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1 Opening items

1.1 Module introduction
It is difficult for us in the technologically developed world to imagine life without electricity. It provides light,
heat, the power to run railways and underpins the whole electronics industry. All of these applications depend on
electric charges moving in response to an electric field.

Electricity is the source of spectacular natural phenomena such as the aurora borealis and lightning. Lightning is
of particular concern to people caught in thunderstorms in exposed places. The Mountain Leadership Guide
includes the following advice to avoid being struck by lightning:

Move away from peaks. Do not shelter under trees or boulders. Find a place in the open about the same distance
from a peak or projection as its height. Sit with your knees drawn up and your hands in your lap. Do not lean back
or support your weight on your hands.

Is this good advice? If so why? Could it be improved on? What causes lightning in the first place?
These questions will be discussed in Section 5 of this module but first we will establish the fundamentals of
field, charge and potential.
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We begin in Section 2 with electric charge and Coulomb’s law, then in Section 3 we apply ideas about electric
fields to an electric dipole, and see how van der Waals forces ensure that water is a liquid. In Section 4 we
review and summarize some key ideas about electrostatic potential energy, electric potential and equipotentials
before moving on to a discussion of point discharge and thunderstorms in Section 5.

Study comment Having read the introduction you may feel that you are already familiar with the material covered by this
module and that you do not need to study it. If so, try the Fast track questions given in Subsection 1.2.  If not, proceed
directly to Ready to study? in Subsection 1.3.
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Figure 14See Question F1.

1.2 Fast track questions

Study comment Can you answer the following Fast track questions?.
If you answer the questions successfully you need only glance through the module
before looking at the Module summary (Subsection 6.1) and the Achievements
listed in Subsection 6.2. If you are sure that you can meet each of these
achievements, try the Exit test in Subsection 6.3. If you have difficulty with only
one or two of the questions you should follow the guidance given in the answers
and read the relevant parts of the module. However, if you have difficulty with
more than two of the Exit questions you are strongly advised to study the whole
module.

Question F1

Three charges of +2.001µC, −1.001µC and +1.001µC are positioned at the corners A, B and C of a square as
shown in Figure 1. Calculate (a) the x- and y-components of the electric field at point D, (b) the electric potential
at D, and (c) the x- and y-components of the force experienced by a charge of −2.001µC at D.
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Question F2

(a) Calculate the electric dipole moment of an electron and proton separated by 1.2 × 100−101m. (b) At a certain
point 1.0 × 10 0−81m from the dipole, the electric field has magnitude 5.0 × 1051N1C−1. What would be the
magnitude of the field at a distance of 1.0 × 100−71m from the dipole in the same direction?

Question F3

(a) What is the distinction between the electrostatic potential energy of a charge q at some point r in an electric
field E(r) and the electric potential at the same point? (b) The potential of a certain distribution of charges
depends only on the distance r from a fixed reference point. If the potential is given by V(r) = –ar, where a is a
positive constant, what will be the force on a point charge of 2.00 × 10−61C at a distance of 4.001m from the
reference point?
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Study comment Having seen the Fast track questions  you may feel that it would be wiser to follow the normal route
through the module and to proceed directly to Ready to study? in Subsection 1.3.

Alternatively, you may still be sufficiently comfortable with the material covered by the module to proceed directly to the
Closing items.
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1.3 Ready to study?

Study comment In order to study this module you will need to be familiar with the following terms: atom, Cartesian
coordinates, displacement, force, kinetic energy, nucleus, potential energy, work and be able to apply the principle of
conservation of energy. Vectors are used extensively in this module: you must be familiar with the use of components and
with the procedure for adding vectors (vector addition) and multiplying them by scalars (scaling). It would also be useful
(though not essential) to have met the notions of scalar product before. You should also be familiar with the basic ideas of
calculus, including the use of derivatives to represent gradients of graphs, and (definite) integrals to represent certain sums.
However, you will not be required to evaluate integrals for yourself, so you do not need to be familiar with the techniques for
doing so. Several of these terms are reviewed briefly in the course of this module but unless you are already fairly familiar
with them you should consult the FLAP modules where they are discussed more fully. You can review them now by
referring to the Glossary which will indicate where in FLAP they are developed. The following Ready to study questions will
allow you to establish whether or not you need to review some of these topics before embarking on this module.

Question R1

Two vectors A  and B lie in the (x, y) plane. The magnitude of A is A = |1A 1| = 2, and A makes an angle of 30°
with the positive x-axis. B  = |1B1| = 4 and B makes an angle of 30° with the positive y-axis (both angles are
measured clockwise from the axis mentioned). Calculate the x- and y-components of C and D where C = A + B
and D = A − B.
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Question R2

An archer (unwisely) fires an arrow vertically upwards. If the mass of the arrow is 251g and the bow gives it an
initial kinetic energy of 601J, what is the potential energy of the arrow when it reaches its maximum height?
What will be its speed on returning to the point from which it was fired?

(You can assume air resistance is negligible.)
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2 Electric charge

2.1 A brief history of electric charge
At some time in your life you must have rubbed a balloon on a woollen pullover and then stuck it to the wall or
ceiling (if you haven’t, we suggest you try it at the first available opportunity). When you do this you are
observing directly the force between electric charges. Similar observations were made by the ancient Greeks,
who noticed that rubbing a piece of amber endowed it with strange properties including the ability to attract
small particles. Indeed the word ‘electricity’ derives from the Greek elektron meaning amber.

Later experiments, especially in the 18th century, established that many materials exhibit such properties and
that there are ‘two kinds of electricity’. Objects with the same kind repel each other; objects with different kinds
attract each other. The ‘two kinds of electricity’ can also neutralize each other if brought together and for this
reason the pioneering scientist Benjamin Franklin (1706 0–1790) labelled them positive and negative.
The quantity of either kind of electricity in a body is now known as the electric charge of the body and may be
expressed as a multiple of the SI unit of charge, the coulomb (C). ☞
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Electrically charged particles play a fundamental part in nature; all the familiar forms of matter are ultimately
composed of them. The atoms that make up gases, liquids and solids consist of negatively-charged particles
called electrons swarming around a central nucleus that contains positively-charged particles called protons and
uncharged neutrons. ☞ Although the charges of protons and electrons differ in sign they both have the same
magnitude, usually denoted by the (positive) quantity e. In 1909, the American physicist Robert Millikan
(1868–1953) began a series of experiments with electrons which indicated that the magnitude of the charge on
the electron is e ≈ 1.6 × 10−191C. ☞ Numerous experiments since then have confirmed this result and the most
accurate value to date is

e = (1.6021177138 ± 0.0001000148) × 100−191C

At the present time, every charged particle that has been experimentally isolated has been found to have a charge
that is equal to e multiplied by some positive or negative whole number. This phenomenon is often described as
the quantization of charge since it indicates that e is a fundamental ‘unit’ or ‘quantum’ of charge. The origin of
charge quantization is still not fully understood, and there is strong evidence that various particles, including
protons and neutrons, contain constituents called quarks, with charges 2e/3 and –e/3. However, it does not
appear to be possible to isolate individual quarks, so the directly observable fundamental charge remains e rather
than e/3. ☞
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Under normal circumstances, a sample of ordinary matter contains the same number of protons and electrons so
that the effects of their charges cancel exactly and most objects are electrically neutral. Yet it is worth reflecting
that the amount of charge contained in macroscopic objects is enormous. Your body contains something like
1028 protons and electrons, equivalent to 1091C of each kind of charge.

