two forces.
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Question R4

The mass of a lead sphere of diameter 1001mm is 5.921kg. Calculate the density of lead.

(The volume of a sphere of radius r is V = 4
3

πr3.)
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2 Universal gravitation

2.1 Gravitational forces
We are all familiar with the notion of gravitational attraction. We know that the Earth, for example, exerts a
‘pull’ on objects in its vicinity. In 1687, Isaac Newton (1642–1727) published his explanation of this
phenomenon in his Principia Mathematica. Having made clear what he meant generally by a ‘force’, in terms of
the acceleration it would cause, he went on to introduce the concept of a gravitational force, which is described
by his law of universal gravitation:

Every particle of matter in the Universe attracts every other particle with a force that is directly proportional to the
product of the masses of the particles and inversely proportional to the square of the distance between them.
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In modern vector notation, the gravitational force Fgrav on a particle of mass m2 due to a particle of mass m1
separated from it by a distance r is given by

  
Fgrav = F21 = − Gm1m2

r2
r̂ (1a)

where G = 6.673 × 10−111N1m21kg−2 is the universal gravitational constant, and   ̂r  is a dimensionless unit

vector (i.e. a vector of magnitude 1) ☞ directed from m1 to m2. The minus sign in Equation 1a signifies that the

force is in the opposite direction to   ̂r , i.e. that the force on m2 takes the form of an attraction towards m1.

It follows from Equation 1a that the magnitude of the gravitational force is:

  
| Fgrav | = Fgrav = Gm1m2

r2
(1b)

Since the strength of the force is proportional to 1/r2 we say that the gravitational force obeys an inverse square
law.
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It is a big step to go from the force between two point-like particles to the force between two extended bodies,
such as that between an apple and the Earth. However, you can probably imagine how such a step might be
taken, at least in principle. In order to find the resultant force on the apple (or the oppositely directed force on the
Earth) you would have to treat the extended bodies as large collections of particles and then use vector addition
to sum all the forces that each particle in one body exerted on every particle in the other body. If you know the
appropriate mathematical techniques this is not quite as daunting as it sounds, especially if the bodies involved
are very simple. This is particularly true if the bodies are spherically symmetric, that is if the bodies are
spheres, each with a density ρ that may vary with the distance r from the centre of the sphere, but which
certainly doesn’t depend on direction. A spherically symmetric body with density ρ0(r) ☞ can be envisaged as
something like a spherical onion; it consists of concentric layers that may have different densities, but it does not
involve any other kind of density variation. The calculation of the gravitational force exerted by such a body is
made simple by the following result:

The gravitational effect of any spherically symmetric body, outside its own surface, can be exactly
reproduced by a single particle, with the same mass as that body, located at the body’s geometric centre.

This result may look at first like ‘common sense’, but its justification is not obvious1—1it took Newton almost 20
years to produce a satisfactory proof, and it is sometimes referred to as Newton’s theorem. The theorem will be
proved in Section 5, but in the meantime we will simply accept that it is true and make use of it.
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Study comment Section 5 uses ideas that are discussed in Sections 2 to 4, and is mathematically the most demanding
section of this module, so we advise you to study the rest of the module first. However, if you really don’t like using
unjustified results, and you are confident that you have a good grasp of all the mathematical prerequisites listed in Subsection
1.3, you may study Section 5 next and then return to Sections 2 to 4 later.
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Figure 24Schematic diagram of a
Cavendish torsion balance. (From this
side view, one of the large spheres is in
front of a small sphere, the second is an
equal distance behind the other small
sphere.)

2.2 Determining the gravitational constant G
The value of G, the universal gravitational constant, must be determined
experimentally by measuring the gravitational force between known
masses1—currently there is no way to deduce its value theoretically.
The gravitational forces between objects that we can handle in the
laboratory are extremely weak (for example, the force between two 51kg
masses separated by 0.11m has a magnitude of approximately 10−71N) so
they can be measured only with very sensitive apparatus. It is not
surprising therefore that G  is the least accurately known of all the
fundamental constants.

Recent determinations all use the same basic technique as the experiment
performed in 1798 by Henry Cavendish. ☞   At the heart of the
Cavendish’s experiment was a torsion balance of the kind shown
schematically in Figure 2. In its simplest form such a balance consists of
two small spheres of equal mass attached to the ends of a horizontal
support rod. The rod is suspended at its centre by a fine vertical wire
(or fibre), so it can turn in the horizontal plane but in doing so it will twist
the wire and thus produce a torque that opposes the rotation.
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Figure 34Use of a light beam to measure
the rotation of the torsion balance.
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Figure 24Schematic diagram of a
Cavendish torsion balance. (From this
side view, one of the large spheres is in
front of a small sphere, the second is an
equal distance behind the other small
sphere.)

The degree of twisting can be
monitored by observing the
behaviour of a beam of light that
comes from a fixed source and is
reflected from a small mirror
attached to the centre of the
support rod.  At the start of a
typical experiment the balance is
shielded from draughts,
vibrations and other external
influences and allowed to settle
into an equilibrium state in
which the wire is untwisted.
Once this has been achieved two
large spherical masses are placed close to the small spheres, in the
symmetrical arrangement shown in Figure 2. The gravitational forces
between these large spheres and the torsion balance will cause the balance
to turn in the horizontal plane until the increasing twist of the wire
prevents further rotation. Left to itself, the system will eventually settle
into a new equilibrium state as indicated in Figure 3.
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The angle of rotation between the two equilibrium positions can be determined from the change in direction of
the reflected light beam, and this angle together with the properties of the balance and the masses of the large
spheres can be used to determine the value of G, as explained below.

When the large spheres are in position each of them will exert a horizontal gravitational force of magnitude Fgrav
on the nearest small sphere. Assuming these are the only significant forces in the horizontal plane and that the
spheres are positioned to ensure that the final position is one in which the gravitational forces are at right angles
to the support rod, we can say that the final gravitational torque tending to rotate the balance is of magnitude
FgravL, where L is the length of the support rod. As the support wire twists in response to the gravitational torque
it will exert a restoring torque that tends to untwist the wire. In this sort of experiment the magnitude Γ   of the
restoring torque ☞  will be proportional to the angle of rotation of the wire θ, so the quantity c = Γ 0/θ will be a
constant and will be a characteristic property of the wire. The angle at which the balance eventually comes to
rest will be such that the magnitudes of the gravitational torque and the restoring torque are equal, so it will be
given by

FgravL = cθ (2)
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If the mass of each small sphere is m1, the mass of each large sphere m2, and the distance between the centres of
the small and large spheres r, then we can use Equation 1b

  
| Fgrav | = Fgrav = Gm1m2

r2
(Eqn 1b)

to calculate the value of Fgrav in this case ☞, giving

Gm1m2

r2
L = cθ (3)

Now, m1, m2, L and c are determined by the equipment, θ can be measured and r (the final distance between the
centre of either of the small spheres and the centre of its neighbouring large sphere) can be determined by simple
geometry. Thus, using Equation 3, we can determine G from the experiment.

