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1 Opening items

1.1 Module introduction
The development of electrical and electronic products in our society requires a sophisticated knowledge of
circuits and devices: indeed some knowledge of circuitry is called for in the most elementary maintenance of
plugs, fuses and connecting wires. Many measurements of physical quantities are made nowadays by sensors or
transducers that result in current or voltage signals being developed in a detection circuit. Moreover, the
electrical properties of materials give important clues to the underlying nature of the materials themselves. For
all these reasons, the behaviour of electrical circuits is an important area of physics.

In this module we will be concerned only with d.c. circuits. We begin in Section 2 with a discussion of current
in conductors and the factors restricting the current, which lead to the definition of resistance and Ohm’s law. It
is shown how the resistance of a material sample depends on its dimensions, its resistivity (or conductivity) and
its temperature. This is interwoven with discussions of electric potential energy and voltage, electrical heating
and power. Important laws of circuitry (superposition and Kirchhoff’s laws) are introduced in Section 3 and used
to analyse a simple Wheatstone bridge circuit. In Section 4 the technique of equivalent circuits is applied to
resistors in series and in parallel, and to voltage generators with output resistance. Finally, Thévenin’s theorem
is used to show how a bridge circuit may be employed to monitor changes in resistance.
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This module aims to help you to think about the laws of electrical circuitry in ways that will continue to be valid
when you study more sophisticated circuits.

Study comment Having read the introduction you may feel that you are already familiar with the material covered by this
module and that you do not need to study it. If so, try the Fast track questions given in Subsection 1.2.  If not, proceed
directly to Ready to study? in Subsection 1.3.



FLAP P4.1 DC circuits and currents
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

1.2 Fast track questions

Study comment Can you answer the following Fast track questions?. If you answer the questions successfully you need
only glance through the module before looking at the Module summary (Subsection 5.1) and the Achievements  listed in
Subsection 5.2. If you are sure that you can meet each of these achievements, try the Exit test in Subsection 5.3. If you have
difficulty with only one or two of the questions you should follow the guidance given in the answers and read the relevant
parts of the module. However, if you have difficulty with more than two of the Exit questions you are strongly advised to
study the whole module.

10 Ω

4 Ω 6 Ω 8 Ω

6 V12 V

Figure 13See Question F1.

Question F1

For the circuit of Figure 1, (a) use the principle of superposition to find
the current in the 61Ω resistor and (b) find the power dissipated in the
101Ω resistor.
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Question F2

A moving-coil galvanometer has a resistance of 501Ω and gives a full-scale deflection for a current of 2501µA.
Calculate the values of the shunt resistance or the series resistance to convert it into (a) an ammeter to measure
currents up to 51A and (b) a voltmeter to measure potential differences up to 1001V.

Study comment

Having seen the Fast track questions  you may feel that it would be wiser to follow the normal route through the module and
to proceed directly to Ready to study? in Subsection 1.3.

Alternatively, you may still be sufficiently comfortable with the material covered by the module to proceed directly to the
Closing items.
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1.3 Ready to study?

Study comment To begin the study of this module you will need to understand the following terms: charge, conservation
of energy, electric field, electron, electrostatic force, ion, kinetic energy and potential energy. You will also need to know the
everyday meanings of the terms gravity, temperature and weight. You should be familiar with the following mathematical
terms: average (i.e. mean), constant of proportionality, fraction, gradient (of a graph), inversely proportional, percentage,
proportional, ratio, reciprocal and sum. If you are uncertain about any of these terms then you can review them now by
reference to the Glossary, which also indicates where in FLAP they are developed. The module also assumes that you can
evaluate simple algebraic expressions , rearrange simple equations and solve elementary simultaneous equations. Calculus
notation is used to summarize one definition, but you do not need to be familiar with the techniques of calculus in order to
study this module.

The following Ready to study questions will help you to establish whether you need to review some of the above topics
before embarking on this module.
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Question R1

The charge on an electron is −e = −1.602 × 10−19 coulomb.