Another observed property of electric charge is that the net quantity of electric charge in the universe never
changes. Charged particles can be created or destroyed in nuclear and subnuclear processes, but whenever this
happens it always involves groups of two or more particles and occurs in such a way that the net charge at the
start of the process is equal to the net charge at the end of the process. This observation is embodied in the
principle of conservation of charge:

The net amount of charge in the universe is constant. ☞
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Defining the coulomb

This module is concerned primarily with electrostatics1—1the study of situations in which electric charges are
stationary, or as near stationary as to make no difference. However, the formal definition of the coulomb, the SI
unit of charge, is based on the concept of an electric current which involves the movement of charge.
The SI unit of electric current is the ampere which may defined as follows:

The ampere (A) is that constant current which, if maintained in each of two infinitely long, straight, parallel
wires of negligible cross section, placed 1 metre apart, in a vacuum, will cause each wire to experience a
force of magnitude 2 × 10–71N per metre of its length.

Now, if a constant current flowing in a wire causes a quantity of charge ∆q  ☞ to flow past a fixed point in time

∆t, we say that the current in the wire (expressed in amperes, or amps for short) is

I = ∆q

∆t
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It follows from this that we may define the coulomb as follows:

1 coulomb is the amount of charge transferred when an electric current of 1 ampere flows for 1 second, so
11C = 11A1s.

✦ It was mentioned earlier that your body contains about 1091C of each kind of charge. How long would it take
for a current of 1.001A flowing past a fixed point on your body to transfer 1.00 × 1091C?
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2.2 Charging by contact and by induction
When two suitable materials (for example glass and silk, or polythene and wool) are rubbed together, one
acquires a net positive charge and the other a net negative charge. The exact mechanism is not completely
understood but it is clear that electrons or ions must have been transferred between the two materials.
If the materials were originally electrically neutral, they will acquire equal and opposite net charges as a result of
the charge transfer. ☞ These net charges will each be an extremely tiny fraction (perhaps 1/1015) of the total
positive and negative charges available within the two objects.

Materials can be broadly classified according to the freedom with which charge can move within them. An
electrical conductor is a material in which charge moves freely; examples include metals, bodily fluids and tap
water. Metals are good conductors because they contain many electrons which are only weakly held to
individual atoms. In other materials such as salt solution or bodily fluids, it is ions rather than electrons which
are free to move. A material in which charge does not move freely is called an electrical insulator. Dry wood,
rubber and most plastics are examples of insulators. ☞ Excess charge deposited on an insulator tends to remain
localized near the point of deposition.
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If a conductor carries a net charge, positive or negative, the mutual repulsion between like charges will tend to
force the excess charges to the surface of the conductor. Consequently, given the highly mobile nature of
charges in a conductor, we never expect to find any net static charge inside an isolated conductor.
This also ensures that there is no net electrical force within the conductor. If a conductor is brought near to a
charged object, the charges within the conductor will redistribute themselves in such a way that the net force on
each charge is zero. This redistribution of charge again ensures that there are no net electrical forces anywhere
inside a conductor1—1and this applies to the space inside a hollow conductor as well as to a solid conducting
body.

This useful result is exploited in electrostatic screening: if you want to protect something (such as a delicate
piece of apparatus) from any external electrical influences, you simply enclose it in a metal container.

If a charged conductor is brought into contact with an uncharged conductor, the excess charge will be distributed
between the two; this charge sharing means that the second conductor becomes charged. Once again the
redistribution will eliminate net electrical forces within the conductor.
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Charge can also be accumulated on conductors by a process known as
electrostatic induction. If, say, a negatively charged body is brought close
to a conductor, negative charges on the conductor will be repelled and
positive charges will be attracted. The net effect will be a separation of
charge on the conductor. If the side opposite the charged body is now
connected to the Earth (which can be regarded as a huge conductor),
negative charge will flow to the Earth leaving the conductor with an overall
positive charge. This process is illustrated in Figure 2.

Note The term induction is also used to describe the production of electric current
from a changing magnetic field. This is a completely unrelated use of the word. In
this module induction will always mean electrostatic induction.

Figure 24Charging by induction. (a) A negatively charged body (A) and a neutral conductor (B). (b) The conductor is
brought close to the charged body giving rise to some separation of positive and negative charge. (c) The side furthest from
the charged body is connected to the Earth (as indicated by the special earth symbol) and the excess negative charge migrates
along this connection. (d) The conductor is now positively charged. The charged body retains its original negative charge.
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✦ Figure 2 illustrates the fact that when a charged body is connected to
the Earth, free excess charge will flow from the body to the Earth.
Why does this happen?

When a body is connected to the Earth by a conducting pathway we say it
is earthed, or connected to earth. The process of connecting a body to
earth is called earthing.

Figure 24Charging by induction. (a) A negatively charged body (A) and a neutral conductor (B). (b) The conductor is
brought close to the charged body giving rise to some separation of positive and negative charge. (c) The side furthest from
the charged body is connected to the Earth (as indicated by the special earth symbol) and the excess negative charge migrates
along this connection. (d) The conductor is now positively charged. The charged body retains its original negative charge.
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2.3 Coulomb’s law and electrostatic forces
The nature of the force between charges was first investigated by Charles Augustin de Coulomb (1736–1806) in
1785. In a series of painstaking experiments he looked at the way in which the force between charged bodies
varies with their separation and with the size and sign of the charge. His work resulted in Coulomb’s law which
can be stated as follows: ☞

The magnitude of the electric force between two charged particles is proportional to the product of their charges
and inversely proportional to the square of the distance between them. The force is directed along a line joining the
particles and is repulsive for charges of the same sign and attractive for charges of opposite sign.

The force between charged particles is referred to as the Coulomb force or the electrostatic force.  ☞

Coulomb’s law is expressed in terms of charged particles (that is charges whose dimensions are vanishingly
small). However, a spherically symmetric  charge distribution of total charge q has exactly the same effect at any
point beyond its own surface as a point charge q located at the geometric centre of the distribution. ☞
Thus, any results that are derived for point charges will also apply to spherically symmetric charge distributions,
such as charged spheres, provided we confine our attention to points that are outside the distribution concerned.
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In mathematical terms, Coulomb’s law implies that the magnitude of the electrostatic force on a point charge q2
due to another point charge q1 a distance r away is

Fel = positive constant[ ] × |q1q2 |
r2

(1a)

Because of the 1/r2 dependence, we say that the Coulomb force satisfies an inverse square law. Note that Fel is
a magnitude, and therefore a positive quantity, that is why Equation 1a involves the modulus |1q1q21| which is
positive, rather than simply q1q2 which might be positive or negative. Of course, to describe the Coulomb force
fully, we need to specify its direction as well as its magnitude. We can do this by introducing a vector r that
points from q1 to q2 and using it to define a unit vector   ̂r = r |r | . Defined in this way, by dividing the vector r
by its own magnitude r, the unit vector points in the same direction as r (i.e. from q1 to q2) but it has magnitude
1 and is therefore dimensionless and unitless. Using the unit vector we can write the electrostatic force on q2 due
to q1 as

  
F21 = positive constant[ ] × q1q2

r2
r̂ (1b) ☞

If q1 and q2 have the same sign q1q2 will be positive and the force on q2 due to q1 will point in the same direction
as   ̂r , i.e. away from q1. However, if q1 and q2 have opposite signs q1q2 will be negative and F21 will point
towards q1.
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In the SI system, the positive constant is written as 1 (4πε ), where ε is known as the permittivity of the
medium between the charges, so

  
F = q1q2

4πεr2
r̂ (1c)

The seemingly unnecessarily complicated form of the constant actually makes calculations easier (honestly!).
The factor of 4π often cancels with other factors of 4π which appear because of the spherical symmetry of
Coulomb’s law. For charges in a vacuum, ε has the (approximate) value 8.85 × 10−121C021N−11m−2. This is known
as the permittivity of free space and is written ε0. The presence of a medium reduces the force by a factor 1/ε0r0,
where εr (a dimensionless number, greater than 1) is the called relative permittivity of the medium and is
defined by

ε = ε0εr

Air has a relative permittivity of εr = 1.005, so ε = 8.898 × 10−121C021N0−11m0−2 for air.