Question T1

What practical steps could you take to make θ as large as possible?4❏

Modern accurate determinations of G , while based on the same principle of measurement, require clever
modifications and extremely elaborate precautions to reduce sources of error such as vibration.
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3 Gravity and the Earth

3.1 Gravitational forces at the Earth’s surface

Study comment All the main results in this subsection are also discussed in greater detail elsewhere in the fields block. See
the Glossary for details.

Let us return to our apple on the surface of the Earth. We have seen how, using Newton’s theorem, we might
calculate the force of attraction between the apple and the Earth, but according to Newton’s law of universal
gravitation each object in the Universe is simultaneously attracted by all other objects in the Universe. How will
other nearby objects affect the apple?

✦

Estimate the magnitudes of (a) the gravitational force between an apple of mass 3001g and a spherical boulder of
mass 1031kg when their centres are separated by 101m, and (b) the gravitational force between the apple and the
Earth. ☞
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The gravitational force due to the Earth is 1010 times larger than that due to the boulder, even though the centre
of the Earth is much more distant1—1the Earth, though, has much the greater mass. If it is large masses which
dominate the gravitational attraction, then shouldn’t the Moon and the Sun have considerable influence too?

✦ Compare the magnitudes of (a) the gravitational forces on the apple due to the Moon and the Earth, and

(b) the magnitudes of the forces on the apple due to the Sun and the Earth. ☞

So the gravitational force due to the Moon is 3 × 105 times weaker than that due to the Earth and even that due to
the Sun is nearly 2000 times smaller than that due to the Earth despite the Sun’s being nearly 106 times more
massive. Although every object on the surface of the Earth feels a gravitational force that is the vector sum of an
infinite number of forces from the whole Universe, in practically all everyday situations the only significant
gravitational force on a small object near the Earth’s surface is that due to the Earth itself.
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3.2 The Earth’s gravity close to its surface
In everyday life1—1and in laboratory experiments1—1we often need to deal with the effects of the Earth’s gravity
close to its surface. In this subsection we look at various ways of describing these effects and, in doing so,
summarize some concepts and definitions connected with gravitation.

The gravitational field and acceleration due to gravity

One way to describe the gravitational effect of the Earth is via its gravitational field. ☞ The gravitational field
at any point is a vector quantity which provides a quantitative measure of the gravitational force that would act
on a point test mass m located at that point. (By a test mass we mean a mass sufficiently small that it will not
significantly disturb the gravitational field we are using it to measure.) If the point we are interested in is defined
by a position vector r, and if the gravitational force on a test mass m located at that point is Fgrav(on m at r), then
we can define the gravitational field g(r) at that point by

  
g(r) =

Fgrav (on m at r)

m
(4)

In other words, the gravitational field at any point is equal to the gravitational force per unit mass that would
act on a point test mass at that point.
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Treating the Earth as a spherically symmetric body we can use Equations 1a and 4

  
Fgrav = F21 = − Gm1m2

r2
r̂ (Eqn 1a)

  
g(r) =

Fgrav (on m at r)

m
(Eqn 4)

to write down an expression for its gravitational field. In this case, the assumed spherical symmetry of the Earth
will give rise to a gravitational field which is always directed towards the centre of the Earth and which has a
magnitude that only varies with the distance from the centre of the Earth. If we take the centre of the Earth as
our origin of coordinates, any point with position vector r will be at a distance r = |1r1| from the centre and we
can write the gravitational field as

  
g(r) = − GME

r2
r̂ (5)

where ME is the mass of the Earth,   ̂r = r |r |  is a unit vector parallel to r, and the minus sign indicates that the
field, like the force, points in the opposite direction to   ̂r , i.e. towards the centre of the Earth.
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It follows from Equation 5

  
g(r) = − GME

r2
r̂ (Eqn 5)

that the magnitude of the field at the surface of the Earth, where r = RE, will be

g(RE ) = GME

RE
2

(6)

✦ What is the surface field strength predicted by Equation 6? Take care to include appropriate units of
measurement.

Now imagine a small object somewhere in the Earth’s gravitational field subject only to gravitational forces.
Such an object is said to be in free fall. Since there is an unbalanced force acting on the object it will accelerate
and, according to Newton’s second law of motion, its acceleration must be equal to Fgrav/m. However this is just
the quantity that defines the gravitational field. We can therefore identify the free fall acceleration of the object
with the gravitational field at its location.
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At the surface of the Earth, the free fall acceleration is usually referred to as the acceleration due to gravity, or
the surface gravity, and its magnitude is denoted by g. It follows from Equation 6

g(RE ) = GME

RE
2

(Eqn 6)

that if the Earth was accurately spherically symmetric we would find that

g = GME

RE
2

(7)

✦ Confirm for yourself that the units of acceleration (m1s0−2) are identical to those of gravitational field strength
(N1kg−1).

Of course, the Earth is not really spherically symmetric, so measured values of g vary from place to place,
though departures from the value predicted by Equation 7 are never very great. Accurate measurements of g can
be based on observations of the time t that a freely falling object, starting from rest, takes to cover a known
distance s (since s = g t2/2), or on the period T of a freely swinging simple pendulum of length l (since
T = 2π l / g ).
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Whichever technique is used, the measurements are usually made at fixed locations on the Earth’s surface, and
are therefore influenced by the rotation of the Earth, which tends to reduce the effective value of g at the Equator
relative to its value at the poles. ☞ (This effect is similar to the apparent outward force experienced by the
occupants of cars and buses as they go round corners.) Once a correction has been made to allow for this, the
remaining variations in g are entirely due to departures from spherical symmetry and arise from factors such as
the flattening of the Earth at its poles, the height above sea level and local variations in geology. The measured
results are sometimes expressed as (small) departures from a standard reference value, which at latitude λ and
height h above sea level is given by

g/m1s−2 = 9.806116 − 0.02519281cos1(2λ) + 0.00010691cos21(2λ) − 0.0001003h ☞

The sensitivity of g to local geology and the experimentally precise methods available make gravimetric
surveying (the measurement of g over some specified area) an important technique in geophysics. Apart from
being used to seek out various kinds of mineral deposit and other geological structures, short-term variations in g
around volcanoes have even been used to assist in the prediction of eruptions. Despite the practical importance
of variations in g we will ignore them throughout the rest of this module, simply using g = 9.811m1s−2 whenever
we need a numerical value.
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Now that we have a value for the magnitude of the field at all points on the Earth’s surface, we can say that the
surface gravitational field is

  g = −(9.81m s−2 )r̂

In practice, we are often concerned with relatively restricted parts of the Earth’s surface that are sufficiently
small to be considered a flat plane. In such cases the unit vector   − r̂ , directed towards the centre of the Earth,
may be replaced by a ‘downward’ directed unit vector   − ẑ  perpendicular to the flat plane, giving

  g = −(9.81m s−2 )ẑ

The ideas of gravitational field and acceleration due to gravity are closely related to that of weight. At the
surface of the Earth, the weight of an object is usually taken to mean the gravitational force that acts on it, in
which case we may write