Coulomb forces, like all other forces, are vectors and therefore they can be added according to the normal rules
of vector addition. To find the force on a particular charged body due to a number of other charged bodies, we
simply add the individual Coulomb forces vectorially.
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Question T1

A hydrogen atom consists of 1 electron and 1 proton arranged such that the proton can be considered to be at the
centre of a sphere with the electron at a distance of 5.0 × 10−111m away. What is the magnitude of the Coulomb
force between them? You may assume that the relevant value of the permittivity is ε0 in this case. ☞4❏

Question T2

What is the magnitude of the force of attraction between the protons in your body and the electrons in the body
of a friend standing 11km away from you? Why don’t you hurtle towards each other?4❏
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Figure 34See Questions T3 and T5.

Question T3

For the arrangement of charges shown in Figure 3, find the force on the
charge at C due to the charges at A and B. Recalculate the force if the
+1.01µC charge at A is replaced by a charge of −1.01µC.4❏
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3 Electric fields

3.1 Electric field: definition and representation

Study comment Fields (electric and gravitational) are introduced and discussed more fully elsewhere in FLAP. Consult the
Glossary for references to those fuller treatments if you need them.

If you place an electric charge at some distance from another charge or from a group of charges, it experiences
an electrostatic force, which acts ‘at a distance’ since there is no material connection between the charges.
The question arises: how is the force transmitted? One plausible answer is that the region around a charge has a
special property which causes a force to be exerted on other charges within it. This is the attitude conventionally
adopted by physicists, and the property concerned is called the electric field.

Thus, rather than thinking of a system of charges genuinely exerting a force ‘at a distance’ on another charge, we
prefer to think of a system of charges generating an electric field throughout space and the field acting on any
charge placed within it. This may appear to be a rather subtle distinction but this way of thinking has many
advantages. In particular, if you can specify the electric field throughout a region in space, you can work out the
force on any charge at any point within the region without having to refer back to the system of charges which
actually caused the force. ☞
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Having established the general idea that an electric field exists at all points throughout a region of space, we
need to know how to quantify it, that is to assign a value to it at every point. Now, the role of the electric field is
to tell us the force that would act on a charged particle placed at any point within it, so it makes sense to define
the field in terms of that force. The usual procedure is to imagine that we are in possession of a test charge q
that is sufficiently small that it will not significantly disturb the field it is being used to measure, and which we
can place at any point. If we locate the test charge q at a point with position coordinates (x, y, z) then we can
measure the electrostatic force Fel1(on q at (x, y, z)) that acts on it at that point. Now you should be able to see
from Coulomb’s law that this force will always be proportional to the q itself, so it is not purely characteristic of
the charges that produce the electric field. However, if we divide Fel1(on q at (x, y, z)) by q then the resulting
vector quantity will be independent of q and will be determined by the original charge distribution alone.
It is this quantity, Fel1(on q at (x, y, z)) divided by q, that defines the electric field at (x, y, z).
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Since the electric field is a vector quantity, and since its value varies from point to point, we may symbolize it
E(x, y, z), thus we arrive at the basic definition of the electric field:

  
E(x, y, z) = Fel (on q at (x, y, z))

q
4or4Fel = qE (1d)

This is such a fundamental definition that it deserves to be spelt out in words, so that its meaning is absolutely
clear.

The electric field at any point is the electrostatic force per unit (positive) charge that would be experienced
by a test charge placed at that point.  ☞

Note that the electric field is defined in terms of the force that would be experienced by an appropriately located
test charge, so the field exists whether or not a test charge is actually present to experience its effect.

✦ What would be suitable SI units for the measurement of an electric field?
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It can become rather tedious to repeatedly write E(x, y, z) each time we want to refer to the electric field at a
point, so it is common to use the position vector r as a shorthand for the coordinates (x, y, z) and write the field
as E(r). We will usually adopt this convention, but it is important to realize that E(r) does not necessarily point
in the direction of the position vector r. The role of the parenthetical r is simply to remind you that the
magnitude and direction of the electric field will generally vary from place to place. Thus, if we were to write it
out in full, in terms of its Cartesian components, we could equally well write the electric field in either of the
following forms:

E(r) = (Ex(r), Ey(r), Ez(r))

or E(x, y, z) = (Ex(x, y, z), Ey(x, y, z), Ez(x, y, z))

Many authors avoid such complications entirely by writing the electric field simply as E or (Ex, Ey, Ez) as
appropriate, but in doing so they are leaving it to you to remember that the field and its components may vary
with position.
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Having discussed the general definition of the electric field we can now consider the electric field of a specific
charge distribution. The simplest such distribution consists of a single point charge Q at the origin of a Cartesian
coordinate system. From Coulomb’s law, the electrostatic force on a test charge q at the point with position
vector r = (x, y, z) is then:

  
F = Qq

4πεr2
r̂

where   r = |r | = x2 + y2 + z2 , and   ̂r  is the unit vector defined by   ̂r = r |r | .

From this expression for the electrostatic force, and by comparing Equations 1a and 1d

Fel = positive constant[ ] × |q1q2 |
r2

(Eqn 1a)

  
E(x, y, z) = Fel (on q at (x, y, z))

q
4or4Fel = qE (Eqn 1d)

you should be able to see that at any point r the electric field of the point charge Q is:

  
E(r) = Q

4πεr2
r̂ (2)
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Since the electric field is a vector quantity, the total field at a given position due to a system of point charges can
be found using vector addition to add together the electric fields due to each of the charges individually.

Question T4

What is the electric field at a distance of 1.001m from a point charge of +1.001C?4❏

2.01m

y

+1.01µC

x

+1.01µC

+2.01µC
C

A B

2.01m
2.01m

Figure 34See Questions T3 and T5.

Question T5

Calculate the electric field at point C in Figure 3 due to the charges at A
and B. (You can ignore the charge at C.)4❏



FLAP P3.3 Electric charge, field and potential
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

We can represent an electric field diagramatically using electric field lines. These are directed lines
(i.e. lines with arrows on them) that have the following properties:

o The lines may begin and end on charges, but are otherwise continuous.

o The lines are drawn so that at any point the field is tangential to the lines.

o At any point the direction of the lines shows the direction of the field. (Since the field is the force per unit
positive test charge, the lines are directed away from positive charges and towards negative charges.)

o The density of the lines is proportional to the field strength. 
(‘Density’ is taken to mean the number of lines per unit area perpendicular to the field direction.)

Mike Tinker
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Figure 44Field lines of (a) an isolated positive charge, (b) two charges of equal
magnitude and opposite sign.

Figure 4a shows field lines
associated with a (positive) point
charge, and Figure 4b shows the
field line representation of the
electric field surrounding a pair of
charges of equal magnitude but
opposite sign. Field directions
throughout the region of interest,
and areas of high and low field
strength, can be seen at a glance.
Field line diagrams also indicate
the relative sizes of charges. If we
double the size of the point charge
in Figure 4a, we double the field
strength everywhere and therefore
we need to double the line density
everywhere. This means we double
the number of lines emanating
from the charge.
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A B C

Figure 54See Question T6.

Question T6

If the positive charge in Figure 5 is +1.01C, what are the sizes of the other
charges in the figure?4❏

It is worth remarking that the quantitative interpretation of field lines only
works because the electric field due to a point charge obeys an inverse
square law. It can easily be shown that the density of lines drawn radially
from a point also obeys an inverse square law and so is a true
representation of the field. As any field can be built up by summing the
fields due to a distribution of point charges, so any field can be
represented by field lines. If the electric field of a point charge were
proportional to 1/r3, say, rather than 1/r2, the field line representation
would not work.

✦ The electric field at a certain point is given by

E = (Ex, Ey, Ez) = (101N1C 0−1, 151N1C0−1, –201N1C0−1)

What is the force F on a particle of charge –041C located at the point?
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Figure 64An electric dipole and the
position vector r of some arbitrary
point A.

3.2 The field of an electric dipole
As a further example of the electric field of a distribution of point
charges, we will now examine another simple case1—1the field due to an
electric dipole in a vacuum.

An electric dipole consists of two charges of equal magnitude but
opposite sign which are very close together.

Such a pair is shown in Figure 6. For convenience, we choose a
coordinate system such that the charges lie on the x-axis, equidistant from
the origin, with the charge +q  at x = +a and the charge −q at x = −a.
Because of the symmetry of this charge distribution we need only
consider the field in the (x, y) plane; whatever pattern we find there will
be repeated in every other plane that includes the x-axis. We can therefore
find the full three-dimensional field pattern by rotating the field in the
(x, y) plane about the x-axis. Having effectively reduced the problem to
two dimensions we can start by deriving an expression for the field at some point along the x-axis, let us call it
(x, 0). As both charges lie on the x-axis, the field vector at (x, 0) will always point in the x-direction, so Ey(x , 0)
will be zero and we only need to work out the x-component, Ex(x, 0).
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Using subscripts 1 and 2 for the charges at −a and +a, respectively, application of Equation 2,

  
E(r) = Q

4πεr2
r̂ (Eqn 2)

in a vacuum where ε = ε0, gives:

Ex1(x, 0) = −q

4πε0 (x + a)2

and Ex2 (x, 0) = +q

4πε0 (x − a)2

so Ex (x, 0) = Ex1 + Ex2 = q

4πε0

1
(x − a)2

− 1
(x + a)2







i.e. Ex (x, 0) = q

4πε0

(x + a)2 − (x − a)2

(x − a)2 (x + a)2









FLAP P3.3 Electric charge, field and potential
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

so Ex (x, 0) = q

4πε0

4ax

(x − a)2 (x + a)2







If the charges are very close together, and if we take |1x1| >> a then, to a good approximation

Ex (x, 0) = 4aqx

4πε0 x4
= aq

πε0 | x |3
(3)

When dealing with the field of a dipole the product of the charge magnitude and separation is called the electric
dipole moment p. So, for two charges of magnitude q separated by a distance d:

p = qd (4) ☞

In this case the separation is 2a, so p = 2aq and Equation 3 may be written

Ex (x, 0) = p

2πε0 | x |3
(5a)

Recalling that Ey(x, 0) = 0 (5b)

we now know the electric field at any point on the x-axis where |1x1| >> a.
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Figure 64An electric dipole and the
position vector r of some arbitrary
point A.

Question T7

For the dipole in Figure 6, show that at any point on the y-axis with
coordinates (0, y), where |1y1| >> a,

Ex (0, y) = − p

4πε0 | y |3
(6a)

and Ey(0, y) = 0 (6b)4❏

The derivation of the dipole field on the x- and y-axes (Equations 5 and 6)

Ex (x, 0) = p

2πε0 | x |3
(Eqn 5a)

Ey(x, 0) = 0 (Eqn 5b)

is relatively straightforward because of the symmetry of the charges.
However, it is not so much more difficult (0just a bit more long-winded) to derive a general expression for

E(x, y) = (Ex(x, y), Ey(x, y)) at any point in the (x, y) plane such as A in Figure 6, provided r = x2 + y2 >> a .
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The final result is:

Ex (x, y) = p

4πε0r3
(2 cos2 θ − sin2 θ ) (7a) ☞

Ey (x, y) = p

4πε0r3
(3cosθ sin θ ) (7b) ☞

where r = (x, y) and θ are as shown in Figure 6.

Equations 7a and 7b show that:

At distances r which are large compared with the charge separation, the electric field of a dipole decreases
in proportion to 1/r3 and also depends on θ.

Although we now have a complete description of the field in the (x, y) plane, it is still quite difficult to visualize
the field. This is where field lines are useful. In fact you have already seen the dipole field in Figure 4b. Figure
4b gives us a ‘feel’ for the way the field behaves. Equations 7a and 7b allow us to do quantitative calculations
for the field at any point in space.
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Question T8

Show that Equations 7a and 7b

Ex (x, y) = p

4πε0r3
(2 cos2 θ − sin2 θ ) (Eqn 7a)

Ey (x, y) = p

4πε0r3
(3cosθ sin θ ) (Eqn 7b)

are consistent with Equations 5 and 6.

Ex (x, 0) = p

2πε0 | x |3
(Eqn 5a)

Ey(x, 0) = 0 (Eqn 5b)

Ex (0, y) = − p

4πε0 | y |3
(Eqn 6a)

Ey(0, y) = 0 (Eqn 6b) 4 ❏
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(b)

(c)

(d)

3.3 The van der Waals force
There are many situations in the real world which can be approximated by
electric dipoles. You have come across one already in Subsection 2.2 in the
description of charging by induction. The displaced positive and negative
charges on the conductor in Figure 2 behave to a good approximation like
two point charges separated by a small distance1—1an electric dipole.

Figure 24Charging by induction. (a) A negatively charged body (A) and a neutral conductor (B). (b) The conductor is
brought close to the charged body giving rise to some separation of positive and negative charge. (c) The side furthest from
the charged body is connected to the Earth (as indicated by the special earth symbol) and the excess negative charge migrates
along this connection. (d) The conductor is now positively charged. The charged body retains its original negative charge.
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Figure 74The water
molecule (H2O). (a) The
positions of the atoms. (The
small atoms are the hydrogen
atoms, as indicated by the
orientation of the water
molecule shown.) (b) The
equivalent dipole.

Many molecules exhibit dipolar behaviour due to asymmetries in the distribution
of their electrons. Water is a good example of this. The arrangement of atoms in a
water molecule is shown in Figure 7. Electrons spend more time on average near
the oxygen atom (O) than near the hydrogen atoms (H) that are bound to it, so the
O side of the molecule has a net negative charge while the H side has a net positive
charge. In effect it is a dipole.

The mutual attraction between charges of opposite sign on different molecules
causes them to clump together (provided their kinetic energy is not too high)
eventually forming crystals of solid H2O or ice. It is this electrostatic attraction
between molecular dipoles that allows water to be a liquid in a temperature range
where similar sized molecules with little or no dipole moment form gases.
This is very fortunate for us. If it were not for the fact that water is a liquid in just
the right temperature range, life as we know it would never have developed on
Earth!
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(a)

(b)

(c)

The electrostatic forces between molecular dipoles are known as van der Waals
forces after Johannes van der Waals (1837–1923)  . Van der Waals forces can be
important even for atoms and molecules which do not have a permanent dipole
moment. For example, these forces are responsible for the formation of solids from
the neutral atoms of the noble gases. ☞  This occurs because the motion of
electrons within the atoms can give rise to instantaneous asymmetries in the charge
distribution. The resulting transient dipoles can then induce dipoles in nearby atoms
(see Figure 8). These act to reinforce the original transient dipole as well as
inducing dipoles in other nearby atoms in their turn. Thus a network of mutually
attracting dipolar atoms is built up, eventually binding together to form a solid if
their kinetic energies are sufficiently low.

Figure 84(a) An instantaneous asymmetry in the charge distribution of an atom gives rise to (b) an induced dipole in a
nearby atom which reinforces the original dipole and also (c) induces a dipolar distribution in a third atom.
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4 Electric potential and electric field
Calculations with vector quantities such as forces and fields can become very complicated, especially if vector
addition has to be used repeatedly. This difficulty can be avoided sometimes by thinking in terms of energy
(which is a scalar quantity) rather than force (which is a vector). This section introduces the related concepts of
electrostatic potential energy and electric potential that are used in such situations.