W = mg (8)

where m is the mass of the object and g is the acceleration due to gravity. Some authors prefer to modify this
slightly by allowing for the reduction in the effective value of g caused by the Earth’s rotation. We will have
more to say about the significance of such a modification in the next subsection. Equation 8 enables us to find
the gravitational force on an object at the Earth’s surface without explicitly using values of ME, RE or G.
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Question T2

What is the weight of a 601kg man on the surface of the Earth?4❏

Knowing g and G it is also possible to calculate the mass of the Earth and hence its average density1—1it is often
said that Cavendish’s determination of G made it possible to ‘weigh the Earth’. (There is some truth in this, but
Newton had previously estimated a value for ME that was within 0.5% of the currently accepted value!
Newton used his estimate together with measured values of g and RE to determine G.)

Question T3

Derive an approximate expression for the Earth’s average density ρ in terms of G, g and RE. 4❏



FLAP P3.2 Gravitation and orbits
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

The gravitational potential and gravitational potential energy

An object of mass m in a gravitational field g(r) will be subject to a gravitational force F = mg(r). If such an
object is displaced from one point to another within the field, a gravitational force will act on it throughout the
displacement and may consequently do work as a result of the displacement. In any particular region of the
Earth’s surface, where the gravitational field may be represented by the fixed vector   −gẑ, the work done by the
gravitational force when the object is displaced by an amount ∆0z in the   ̂z direction will be ∆W = −mg∆0z, where
∆0z will be positive if the object is raised, and negative if it is lowered. ☞

✦ The 601kg man (of Question T2) climbs a vertical height of 101m. What is the work done by the gravitational
force on the man as a result of the movement?

As a result of the work done when an object moves through a gravitational field, there may be a corresponding
change in the gravitational potential energy that the object possesses by virtue of its position. ☞ In general
the change in the gravitational potential energy will be equal to minus the work done by the gravitational force,
since the gravitational potential energy is a measure of the ability of the object to do work by virtue of its
position. ☞
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For an object of mass m close to the surface it follows that

∆Egrav = mg∆0z4for ∆0z << RE

✦ What is the change in the gravitational potential energy of the 601kg person as a result of his 101m climb?

Question T4

Calculate the changes in gravitational potential energy when a 5.01kg bag of potatoes is (a) lifted from a
supermarket floor and placed on a trolley 0.401m above the floor, (b) wheeled 301m across to the checkout,
(c) taken in the trolley to an underground car park with a floor 6.01m below the supermarket floor. In each case,
say whether Egrav increases or decreases.4❏

The relation ∆Egrav = mg∆0z can be used to calculate potential energy changes in situations where ∆0z is a few
kilometres or less. Note that it only describes changes in gravitational potential energy1—1it says nothing about
what the potential energy Egrav actually is at any point. We are therefore free to define Egrav = 0 at any convenient
reference point, e.g. at the Earth’s surface, or at the floor of a laboratory. Once we have made the choice, though,
the value of Egrav at all other points follows from the expression for ∆0z.
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If we choose to measure positive z vertically upwards (as we have done so far) from ground level, and we
choose some point with z = 0 to be the point at which Egrav = 0, we can say that at a height z above the surface of
the Earth

Egrav(z) = mgz ☞

A related quantity that is often used when characterizing the Earth’s gravitational field is the gravitational
potential. Just as the gravitational field is defined as the gravitational force per unit mass, so the gravitational
potential is the gravitational potential energy per unit mass. Thus, in the case of the gravitational field near the
surface of the Earth, the gravitational potential is given by

Vgrav (z) =
Egrav (z)

m
It follows that the value of the gravitational potential close to the surface of the Earth is

Vgrav(z) = g0z (9)
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Note that the gravitational force on an object of mass m close to the Earth, and the corresponding gravitational
potential energy depend on the properties of the Earth and the mass of the object, m. On the other hand, the
gravitational field and the corresponding gravitational potential depend only on the Earth and are independent of
the mass of the object.

Question T5

A ball of mass 5001g is thrown vertically upwards with a speed of 71m1s−1. If all its initial kinetic energy ☞ is

converted into gravitational potential energy, how far does it rise? Do you actually need to know the mass of the
ball in order to answer this question?4❏
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3.3 The Earth’s gravity at large distances ☞

We saw in the last subsection that if we treat the Earth as a spherically symmetric body of radius RE then its
gravitational field at any distance r is given by

  
g(r) = − GME

r2
r̂ (Eqn 5)

provided r ≥ RE. It follows from the definition of the gravitational field (the gravitational force per unit mass that
would act on a point test mass located at r) that the gravitational force on a mass m at a point with position
vector r is

  
Fgrav (r) = − GMEm

r2
r̂ (10)

If we are dealing with objects that move more than a few kilometres from the Earth’s surface we must take
account of changes in gravitational force with distance implied by these formulae when calculating the
gravitational potential and the gravitational potential energy.
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In particular, it follows from Equation 10

  
Fgrav (r) = − GMEm

r2
r̂ (Eqn 10)

that the radial component of the gravitational force at a distance r from the centre of the Earth, irrespective of
direction, will be

Fr (r) = –
GMEm

r2
(11)

and the work done by the gravitational force when an object of mass m moves from a point with position vector
r1, at which r = r1, to some other point r2, at which r = r2, will be given by the integral

W = Fr (r) dr
r1

r2

∫ (12)

and the corresponding change in the gravitational potential energy of the object will be

∆Egrav = −W = − Fr (r) dr
r1

r2

∫
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So, using Equation 11,

Fr (r) = –
GMEm

r2
(Eqn 11)

we can write

∆Egrav = GMEm

r2
dr

r1

r2

⌠
⌡

Evaluating the integral we obtain

∆Egrav = −GMEm
1
r2

− 1
r1







(13)

When dealing with the force specified by Equation 10

  
Fgrav (r) = − GMEm

r2
r̂ (Eqn 10)

it is convenient to adopt the convention that Egrav = 0 where Fr = 0, i.e. at an infinite distance from Earth, where
r = ∞.
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The change in gravitational potential energy ∆Egrav in moving an object of mass m from r1 = ∞ to r2 = r will then
be equal to the full value of the gravitational potential energy at r and we may write

Egrav (r) = − GMEm

r
(14)

Note that according to the convention we have adopted in this subsection, at the surface of the Earth, where
r = RE, the gravitational potential energy is given by

Egrav (RE ) = − GMEm

RE
(15)

The fact that this is a negative quantity is of no direct significance, it is merely a consequence of our decision to
let Egrav = 0 at r = ∞. Only differences in gravitational potential energy are physically meaningful, and they may
be positive or negative.

With the aid of Equation 14 we can work out the minimum amount of energy required to enable a space probe to
escape entirely from the Earth’s gravitational field. This minimum amount of energy will be equal to the change
in the gravi-tational potential energy of the probe as it travels from r = RE to r = ∞ ☞.
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So, if the probe has mass m, the required energy will be Egrav(∞) − Egrav(RE), but since Egrav(∞) = 0 the required
energy is just −Egrav(RE) = GMEm/RE.

This ‘escape energy’ as it is sometimes called can be used to compute the escape speed of the probe, i.e. the
minimum speed at which the probe must be launched from the Earth (neglecting air resistance and any other
non-gravitational effects) if it is to escape to infinity. Using the same approach as in Question T5, we simply
equate the required escape energy with the initial kinetic energy of the probe,   

1
2 mve

2 .

Thus,
  

1
2

mve
2 = GMEm

RE
(16)

so, escape speed 
  
ve = 2GME

RE
(17)

Note that this is independent of the mass of the probe!
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Question T6

Evaluate the escape speed from the Earth. ☞  Ignoring the atmosphere and any other non-gravitational
influences, does the direction in which a space probe is launched have any influence on its escape speed?4❏

If we know the escape speed from a planet’s surface we can work out whether the planet is able to retain an
atmosphere. The speed of molecules depends on the temperature ☞. The average speed of hydrogen molecules
at 3001K, for example, is 1.81km1s−1, whereas for oxygen molecules it is 0.41km1s−1. The actual molecular speeds
are distributed above and below these values, so there will be some molecules of each species which are moving
fast enough to escape from the Earth and, since the average speed for hydrogen is greater than that for oxygen,
hydrogen molecules will escape at a much greater rate. The escape speed from the Moon is only 2.41km1s−1 and
the rate of escape of gas molecules has been such that it has completely lost its original atmosphere. ☞
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Using Equation 14

Egrav (r) = − GMEm

r
(Eqn 14)

we can also evaluate the Earth’s gravitational potential (i.e. the gravitational potential energy per unit mass at
any point in the field). According to the general definition of the gravitational potential

  
Vgrav (r) =

Egrav (of m at r)

m
(18)

In the case of the Earth our assumption of spherical symmetry ensures that the gravitational potential will vary
with distance from the Earth, but will be independent of direction. We may therefore write

  
Vgrav (r) =

Egrav (r)

m

so, from Equation 14
  
Vgrav (r) = − GME

r
(19)

Since Vgrav depends only on the field, and not on the mass of the object under consideration, we can use it to
characterize a gravitational field. As you will see in Section 5, it can sometimes be easier to work with Vgrav(r)
rather than the gravitational field g(r).
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Question T7

Calculate the magnitudes of the following:

(a) the gravitational force between the Earth and a satellite of mass mS= 4.0 × 1041kg orbiting the Earth at a
distance RS = 4.2 × 1071m from the centre of the Earth

(b) the Earth’s gravitational field strength at that distance

(c) the change in its gravitational potential energy when the satellite is put into orbit.

(Hint: Treat the Earth as a point mass situated at its centre.)4❏
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ellipse

circle

hyperbola

parabola

4 Gravity and orbits
By combining Newton’s laws of motion with his law of universal
gravitation, it is possible to work out the path that a body such as a
planet will follow as it moves under the gravitational influence of
another body such as the Sun. Such investigations show that these paths,
or orbits as they are called, are members of a family of curves called
conic sections. As Figure 4 indicates, this family includes circles,
ellipses, parabolas and hyperbolas. In this section we examine some of
these orbits in greater detail, beginning with simple circular orbits.

Figure 44The conic sections obtained by slicing a double cone.



FLAP P3.2 Gravitation and orbits
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

4.1 Orbital periods and circular orbits
Perfectly circular orbits are quite rare in nature, certainly amongst natural astronomical bodies such as planets
and their moons. However, many bodies, including the Earth, have orbits that closely approximate circles.
Moreover, circular orbits are easy to describe and investigate. For both of these reasons circular orbits provide a
good starting point for a more general study of orbits and deserve close attention.

If a body moves in a circle of radius r with constant speed v, and takes a time T to complete each orbit, then we
say that T is its orbital period, and its angular speed ω (measured in rad1s−1) is given by ☞

ω = 2π radians
T

Since the total distance travelled in time T is equal to the circumference of the circle we can say that

vT = 2πr

so
  

v
r

= 2π
T

and hence v = rω
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In order to keep the body moving in a circle it must always be subject to an acceleration towards the centre of
the circle. This centrally directed acceleration is called the centripetal acceleration and has magnitude

  
a = rω 2 = vω = v2

r
The centrally directed force needed to maintain this acceleration is called the centripetal force. If the circling
body has mass m, the magnitude of this force will be

  
F = mrω 2 = mvω = m

v2

r

If the body is held in its circular orbit by the gravitational attraction of some other body of mass M, then the
centripetal force is provided by the gravitational force on the orbiting body and we may write

F = Fgrav

i.e. mrω 2 = GMm

r2
(20) ☞

Dividing both sides by m and rearranging the equation we obtain

1
ω 2

= r3

GM
(21)
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Recalling that the orbital period of the circular motion is T = 2π/ω, we can write

T 2 = 4π2

GM
r3 (22)

Notice that T does not depend on the mass m of the orbiting object, so the mass M can be calculated from
measurements of T and r.

Question T8

The radius of the Earth’s orbit around the Sun is 1.496 × 10111m. Calculate the mass of the Sun ☞.4❏

Question T9

Many communications satellites orbit the Earth with a period of exactly 1 day so that they can always remain in
a fixed position relative to the rotating Earth. Such an orbit is known as a ‘geostationary’ orbit. Calculate the
orbital speed of such a satellite.4❏
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r1 + r2 = 2a 
Sun at F1 or F2
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Figure 5a4Illustration of Kepler’s
laws. (a) A point P that moves in such a
way that the sum of its distances from
two fixed points F1 and F2 is constant,
will follow an ellipse. F1 and F2 are the
focii of the ellipse and a is its semi-
major axis and b is the semi-minor axis.
The planets move in elliptical orbits
with the Sun at one focus.