+q

x1 x2

E

Figure 94A positive charge +q in a
uniform electric field E.

4.1 Electrostatic potential energy
Figure 9 shows a particle of positive charge +q in a uniform electric
field, i.e. in a field that has the same magnitude and direction at every
point. Coordinates have been chosen in such a way that the field points
along the x-axis, so its only non-zero component is Ex, and even that is
the same everywhere due to the uniformity of the field. The charged
particle is initially stationary, but it will be subject to an electrostatic
force Fx = qEx in the x-direction, so if free to move it will accelerate in
the direction of the force in accordance with Newton’s second law of
motion ☞ . As a result of such motion the particle will gain kinetic
energy. The kinetic energy Ekin gained in any movement, is equal to the
work W done by the electrostatic force on the charge ☞.
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In moving through a displacement ∆x, the work done will be qEx∆x, so this will change the kinetic energy by an
amount ∆Ekin given by:

∆Ekin = qEx0∆x (8) ☞

An alternative way of describing the same situation is to say that the charge possesses a certain amount of
electrostatic potential energy (or electrical energy for short) which depends on its position in the field.
The increase in kinetic energy is exactly balanced by a decrease in electrostatic potential energy so that the total
energy change is zero and we may write.

∆Eel + ∆Ekin = 0  (9) ☞

So, ∆Eel = –∆Ekin, but we already know that ∆Ekin = qEx∆x

Hence, in a uniform field the change in electrostatic potential energy as a result of a displacement parallel to

the field is:

∆Eel = –qEx1∆x (10)
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Question T9

In an electron gun in a television set, the electrons which strike the screen to create the picture are accelerated by
travelling a distance of 1.001cm in a uniform electric field of 3.00 × 1041N1C0−1. Assuming the electrons are
initially at rest, calculate (a) the potential energy lost by the electrons when they are accelerating and
(b) their final speed. ☞4❏

For a charge moving in a non-uniform field E(r), the calculation of electrostatic potential energy is more
complicated. As a first step towards finding the general expression for the potential energy of such a charge
suppose that the motion is restricted to the x-direction, so we only have to worry about the field component in
the x-direction, Ex(r). ☞ We can imagine that the charge q moves in short steps of length ∆x that are small
enough that Ex(r) can be regarded as constant for each step. The work done in a single small step starting at r
will be ∆W = qEx(r)1∆x, and the total work done in moving from x1 to x2 will be approximately equal to the sum
of the work in each small step, which we can write

  W ≈ qEx (r) ∆x∑
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This approximation will become increasingly accurate as the steps become smaller and smaller, with the
consequence that in the limit as the steps become vanishingly small we can write

  
W =

∆x→0
lim qEx (r) ∆x∑[ ] = q

∆x→0
lim Ex (r) ∆x∑[ ]

Now, limits of sums of this kind are known as definite integrals, and are conventionally written as follows

  
W = q Ex (r) dx

x1

x2

∫ (11)

hence
  
∆Eel = −W = −q Ex (r) dx

x1

x2

∫ (12a)

In this case, we chose to consider motion in the x-direction so that we only had to consider a single component
(Ex) of the non-uniform field. More generally, in two or three dimensions, the motion may be from any point r1
to any other point r2 and the movement may be along any pathway between those two points. For convenience
we may consider this motion to be along x then along y and finally along z.
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A simple extension of Equation 12a

  
∆Eel = −W = −q Ex (r) dx

x1

x2

∫ (Eqn 12a)

then leads to

  
∆Eel = −W = −q Ex (r) dx +

x1

x2

∫ Ey (r) dy +
y1

y2

∫ Ez (r) dz
z1

z2

∫












The quantity in square brackets can be expressed as the scalar product

  
E(r)⋅dr

r1

r2

∫

which is called a line integral.  ☞
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Under these circumstances the change in the electrostatic potential energy is given by:

  
∆Eel = −q E(r)⋅dr

r1

r2

∫ (12b) ☞

Like other integrals this is just a shorthand for a limit of a sum, though in this case the quantity being summed is
the scalar product E(r)1·1∆r where ∆r is a small displacement from one point to another on the relevant path
from r1 to r2, and E(r)1·1∆r = |1E(r)1|1|1∆r1|1cos1θ, where θ is the angle between E(r) and ∆r at any point r.

To show the importance of Equation 12b we will now use it to develop an expression for the electrostatic
potential energy of a point test charge q in the field of another point charge Q. The non-uniform field of a fixed
point charge, Q, at the origin of coordinates was introduced earlier, in a vacuum it takes the form

  
E(r) = Q

4πε0r2
r̂ (Eqn 2)
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Figure 104A charge
q in a radial field due
to a point charge Q.

This field is directed radially (towards or away from the origin) at all points. It follows
that the work done by the electrostatic force when a particle moves from a point A to
some other point B (Figure 10) is determined by the radial component of the field, Er(r )
= Q/(4πε00r2), the charge q, and the difference in the radial coordinates rA and rB of A and
B. (Not,e it does not depend on the particular path that the charge follows from A to B.)
It follows from Equation 12b

  
∆Eel = −q E(r)⋅dr

r1

r2

∫ (Eqn 12b)

that in this case

  
∆Eel = −q Er (r) dr

rA

rB

∫ (12c) ☞

thus ∆Eel = −q
Q

4πε0r2
dr

rA

rB

∫ = −qQ

4πε0

1
r2

dr
rA

rB

∫ = −qQ

4πε0

−1
r





rA

rB

i.e. ∆Eel = qQ

4πε0

1
rB

− 1
rA







(12d)
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∆Eel = qQ

4πε0

1
rB

− 1
rA







(Eqn 12d)

This expression for the change in the potential energy of the charge q between two positions is useful since it is
such changes in potential energy that are physically meaningful. Nonetheless, it is sometimes convenient to be
able to assign a definite value to the electrostatic potential energy of q when it is at some particular distance r
from the origin. In order to do this we need to arbitrarily choose a reference point at which Eel = 0. The potential
energy at any point is then the value of ∆Eel corresponding to the displacement from the reference point to the
point of interest. When dealing with the field from a point charge, it is convenient to choose Eel = 0 where
E(r) = 0, i.e. when r → ∞. We can then find the electrostatic potential energy of q at a distance r from Q by
letting rA → ∞ ☞ and rB = r in Equation 12d:

Eel (of q at r) = qQ

4πε0

1
r

(13) ☞
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Using Equation 12b

  
∆Eel = −q E(r)⋅dr

r1

r2

∫ (Eqn 12b)

similar calculations may be carried out for any other electrostatic field, though the mathematics will usually be
more complicated and the result will generally depend on the position vector r of q rather than just its magnitude
r. For such general cases we can represent the electrostatic potential energy of the test charge by Eel(of q at r),
but its value will still depend on some arbitrary choice of reference position

Question T10
A sphere carries a charge of +401µC. A small particle with a charge of +2.01µC is moved from a position outside
the sphere and 1.01m from its centre to a position 1.51m from its centre.
(a) Without doing a calculation, decide whether the change in potential energy will be positive or negative.
(b) Calculate the change in potential energy. Will it make any difference if the particle moves in a straight line

between the two positions or follows some complicated path?4❏

Question T11

What is the electrical potential energy of the electron in a hydrogen atom as described in Question T1?4❏
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4.2 Electric potential: definition and representation
In much the same way that we defined the electric field at any point in terms of the force per unit positive
charge, it is useful to define a quantity, called the electric potential, which represents the potential energy per
unit charge that a test charge would have at any point:

  
V(r) = Eel (of q at r)

q
(14) ☞

Note that like the electric field, the electric potential can be simultaneously assigned a value at every point, but
V(r), unlike the electric field, is a scalar quantity.