4.2 Kepler’s laws and elliptical orbits
Newton’s investigations of orbital motion under gravity provided an
explanation of Kepler’s laws of planetary motion. Johannes Kepler
(1571–1630) had arrived at these laws early in the 17th century by careful
analysis of observational data on planetary motion collected by the
Danish astronomer Tycho Brahe (1546–1601).

Kepler’s first law: The orbits of the planets in the solar system are
ellipses with the Sun at one focus (see Figure 5a).
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Figure 5a4Illustration of Kepler’s
laws. (a) A point P that moves in such a
way that the sum of its distances from
two fixed points F1 and F2 is constant,
will follow an ellipse. F1 and F2 are the
focii of the ellipse and a is its semi-
major axis and b is the semi-minor axis.
The planets move in elliptical orbits
with the Sun at one focus.

An ellipse may be obtained by plotting all the points (x, y) that satisfy the
equation

x2

a2
+ y2

b2
= 1

Such an ellipse has a semi-major axis of length a, and foci F1 and F2

located at the points (ae, 0) and (−ae, 0), where e = 1
a

a2 − b2  is the

eccentricity of the ellipse. A circle may be regarded as a limiting case of
an ellipse, in which a = b and e = 0.

Of the nine planets that orbit the Sun, only two (Mercury and Pluto) have
eccentricities greater than 0.10 (b/a < 0.995), all the others (especially
Venus, Earth and Neptune) have very nearly circular orbits.
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Figure 5b4Illustration of
Kepler’s laws. (b) A radial line
from a planet to the Sun sweeps
out equal areas in equal amounts
of time.

Kepler’s second law: A radial line from the Sun to a planet sweeps out
equal areas in equal intervals of time (see Figure 5b).

This law implies that a planet moves more quickly as it gets closer to the Sun.
In the context of Newtonian mechanics, Kepler’s second law may be viewed as
a consequence of the conservation of angular momentum, a basic physical
principle that is discussed elsewhere in FLAP.
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Figure 5c4Illustration of
Kepler’s laws. (c) The square of a
planet’s orbital period is
proportional to the cube of its
semi-major axis.

Kepler’s third law: The square of the orbital period of each planet is
proportional to the cube of its semi-major axis, i.e. T12 = ka3 (see Figure
5c).

This law is a generalization of Equation 22 to elliptical orbits.

T 2 = 4π2

GM
r3 (Eqn 22)

We can therefore identify the constant of proportionality k with the 4π2/(GM)
that appeared in that earlier equation, at least to the extent that we are justified
in neglecting the masses of the planets relative to that of the Sun

Thus, T 2 = 4π2

GM






a3 (23)
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Table 14Orbital data on the six inner planets.

Planet Mean distance from the Sun, a/106 1km Orbital period, T/years

Mercury 57.9 0.241

Venus 108 0.615

Earth 150 1.00

Mars 228 1.88

Jupiter 778 11.9

Saturn 1430 29.5

As we have already said,
Kepler deduced his laws
from observational data.
Given the data in Table 1
relating to the six inner
planets (the only ones
known in Kepler’s time)
think about how you
might deduce Kepler’s
third law.

(The following question  may help.)

✦ If T12 is proportional to a3, how can we present the data on a graph to produce a straight line?
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Table 14Orbital data on the six inner planets.

Planet Mean distance from the Sun, a/106 1km Orbital period, T/years

Mercury 57.9 0.241

Venus 108 0.615

Earth 150 1.00

Mars 228 1.88

Jupiter 778 11.9

Saturn 1430 29.5

Question T10

(a) Plot a graph of T
versus a3/2 for the six
inner planets. Do the data
agree with Kepler’s third
law?

(b) What would be the
orbital period of an
asteroid (a small rocky

body orbiting the Sun) in an elliptical orbit with a semi-major axis of 300 × 1061km ?4❏

Newton was able to show that Kepler’s laws agreed with the expected behaviour of two bodies interacting in the
way described by the inverse square law of gravitation. This was a great success for Newton’s general approach,
and it was made even more impressive by the quantitative agreement that it provided with a range of
astronomical measurements. However, as Newton was well aware, the planets are not isolated bodies; the
motion of each is influenced by all the other bodies in the Solar System as well as by the Sun.
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As you might expect, these additional interactions are relatively small, but they give rise to observable
departures from the simple behaviour described by Kepler’s laws. Moreover, these departures from Keplerian
behaviour are, in principle at least, calculable on the basis of Newton’s laws of motion and the law of
gravitation.

Following the publication of Newton’s Principia scientists and mathematicians were able to make increasingly
accurate analyses of orbital motion and thereby uncovered many new phenomena. Perhaps the most notable was
the discovery of Neptune, the eighth planet from the Sun. The seventh planet, Uranus, was discovered
observationally by William Herschel (1738–1822) in 1781, but small unexplained irregularities in its motion
suggested that it might be acted upon by some other planet yet further from the Sun. John Couch Adams
(1819–1892) and Urbain Le Verrier (1811–1877), working independently in England and in France, calculated
the position that such a planet might occupy, and in 1846 Neptune was found only about a degree from its
predicted position!
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circular orbit 
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vc < v < vp
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speed vp

elliptical orbits  
v < vc

hyperbolic 
orbits  v > vp

4.3 Energy and
parabolic orbits
Figure 6 shows the effect
of launching a body
horizontally from the top
of a tall vertical tower at
a variety of different
speeds, neglecting non-
gravitational effects such
as air resistance and
treating the Earth as a
point mass concentrated
at its geometric centre.

Figure 64 The effect of
l a u n c h i n g  a  b o d y
horizontally at different
speeds (where v  is the
launch speed).
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EA RT H

direction of launch

circular orbit 
speed vc

elliptical orbits 
vc < v < vp

parabolic orbits 
speed vp

elliptical orbits  
v < vc

hyperbolic 
orbits  v > vp

As you can see, the orbits
are all conic sections, the
precise shapes of which
are determined by the
speed of launch.

If vc is the speed required
to attain a circular orbit,
any lesser speed will
produce an elliptical orbit
with the centre of the
Earth at the farthest focus
of the ellipse.

Figure 64 The effect of
l a u n c h i n g  a  b o d y
horizontally at different
speeds (where v  is the
launch speed).
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EA RT H

direction of launch

circular orbit 
speed vc

elliptical orbits 
vc < v < vp

parabolic orbits 
speed vp

elliptical orbits  
v < vc

hyperbolic 
orbits  v > vp

Launch speeds
increasingly greater than
v c  will first produce
elliptical orbits with the
Earth’s centre at the
nearer focus, then (at
speed vp) a parabolic
orbit, and finally a range
of hyperbolic orbits.

The different speeds
shown in Figure 6 have
an important influence on
the energy associated
with each orbit.

Figure 64 The effect of
l a u n c h i n g  a  b o d y
horizontally at different
speeds (where v  is the
launch speed).
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The gravitational field is a conservative field, so if we ignore all non-gravitational effects the mechanical energy
of each orbit (the sum of the kinetic and potential energies at any point) will be constant. Since the bodies are
being launched from the same position they all have the same potential energy at that point, so their energies
differ by amounts that are determined by their respective speeds. It follows that the increasing launch speeds
indicate increasing orbital energies.

✦ In the case of the circular orbit, write down an expression for the sum of the kinetic and potential energies

of a body of mass m , and then use it to show that the total energy of the circling body is E = − GmME

2r
,

where ME is the mass of the Earth and r is the distance of the launch point from the centre of the Earth.

Note that in a circular orbit the kinetic energy (which is always positive) has exactly half the magnitude of the
potential energy (which is negative), and the total energy is negative. This ensures that a body in a circular path
can never escape to infinity where its potential energy would be zero and its total energy non-negative.
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EA RT H

direction of launch

circular orbit 
speed vc

elliptical orbits 
vc < v < vp

parabolic orbits 
speed vp

elliptical orbits  
v < vc

hyperbolic 
orbits  v > vp

In fact, we can see from
Figure 6 that the lowest
energy orbit that does
permit escape to infinity
is the parabolic orbit.
This must be the orbit
with a total energy of
zero. The closed elliptical
orbits must therefore all
have negative total
energy, and the open
hyperbolic orbits must
have all positive total
energy.

Figure 64 The effect of
l a u n c h i n g  a  b o d y
horizontally at different
speeds (where v  is the
launch speed).
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direction of launch

circular orbit 
speed vc

elliptical orbits 
vc < v < vp

parabolic orbits 
speed vp

elliptical orbits  
v < vc

hyperbolic 
orbits  v > vp

The  zero  energy
parabolic orbit marks an
important dividing line
between open and closed
orbits.

✦ What is the speed vp
that corresponds to the
parabolic orbit?

Figure 64 The effect of
l a u n c h i n g  a  b o d y
horizontally at different
speeds (where v  is the
launch speed).
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4.4 Weightlessness and tidal effects
Astronauts in an orbiting space shuttle float around the vehicle and feel ‘weightless’, even though they are close
to the Earth and must therefore be affected by its gravitational field. How can this be?

In Subsection 3.2 we noted that measurements made by observers located at fixed points on the rotating Earth
have to allow for a reduction in the effective value of g, the acceleration due to gravity. This apparent reduction
is actually caused by the rotation of the observers and their experimental equipment. A similar effect is at work
in an orbiting spacecraft. The crucial point is that both the observers on the turning Earth and the observers in an
orbiting spacecraft are accelerating. Such observers, when using Newton’s laws of motion, must always make
allowances for the effects of their own acceleration. In the case of observers on the Earth these effects are small
and can often be ignored, but for orbiting observers the effects are much larger. The orbital motion has no effect
on the mass of an object, and in a low Earth orbit, 100 to 1501km above the Earth’s surface, the gravitational
force on an object is very similar to its surface weight, but the effective weight, as observed by the occupants of
the spacecraft, will be zero. It is in this sense that orbiting objects may be said to be weightless, though it would
probably be better to describe them as being in ‘free fall’ under gravity.
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Figure 74Dust grains in an orbiting
space vehicle. The grains are assumed
to be moving at a common angular
speed, but are at differing distances
from the centre of the Earth.

In reality, orbiting astronauts are not quite in free fall and they can, in
principle at least, tell that they are in the Earth’s gravitational field even
without looking out of the window. In the above discussion we treated the
spacecraft as though it were a point mass orbiting at a precise distance
from the Earth, but it is actually extended and so some parts are closer to
the Earth than others. The Earth’s gravitational field decreases with
distance so the parts of the vehicle nearest the Earth will be in a slightly
stronger gravitational field than those parts that are further away. Within
the vehicle, small objects (e.g. dust grains) at the centre of the craft will
be subjected to the gravitational force needed to keep them in the orbit
they are following, but grains on the Earthward side of the craft will
experience a slightly stronger field than is necessary to keep them in their
somewhat smaller ‘orbit’, and grains that are on the side of the ship away
from the Earth will experience a weaker force than necessary. The result
of this is that grains on the Earthward side tend to move towards the
Earth while grains on the away side move away. The situation of three
such grains forced to follow circular paths of different radii at a common
angular speed is shown in Figure 7. The central grain is held in a true circular orbit by the gravitational field that
acts upon it, but the circular paths of the other two grains are not true orbits since the gravitational force that acts
on them is either too great or too small to provide the necessary centripetal force.



FLAP P3.2 Gravitation and orbits
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

Earth

Sun

low tide

high tide

orbital 
path

Figure 84Ocean tides.

An astronaut would be able to deduce, from the behaviour of the dust,
that his or her vehicle was in a gravitational field.

You may be thinking that the movement of dust in a space shuttle is a
very esoteric effect, but the tides commonly observed in the Earth’s
oceans have a very similar cause. Ocean tides are complicated by factors
such as local geography and ocean depth, but their basic cause is the
variation in the strength of the gravitational fields of the Moon and the
Sun across the diameter of the Earth. Ocean water is not rigidly attached
to the Earth, so it can move towards or away from these bodies just as the
dust grains in a space shuttle can move towards or away from the Earth
(Figure 8). The gravitational fields (together with geographical factors)
determine the ‘shape’ of the oceans, and the solid Earth rotates within
that deformed body of water, causing the high tides and low tides that are
actually observed. ☞

Question T11
Suggest a reason why the Moon has a greater influence on the Earth’s
ocean tides than does the Sun (despite the fact that the gravitational field
due to the Sun is stronger, at the Earth, than that due to the Moon).4❏
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5 Gravity and extended bodies
Throughout this module, we have used the fact that the gravitational effects outside a spherically symmetric
body are identical to those of a single particle, of the same mass located at its centre. In this final section, we will
derive that result and also consider the gravitational field inside a spherical body.

Study comment This section is more mathematically demanding than the rest of the module. The results that it contains
are an important part of the module but the techniques used to obtain those results are not the subject of any the achievements
listed at the end of the module. Do not allow any difficulties you may have following the detailed arguments to cause
unnecessary delays. If you encounter problems, consult your tutor.
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Figure 94A sphere of radius R with a
point P at a distance r from its centre.