In one dimension, the difference in potential between two positions x1 and x02 is (from Equation 12a):

  
∆Eel = −W = −q Ex (r) dx

x1

x2

∫ (Eqn 12a)

∆V = − Ex dx
x1

x2

∫ (15a)
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and in three dimensions (from Equation 12b):

  
∆Eel = −q E(r)⋅dr

r1

r2

∫ (Eqn 12b)

  
∆V = − E(r) ⋅ dr

r1

r2

∫ (15b)

As with potential energy, we can arbitrarily define some point to have zero potential and then use Equation 15b
to work out the potential at any other point. In the particular case of a point charge Q fixed at the origin, it is
usual to choose V = 0 when r → ∞, then for any point at a distance r from Q

V(r) = Q

4πε0r
(16)

Since a spherically symmetric charge distribution produces the same external electrical effects as a point charge
at its centre, Equation 16 also describes the potential at or beyond the surface of a conducting sphere that carries
a net charge Q.
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Electric potential is such a frequently used concept that its SI unit has been given a special name1—1the volt (V).
Thus 11V = 11J1C0−1. We are all familiar with this unit from its association with mains electricity, batteries, etc.
Indeed differences in electric potential are often called voltages.

✦ Use Equation 14

  
V(r) = Eel (of q at r)

q
(Eqn 14)

to write down an expression for the change in electric potential energy ∆Eel when a particle with charge q moves
through a potential difference ∆V.

We are sometimes interested in the behaviour of individual electrons or ions in electric fields (as in the electron
gun of Question T9). A single electron moving through a potential difference of, say, 20001V has
∆Eel = 20001J1C−1 × 1.602 × 10−191C = 3.204 × 10−161J1—1a very small energy change. Rather than always working
in joules and having to deal with such very small numbers, it is convenient to introduce a different energy unit.
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One electronvolt (eV) is defined as the change in the electrostatic potential energy of a single electron when it
moves through a potential difference of 11V. 11eV = 1.602 × 10−191C × 11V = 1.602 × 10−191J.

The electronvolt is not an SI unit, but it is very widely used to measure small energies. ☞ To find ∆Eel in eV for
a single charged particle moving through a potential difference, you simply multiply its charge (measured in
units of e not in coulomb) by the potential difference (measured in volts). For example, an electron moving
through a potential difference of 20001V will change its electrical potential energy by 20001eV (often written
21keV). Similarly, if an oxygen ion of charge 2e, formed from an oxygen atom that has lost two of its electrons,
moves through 20001V then ∆Eel is 41keV.

Question T12

For a battery, the ‘negative’ terminal is usually taken to be at zero potential. If a 121V car battery is connected to
two plates within a vacuum, and an electron released from the negative plate travels to the positive plate, what
will be the change in the electron’s electrostatic potential energy (give your answer in eV and in J)?4❏
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The importance of the potential

One of the great advantages of dealing with potentials is the ease with which they may be added together.
The electric potential at a point in space due to a number of charges is simply the sum of the potentials due to the
individual charges. Thus for a distribution of point charges, Equation 16

V(r) = Q

4πε0r
(Eqn 16)

can be used repeatedly to calculate the total potential at any point.

The scalar nature of the potential means that it is often relatively straightforward to determine the potential
due to a given charge distribution.
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Figure 114See Question T13.

Question T13

Calculate the electric potential at point B in Figure 11 due to the charges at
A and C.4❏

The other crucial feature of the potential V(r) is that it can be used to
derive the associated electrostatic field. We will introduce the relationship
between the field and the potential by considering a deliberately simple
case in which the electric potential V(r) depends on x but is actually
independent of y and z. Under these circumstances we may represent the
potential by V(x). If a charge q undergoes a small displacement from x to x
+ ∆x, the electrostatic force that acts throughout the displacement will be
approximately given by qEx(x), and the corresponding change in
electrostatic potential energy of the charge will be ∆Eel ≈ –qEx(x)1∆x. It
follows that the potential difference between x and x + ∆x is ∆V = ∆Eel0/q ≈
–Ex(x)1∆x. Rearranging this we see that

Ex (x) ≈ − ∆V

∆x
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This approximation will become increasingly accurate as ∆x is reduced, with the result that in the limit as ∆x
becomes vanishingly small

Ex (x) = − lim
∆x→0

∆V

∆x






Now the limit on the right-hand side defines the gradient of the graph of V against x, that is the derivative of V(x)
with respect to x:

Ex (x) = − dV

dx
(17) ☞

So, the x-component of the electric field is given by minus the gradient of the potential.

Equation 17 emerged from the study of a deliberately simplified case; more generally the potential will depend
on x, y and z, and we will have to work out all three components of the electric field at each point r.
However, similar principles apply even though the mathematics is more complicated.
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We can summarize this:

1 Once the electric potential is known in some region it is always possible to determine the
corresponding electrostatic field by taking appropriate derivatives of the potential. The component of
the electric field in any direction is minus the potential gradient in that direction.

2 The direction of the electric field at a point is given by the direction in which the potential decreases
most rapidly.

3 The magnitude of the electric field at a point is the magnitude of the maximum potential gradient,
measured along the direction of the electric field.

Equation 17

Ex (x) = − dV

dx
(Eqn 17)

also shows that the SI unit of electric field can be written in the form V1m−1 which emphasizes the fact that the
field is related to the potential gradient.

✦ Show that 11V1m0−1 = 11N1C0−1.
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Equipotentials and the representation of
potentials
In Subsection 3.1, you saw how electric field lines
provide a useful means of visualizing electric fields.
A different kind of visualization can be achieved
using the concept of electric potential. In two
dimensions a line passing only through points of
equal electric potential is known as an equipotential
line, and in three dimensions we can similarly define
equipotential surfaces. From point 2 above we can
see that the electric field at any point must always be
perpendicular to such lines or surfaces.

Figure 12 shows equipotential surfaces surrounding a
point charge. The surfaces are separated by equal
intervals of potential. The surfaces form concentric
spheres showing that the field must be radial
everywhere.

Figure 124Equipotential surfaces surrounding a point
charge.
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Figure 134See Question T14.

The fact that the surfaces crowd together near the charge shows
that the field is stronger in this region. The fact that the field is
related to minus the gradient of the potential shows that the
field points away from regions of relatively high potential,
towards regions of lower potential.

Question T14

Figure 13 shows an equipotential plot for a particular charge
distribution.

In Figure 13:

(a) indicate positions of positive and negative charge;

(b) say whether charges are approximately the same size or, if
not, which is the bigger;

(c) draw lines of electric field on the diagram.4❏
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4.3 Millikan’s experiments
to  measure e
In Subsection 2.1 we referred to
Millikan’s experiments which
supplied evidence for the
quantization of charge and which
provided a value for e, the electronic
charge. To arrive at his results,
Millikan studied the behaviour of
small charged oil droplets in an
electric field. Figure 14a shows a
schematic diagram of his apparatus.

Figure 14a  Schematic diagram of
Millikan’s apparatus.
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Figure 14b   The behaviour of a
negatively charged oil droplet between
the charged plates.

A fine spray of oil droplets is produced at the top of the apparatus and, in
the process, the droplets become charged by friction. Falling under
gravity, ☞  some of the charged droplets enter the illuminated space
between two metal plates that have an adjustable potential difference
between them.

The experimenter, observing through the microscope, selects one of the
droplets and adjusts the potential difference so that the droplet remains
stationary in mid air; the downward force due to gravity on the droplet
then being exactly balanced by an upward electrostatic force (Figure
14b). The electric field between the plates is uniform, so (from Equation
17)

Ex (x) = − dV

dx
(Eqn 17)

it has magnitude

E = V/d (18)

where V is the balancing potential difference and d the distance between the plates.
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The magnitude of the electrostatic force on a droplet of charge magnitude |1q1| is Fel = |1q1|1E (from Equation 2),

  
E(r) = Q

4πεr2
r̂ (Eqn 2)

so for a stationary droplet

|1q1|1V/d = mg (19)

The mass m of the droplet can be found either by measuring its diameter (by observing it against a graduated
scale) and calculating m using the density of the oil, or by measuring the droplet’s terminal velocity ☞ as it falls
through the air in the absence of any electric field. Knowing V, d, g and m for any particular droplet, Equation 19
can be used to determine the magnitude and sign of q.

Millikan carried out his experiments over several years, and introduced various refinements to improve
accuracy. He used a non-volatile oil, so that the mass of a droplet would not change due to evaporation, and
convection currents were reduced by enclosing the apparatus in a constant temperature oil bath. In a further
improvement, he used X-rays to alter the charge so that he could make several different charge measurements on
any one droplet. ☞
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By repeating his experiments with a very large number of droplets, Millikan found that the charge magnitude on
a droplet was always a whole number multiple of a basic charge e, where e = 1.6 × 10−191C (to two significant
figures).

Question T15

(a) What could you deduce about the basic unit of charge if you measured the magnitude of the charges on some
oil drops to be 3.2 × 10−191C, 6.4 × 10−191C and 1.28 × 10−181C? (b) How might your conclusion be affected if you
measured a charge magnitude of 4.8 × 10−191C?4❏

Question T16

An oil drop of mass 9.8 × 10−151kg is suspended between two plates 1.01cm apart with a potential difference of
20001V across the gap. If the drop is negatively charged due to an excess of electrons, how many such electrons
must there be on the drop? ☞4❏
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5 Point discharge and thunderstorms

5.1 Point discharge
Lightning tends to strike tall pointed objects (such as trees and church spires). We can understand why by
thinking about the electric field around an irregularly-shaped charged conductor.

If a conductor is charged, the excess charge will distribute itself on the surface so as to minimize the repulsive
forces between like charges1— 1it moves until there is no electric field within the conductor. We can put this
another way: charge will move so as to minimize its electric potential energy1—1it will move until there is no
potential difference between the various parts of the conductor. ☞  It follows that:

The surface of a conductor will be an equipotential surface.

This has some important consequences for the associated field and charge distribution.



FLAP P3.3 Electric charge, field and potential
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

+

Figure 154Field lines around an
irregularly-shaped conductor that
carries a net positive charge.

✦ Figure 15 shows the field lines meeting a positively-charged
conductor. ☞  Whereabouts is the field outside the conductor strongest?
And whereabouts on the conducting surface is the greatest concentration of
charge?

Although most of the atmosphere consists of neutral atoms, there are
always a few stray electrons and ions, and these charged particles are
available to be accelerated by an electric field. Around a charged object
such as that in Figure 15, the movement of charge will be greatest in the
air near the pointed end where the field is strongest. Positive ions are
repelled from the point, and electrons are attracted to it, so the conductor
becomes neutralized by charge of the opposite type — the process is
known as point discharge.
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Figure 164A schematic diagram of a
Leyden jar (an antique electrical storage
device) with a spherical conductor to
minimize point discharge.

A conductor with any sharp corners will lose its charge more rapidly
than one whose surface is a smooth curve. This is one of the reasons why
scientific equipment used in the study of electrostatics often includes
spherical conductors (Figure 16).

5.2 Lightning and thunder
We now have the tools with which to tackle the questions about
lightning that were posed in the introduction to this module. First of all,
what is lightning?

As mentioned in Subsection 5.1, there are always a few charged particles
in the air that are available to be accelerated by an electric field. If the
field is strong enough they can be accelerated to such high energies that
when they collide with atoms they liberate more electrons. The ions and
freed electrons are then accelerated in their turn, colliding with more
atoms and creating a cascade of charged particles. This converts very
large amounts of electrical potential energy into kinetic energy in a very
short time giving rise to intense local heating of the air.



FLAP P3.3 Electric charge, field and potential
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

(a) (b)

Figure 174Charge separation in a thunder cloud. (a) The distribution of charges.
Field lines between the cloud and Earth are also shown. (b) The charge distribution
replaced by point charges.

Temperatures can reach
3 × 104 1K which is about five
times hotter than the surface of
the Sun! We see this as a
visible flash. The sudden
heating has another effect: it
causes the air to expand
explosively generating a shock
wave which creates the sound
of thunder.

The electric field required to
cause electrical breakdown of
the air in this manner is of the
order of 3 × 1061V1m−1. ☞
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We know that large fields must be associated with large concentrations of charge. It is apparent therefore that
thunderclouds must be highly charged. How does this happen?

The precise mechanism of the charging process is not fully understood but it has to do with the strong rising
currents of moist air associated with thunderstorm activity. Ice crystals formed within the cloud fall through a
spray of warm, rising water droplets and become negatively charged leaving the droplets with a net positive
charge.
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(a) (b)

Figure 174Charge separation in a thunder cloud. (a) The distribution of charges.
Field lines between the cloud and Earth are also shown. (b) The charge distribution
replaced by point charges.

This results in a charge
separation in the cloud as
shown in Figure 17a.

Although the distribution of
charges is complex, we can get
a rough idea of what is going
on by assuming the positive
and negatively charged regions
are spherical and replacing
them with point charges.
A typical thunderstorm
modelled in this way is shown
in Figure 17b. It has negative
and positive charges of roughly
501C at heights of 51km and
101km, respectively.
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(a) (b)

Figure 174Charge separation in a thunder cloud. (a) The distribution of charges.
Field lines between the cloud and Earth are also shown. (b) The charge distribution
replaced by point charges.

Question T17

Using the information above

(It has negative and positive
charges of roughly 501C at
heights of 51km and 10 1km,
respectively.}

calculate the field strength
(a) halfway between the dipole
charges in the cloud shown in
Figure 17b and, (b) at the
position of the Earth’s surface
due to the dipole, assuming the
presence of the Earth does not
affect the calculation.4❏
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(a) (b)

Figure 174Charge separation in a thunder cloud. (a) The distribution of charges.
Field lines between the cloud and Earth are also shown. (b) The charge distribution
replaced by point charges.

The assumption in the last part
of Question T17 is not in fact
correct. The Earth behaves as a
good conductor and the negative
charges at the base of the cloud
induce a net positive charge in
the Earth’s surface. The effect
of this is to double the
calculated value of E  at the
Earth’s surface. There will also,
of course, be local variations. As
a conductor, the Earth’s surface
is an equipotential. For high
ground, the potential difference
between the Earth and the cloud
base will be the same as for low
ground, but the distance
between them will be shorter
giving a larger potential gradient
(see Figure 17a).
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Added to this, as mentioned in Subsection 5.1, the ground charge will tend to concentrate at regions of high
curvature. Thus fields become intensified near pointed objects. Even so, fields close to the Earth are usually less
than the required figure of ~3 × 106 1V1m−1 for the initiation of lightning. Most lightning flashes begin with
localized high fields inside the cloud. Once the initial ionization starts, the ‘flash’ moves in short bursts, at each
stage following the local potential gradient. This occurs both for flashes between the charges in the cloud and
between the base of the cloud and Earth. Typically 301C of charge is transferred in less than 1 second.

The other question posed in the Introduction is whether the advice given to mountaineers in the Mountain
Leadership Guide makes sense. The electric field close to the Earth is stronger near high ground and pointed or
sharply curving objects. Consequently, the advice to avoid trees, boulders and peaks and to crouch down or
squat is good. Figure 17a shows that the concentration of field lines on peaks and projections means the field
some distance away will be reduced1—1as a rule of thumb, find a position about the same distance away as the
projection is high.