5.1 Approaching the task
What we are trying to find is an expression for the gravitational field at
some point P outside a spherical body (Figure 9). One way of
approaching the problem would be to treat the whole sphere as a
collection of tiny elements, each with its own individual mass ∆mi.
We could then work out the gravitational field at P due to each tiny
element and add them all together using vector addition. ☞

However, this calculation gets rather cumbersome, so instead of working with gravitational fields and getting
involved in vector additions, it is easier to work in terms of gravitational potentials since these are scalar
quantities. The resultant potential at any point due to a collection of particles is simply the algebraic sum of all
the contributions. The gravitational field at P may be determined fairly straightforwardly once we have an
expression for the gravitational potential, so this is the approach we will adopt.

The problem of finding the gravitational potential due to a general spherically symmetric body is still quite
demanding, so we will start by considering the potential due to a thin spherical shell of uniform composition.
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Figure 104A narrow ring passing through the points XY
on the surface of a thin spherical shell of radius R. The
width of the ring subtends a small angle ∆α at the centre of
the sphere.

5.2 Gravitational field due to a thin
spherical shell
A spherical shell can be divided into narrow rings in
such a way that all the points on each ring are
effectively at the same distance from P. This is
indicated in Figure 10, where all the points on the ring
through X and Y are at a distance s from P.
The radius of the ring, NX, is R1sin1α and the width of
the ring, measured along the surface of the shell, is
R∆α . It follows that the area of the ring is (2πR1sin1α) ×
(R∆α). ☞ Consequently, if the mass per unit area of
the shell’s surface is σ, ☞ we can say that the mass of
the ring will be 2πσR21sin1(α)∆α . Since all the points
on the ring are at the same distance from P it then
follows from our usual expression for the gravitational
potential due to a point mass that the gravitational
potential produced at P by the whole ring will be

∆V = − G2πσR2 sin (α )∆α
s

(24)
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In principle we can use this expression to compare the potential due to any two rings, but doing so is
complicated because any other ring will correspond to different values of the two related variables α  and s.
In order to simplify the expression we need to eliminate one or other of these variables. To do so we can use the
cosine rule which tells us that

s2 = R2 + r2 − 2Rr1cos1α

If this is then differentiated (implicitly) ☞ we obtain the rate of change of s with respect to α

2s
ds

dα
= 2Rr sin α

so
ds

dα
= Rr sin α

s

and it therefore follows from this that the increase in s that corresponds to a small increase ∆α in α  is

∆s = ds

dα
∆α = Rr sin (α )∆α

s
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Substituting this  ∆s = ds

dα
∆α = Rr sin (α )∆α

s

into Equation 24 ∆V = − G2πσR2 sin (α )∆α
s

(Eqn 24)

we find

∆V = − 2GπσR∆s

r
(25)

The material of the sphere provides rings at all values of s between r −  R  and r + R. We can add their
contributions together to find the total gravitational potential V(r) at P by performing the following integral

V(r) = − 2GσπR

r
ds

r − R

r+ R

∫

V(r) = − 2GσπR

r
s[ ]r − R

r + R = − 2GσπR

r
(r + R) − (r − R)[ ]

V(r) = − 2GσπR

r
2R = − 4πR2σG

r
(26)
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Now, the surface area of the shell is 4πR2, so its total mass M is given by,

M = 4πR2σ (27)

Hence, the gravitational potential due to a uniform spherical shell of mass M at an external point at a distance r
from the shell’s centre will be

V(r) = − GM

r
(28)

Note that this is independent of the radius of the shell.

You should recognize this expression1— 1it is identical to the expression for the gravitational potential at a
distance r from a point mass M. We therefore come to the perhaps surprising conclusion that:

The gravitational effect of a hollow sphere whose mass M is uniformly spread over its surface is the same as
if all its mass were concentrated in a point at the centre of the sphere.



FLAP P3.2 Gravitation and orbits
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

This important result means we can use the expression for the gravitational field g(r) at a distance r from a point
mass (see Equation 5)

  
g(r) = − GME

r2
r̂ (Eqn 5)

to represent the gravitational field outside a uniform spherical shell. At a point with position vector r

  
g(r) = − GM

r2
r̂ (29)

We now know about gravitational effects outside a hollow sphere1—1but what happens inside?

✦ Can you deduce what the field will be exactly at the centre of the shell, point O?
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R

Figure 114Point Q inside a
uniform solid sphere, distance r
from the
centre O.

Suppose we now move off centre to a point Q, to the right of O (see Figure 11).
Now although there’s more mass on the left-hand side of Q, it is generally
further away than the mass on the right-hand side, so again the forces cancel
and the field at Q is zero. It is possible to show, by summing the contributions
from each mass element, that:

There is no gravitational field inside any spherically symmetric hollow
sphere. ☞

This does not mean that the shell shields the space inside it from gravitational
fields due to other masses; it means simply that its own field is zero, i.e. a mass
inside the shell doesn’t feel any net force due to the mass of the surrounding
shell.

Question T12

Sketch the variation of the gravitational field due to a shell of radius R as a function of the distance r from the
centre O of the shell. Include distances r both less than and greater than R.4❏
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Figure 114Point Q inside a
uniform solid sphere, distance r
from the centre O.

5.3 Gravitational field due to a solid sphere
We are now in a position to return to a solid sphere, which we can think of as a
series of shells one inside the other, like the layers of an onion. For each, the
field at a point P outside the sphere is as though the shell’s mass were at the
centre O.

The gravitational effect of any spherically symmetric body of total mass M,
at any point outside that body, is identical to the effect of a point mass M
located at the geometric centre of the sphere. ☞

What is the gravitational field inside a uniform solid sphere? We will assume
that the sphere is of uniform density, and think about point Q in Figure 11.
Point Q is inside all the shells making up the solid sphere with radii between r

and R so there will be no effect due to these shells. For the mass inside Q, i.e. within a sphere of radius r, its
effect is as though it were all concentrated at the centre. Since the density of the sphere is uniform, the mass m of
the sphere of radius r is given by

m = Mr3

R3
(30)
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It follows that the field at Q is the field at a point r, a distance r from a point
mass m:

i.e.
  
g(r) = − Gm

r2
r̂

so
  
g(r) = − G

r2

Mr3

R3






r̂

i.e. inside a uniform solid sphere

  
g(r) = − GMr

R3
r̂ (31)
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Question T13

Sketch a graph showing the magnitude of the gravitational field as a function of distance from the centre of a
uniform solid sphere of radius R for points inside and outside the sphere.4❏

In this section we have only considered one simple solid object1—1a sphere. However, in principle, we can find
the gravitational effects of an object of any shape by dividing it up into pieces that are simpler to deal with, then
summing their contributions to the total gravitational potential. The maths can sometimes get very complicated,
but the principle is always the same. In the case of the sphere we were able to use its particular symmetry to
deduce the field that corresponded to the potential. In general there will be no such symmetry, but it is always
the case that the field can be deduced from the potential, generally by investigating its rate of change in various
directions.