When lightning strikes the ground there is an enormous transfer of charge in a very short time. This means there
are very large fields through the ground in the vicinity of the strike. If you have two points of contact with the
ground separated by a distance ∆x, the potential difference between those points is given by ∆V = E∆x. So the
greater the separation between the points of contact, the greater potential difference. As your body is a good
conductor, charge will flow through you between the points of contact with the ground. You minimize the
danger by keeping your points of contact as close together as possible and making sure that the conducting path
does not include your heart or brain. You can achieve this by squatting and keeping your hands off the ground.
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(a) (b)

Figure 184How to minimize the danger from a lightning strike. (a) The
recommended position and (b) the optimum position.

 Figure 18a shows a sensible
position. You could improve on
the Mountain Leadership Guide
advice by maintaining only one
point of contact with the ground,
while still remembering to keep as
low as possible

This is illustrated in Figure 18b1—
1but maybe being struck by
lightning would be preferable to
keeping this up for any length of
time!
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6 Closing items
6.1 Module summary
1 There are two kinds of electric charge labelled positive and negative. Charge is quantized in units of e

where e = 1.603 × 10−191C. The total charge in the universe is a conserved quantity.

2 Materials can be broadly classified as electrical conductors or insulators, according to the ease with which
charge moves within them. (There is also a class of materials known as semiconductors which behave as
conductors in some circumstances and insulators in others.)

3 Transfer of charge between two initially neutral objects made of appropriate materials may be effected by
rubbing the two objects together. Conductors may be charged by electrostatic induction.

4 The electrostatic force between charged particles (or spherically symmetric bodies) is governed by
Coulomb’s law:

  
F = q1q2

4πεr2
r̂ (Eqn 1c)

where   ̂r = r |r |  and ε = ε0εr.

The electrostatic force due to a distribution of charges is the vector sum of the electrostatic forces of the
individual charges.
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5 The electric field E  at any point is the electrostatic force per unit (positive) charge that would be
experienced by a test charge placed at that point:

  
E(x, y, z) = Fel (on q at (x, y, z))

q

The electric field at any point specified by r = (x, y, z) due to a point charge Q at the origin is

  
E(r) = Q

4πεr2
r̂ (Eqn 2)

6 Field lines are a useful, semiquantitative way of representing the electric field in a region of space. They
emerge from positive charges, point in the direction of the electric field at any point, and are drawn in such a
way that their density in any region is proportional to the strength of the electric field in that region.

7 An electric dipole is a pair of charges with equal magnitude and opposite sign separated by a small
displacement. The dipole moment is the product of the charge magnitude and separation. Coulomb forces
between molecular or atomic dipoles (called van der Waals forces) are responsible for intermolecular
bonding in many solids.
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8 The change in electrostatic potential energy of a charge q in an electric field E(r) when it is moved from r1
to r2 is the negative of the work done by the electrostatic force during the displacement. It is independent of
the path followed from r1 to r2 and is given by

  
∆Eel = −q E(r)⋅dr

r1

r2

∫ (Eqn 12b)

For a point charge q at a distance r from a charge Q we can say that

Eel (of q at r) = qQ

4πε0

1
r

(Eqn 13)

provided we adopt the arbitrary convention that Eel = 0 where r → ∞.
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9 For any charge distribution, the electric potential at any point in space is the electrostatic potential energy
per unit charge that a test charge would have at that point

  
V(r) = Eel (of q at r)

q
(Eqn 14)

For a point charge q at a distance r from a charge Q, V(r) depends only on r = |1r1| and may be written

V(r) = Q

4πε0r
(Eqn 16)

provided Eel = 0 where r → ∞.

10 The unit of electric potential is the volt (V), where 11V = 11J1C–1. The electronvolt (eV) is the change in the
electrostatic potential energy of a single electron when it moves through a potential difference of 1V.
Since ∆Eel = q∆V, 11eV = 1.602 × 10−191C × 11V = 1.602 × 10−191J.
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11 The (scalar) electric potential due to a distribution of charge is often relatively easy to determine.
At any point, the component in any direction of the corresponding electric field is minus the gradient of the
potential, in that direction. In the case of an electric field that varies only in the x-direction, V depends only
on x and

Ex (x) = − dV

dx
(Eqn 17)

12 Equipotential lines are lines passing only through points of equal potential; equipotential surfaces are
surfaces passing only through points of equal potential. The electric field is everywhere perpendicular to
equipotential lines and surfaces and points in the direction in which the potential decreases most rapidly.

13 The surface of a conductor will be an equipotential surface.
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6.2 Achievements
Having completed this module, you should be able to:

A1 Define the terms that are emboldened and flagged in the margins of the module.

A2 Explain how objects may be charged by contact and by induction.

A3 State and use Coulomb’s law.

A4 Explain the origin of van der Waals forces in terms of forces between induced dipoles.

A5 Explain the concept of electric field, write down an expression for the field due to a point charge and
describe the electric fields that arise in a range of simple situations (e.g. the uniform electric field).

A6 Describe the field due to an electric dipole and say how it differs from that due to a point charge.

A7 Perform simple calculations involving electric fields.

A8 Draw and interpret electric field line patterns for simple charge distributions.

A9 Distinguish between electrostatic potential energy and electric potential and perform simple calculations
based on these concepts.

A10 Describe the relationship between electric field and electric potential, and use it in cases where the
potential depends on only one variable.
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A11 Explain the significance of equipotentials and their relationship to field lines.

A12 Explain the phenomenon of point discharge in terms of charge, field and potential.

A13 Explain in terms of charge, field and potential the cause of lightning and simple precautions which can be
taken to minimize risk of injury due to lightning strikes.

Study comment  You may now wish to take the Exit test for this module which tests these Achievements.
If you prefer to study the module further before taking this test then return to the Module contents  to review some of the
topics.
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6.3 Exit test

Study comment  Having completed this module, you should be able to answer the following questions each of which tests
one or more of the Achievements.

Question E1

(A2 and A3)4A spherical conductor carrying a charge of 4.00 × 10−51C is momentarily connected to a second,
identical, initially neutral, spherical conductor. After this, the spheres are positioned a certain distance apart
where the force between them is measured as 0.2001N. Calculate their separation. Is the force between the
spheres repulsive or attractive?
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Figure 194See Question E2.

Question E2

(A5, A7, A9 and A10)4Two point charges A and B of +2Q  and +Q,
respectively, are separated by a distance D (Figure 19).

(a) Show that there is a point on the line joining the two charges, at a

distance of 
2

1 + 2







D  from A, where the field is exactly zero.

(b) Show that the electric potential at this point is 
Q(3 + 2 2 )

4πε0 D
 assuming zero potential is an infinite distance

away.

(c) If Q = 0.1001µC and D = 2.001m, calculate the work done by the field in bringing an electron from very far
away to the zero field point.

(d) Calculate the speed of the electron when it reaches this point assuming the only force it experiences is that
due to the two charges. (Mass of an electon is 9.11 × 10−311kg.)
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Question E3

(A8, A10 and A11)4Each of the field line diagrams in Figure 20 is supposed to represent a region of space
containing a single, stationary point charge. Only one of the configurations is physically possible. Say which it is
and explain why the others are not possible. On the possible configuration, draw in the associated pattern of
equipotentials.

(a) (b) (c)

Figure 204See Question E3.
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Question E4

(A13)4In mediaeval times in Belgium, bell ringers were often sent to ring bells in church towers to frighten off
approaching thunderstorms. Explain the low life expectancy among mediaeval, Belgian bell ringers.
Why are conditions safer today?

Study comment  This is the final Exit test question. When you have completed the Exit test go back to Subsection 1.2 and
try the Fast track questions if you have not already done so.

If you have completed both the Fast track questions and the Exit test, then you have finished the module and may leave it
here.
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