Study comment

If you have studied Section 5 before completing Sections 2 to 4 then you should return now to Section 2.2.  Otherwise you
can now move on to Closing items.
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6 Closing items

6.1 Module summary
1 According to the law of universal gravitation, the gravitational force Fgrav on a particle of mass m2 due to a

particle of mass m1 separated from it by a distance r is given by

  
Fgrav = F21 = − Gm1m2

r2
r̂ (Eqn 1)

where G = 6.673 × 10−111N1m21kg−2 is the universal gravitational constant, and   ̂r  is a unit vector directed
from m1 to m2.

2 According to Newton’s theorem: the gravitational effect of any spherically symmetric body, outside its own
surface, can be exactly reproduced by a single particle, with the same mass as that body, located at the
body’s geometric centre.

3 The gravitational field at a point r is the gravitational force per unit mass that would act on a point test mass
at that point

  
g(r) =

Fgrav (on m at r)

m
(Eqn 4)
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4 The gravitational field of a spherically symmetric Earth at an external point a distance r from its centre
would be

  
g(r) = − GME

r2
r̂ (Eqn 5)

where ME is the mass of the Earth. Over a localized region close to the surface of the Earth the field may be
approximated by

  g = −gẑ

where g is the local magnitude of the acceleration due to gravity (9.811m1s−2 in the UK). For the spherically
symmetric Earth

g = GME

RE
2

(Eqn 7)
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5 The gravitational potential energy of a body is the energy that it possess by virtue of its position in a
gravitational field.

6 The gravitational potential energy of a body of mass m at an external point a distance r from the centre of a
spherically symmetric Earth would be

Egrav (r) = − GMEm

r
 4(with Egrav = 0 at r = ∞) (Eqn 14)

Over a localized region close to the surface of the Earth this may be approximated by

Egrav(z) = mgz4(with Egrav = 0 at z = 0)

7 The gravitational potential at a point r is the gravitational potential energy per unit mass at that point.

  
Vgrav (r) =

Egrav (of m at r)

m
(Eqn 18)

so for a spherically symmetric Earth

  
Vgrav (r) = − GME

r
(Eqn 19)

and over a localized part of the surface

Vgrav(z) = g0z (Eqn 9)
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8 The escape speed for a planet (or satellite) is the least speed at which a body must be launched from its
surface in order to escape to an infinite distance. The body can only escape if its initial kinetic energy is at
least as great as the increase in gravitational potential energy associated with moving from the surface to an
infinite distance.

9 When a body moves about a fixed point under the influence of a force that satisfies an inverse square law
(such as the gravitational force due to a much more massive body) its orbit is a conic section; an ellipse, a
circle, a parabola or a hyperbola, according to the energy of the body.

10 According to Kepler’s laws of planetary motion:

(1) Planets orbit the Sun in ellipses with the Sun at one focus.

(2) A radial line from the Sun to a planet sweeps out equal areas in equal intervals of time.

(3) The square of the orbital period T of each planet is proportional to the cube of the semi-major axis a of
the ellipse.

11 Astronauts in an orbiting vehicle experience weightlessness because they, along with the contents of their
space vehicle, are falling freely under gravity.

12 Ocean tides arise because of the difference in strength of the gravitational fields of the Moon and of the Sun
across the Earth’s diameter.

13 The gravitational field inside a spherically symmetric hollow sphere is zero.
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6.2 Achievements
Having completed this module, you should be able to:

A1 Define the terms that are emboldened and flagged in the margins of the module.

A2 Describe and explain the principles of the Cavendish experiment for measuring the universal gravitational
constant G.

A3 Calculate the surface gravity of a spherically symmetric body (such as a planet), and determine the
gravitational field of that body.

A4 Calculate the change in potential energy when an object is raised a small distance from the surface of the
Earth.

A5 Calculate the gravitational potential energy of an object due to a spherically symmetric body (such as a
planet), and determine the gravitational potential of that body.

A6 Apply the principle of conservation of energy to a body moving in a gravitational field, and relate the shape
of an orbit to its energy in simple cases.

A7 Explain what is meant by escape speed, and calculate the escape speed from the surface of a planet or
satellite.
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A8 Describe the orbital motion of planets around the Sun and of satellites around their ‘parent’ body and apply
the equations of uniform circular motion to planetary motion.

A9 Quote the general relationship between the orbital period and the mean radius of the orbit (Kepler’s third
law).

A10 Explain why astronauts in an orbiting vehicle experience weightlessness.

A11 Explain the origin of the Earth’s ocean tides.

A12 Calculate (not derive) the gravitational force between two bodies, if the bodies are point particles, hollow
spheres or solid spheres.

A13 Calculate (not derive) the gravitational field due to a uniform sphere both inside and outside its surface, and
state the value of the gravitational field produced inside a hollow spherically symmetric sphere.

Study comment  You may now wish to take the Exit test for this module which tests these Achievements.
If you prefer to study the module further before taking this test then return to the Module contents  to review some of the
topics.
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6.3 Exit test
Study comment Having completed this module, you should be able to answer the following questions, each of which tests
one or more of the Achievements. ☞

Question E1

(A2 and A12)4In a Cavendish torsion balance experiment to measure G the distance between the centres of the
large and small spheres is reduced from 1001mm to 701mm. What effect does this have on the angle of rotation of
the torsion fibre?

Question E2

(A3 and A8)4A small satellite of Saturn has a mass of 3.8 × 10191kg and a diameter of 5001km. Calculate the
maximum angular speed with which it can rotate if loose rocks sitting on its surface at its equator are not to fly
off.
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Question E3

(A4, A5 and A6)4Calculate the gravitational potential energy of a 51kg mass on the surface of the Earth, taking
the zero of potential energy to be at infinity and compare this with the change in potential energy when the mass
is lifted a height of 5001m above the surface of the Earth.

What would be the minimum launch speed of a missile required to reach a height of 5001m above the Earth’s
surface?

Question E4

(A8 and A9)4What orbital period does Kepler’s third law predict for the planet Uranus, whose mean orbital
radius (semi-major axis) is 19.14 times the Earth’s orbital radius?
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Question E5

(A11)4Why is the tidal range (the difference between the depth of water at high and low tides) greatest when
the Moon is full or new, and least when the Moon is mid way between these phases? ☞

Question E6

(A13)4The gravitational field at the surface of a uniform solid sphere of mass M , radius R  is −g.
What is the value of the field at a distance X below the surface of the sphere if X is equal to R/10?
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Study comment  This is the final Exit test question. When you have completed the Exit test go back to Subsection 1.2 and
try the Fast track questions if you have not already done so.

If you have completed both the Fast track questions and the Exit test, then you have finished the module and may leave it
here.
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