(a) An atom becomes ionized by losing two of its electrons. What is the charge of the resulting ion?

(b) How many electrons are required to make up a charge of −1.0001C?

Question R2

An electron is released from rest between two oppositely charged metal plates (see, for example, Figure 4) in the
absence of any non-electrical forces.

(a) Which way will the electron move?

(b) Where would the electron have the greatest potential energy?
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Question R3

Suppose a ∝  b and c ∝ 1/ a:

(a) Write down a single proportionality involving a, b and c with a as the subject.

(b) How could you use a graph to find the constant of proportionality relating values of a and c?

Question R4

Solve the following simultaneous equations:

x + y = z3332x + 3y = 2z – 13333x – y = z + 1
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∆ q

I=dq/dt
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Figure 23The current along a wire is
defined by the net rate at which charge
passes through a plane perpendicular to the
axis of the wire.

2 Current, voltage and resistance

2.1 Current

Electric current is the rate at which charge is transferred and is
generally represented by the symbol I. The SI unit of current is the
ampere (often abbreviated to amp) which has the unit symbol A.
1 ampere represents a charge flow of 1 coulomb per second, so
11A = 11C1s−1.  ☞ 
Thus, in Figure 2, if a net charge q ☞is transferred from a point A to
a point B in a time t, the average current I  from A to B is given by

average current =  
net charge transferred

time taken

i.e. I  = q/t (1)
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∆ q

I=dq/dt
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Figure 23The current along a wire is
defined by the net rate at which charge
passes through a plane perpendicular to the
axis of the wire.

For a current that varies with time we can define an instantaneous
value of the current. For charges moving along a wire this is the rate
(at a given instant of time) at which charge passes through a plane
perpendicular to the axis of the wire. If a net charge ∆q  ☞  crosses
such a plane (see Figure 2) in a time interval ∆t, the instantaneous
current from A to B may be expressed using the notation of calculus
as

instantaneous current = lim
∆t→0

∆q

∆t






i.e.  I = dq

dt
(2) ☞

In general, both the direction and rate of flow of charge may vary with time. If the flow is always in one
direction, it is said to be a direct current (d.c.). In this module, we shall be concerned only with conditions
where neither the direction nor the rate of flow varies with time. ☞ In such situations the average current and
the instantaneous current are equal.



FLAP P4.1 DC circuits and currents
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

Broadly speaking, there are two types of charge-carrying particles that move around easily: ions and electrons.
However, in this module we will be dealing with currents in metal wires where only electrons, which have
become detached from metal atoms, are free to move through the metal. It is the movement of these ‘free’
electrons that will be responsible for the current flowing through the metal. The positive ions that are left behind
when atoms lose electrons can only oscillate about fixed positions in a regular array known as a lattice. ☞

Electrons are usually bound to atoms by quite strong forces, so how can they move around so freely within a
metal? A full answer to this question involves a very sophisticated study of the behaviour of electrons in a
regular array of metal atoms, but at a much cruder level you can simply imagine an electron from each atom
‘stepping to the side’, i.e. moving, to an adjacent atom in the array. If all the free electrons in a piece of metal
made such a move simultaneously the only ones that would experience a restoring force after the move would be
those at the ends of the piece of metal, since those are the only ones that would experience a change of
environment. If the metal were part of a continuous circuit (i.e. a closed path within which charged particles
may flow) there would be no ends and hence no restoring forces. Under such circumstances you can picture the
electrons moving very freely through a uniform sea of positively charged ions that has almost no net effect on
the current.
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The charge on an electron is denoted by −e, where e = 1.60211772×210−19 C. This is an extremely small charge
and, even for currents of a few picoamps, ☞ the flow rate of electrons in a wire is many millions per second.

Because the current in metals is carried by electrons, which have negative charge, there is a slight complication
in defining the direction of current. The negative sign of the electron’s charge is the result of an arbitrary choice
made by Franklin ☞ in the eighteenth century, between ‘two types of electricity’. The consequence is that what
we describe as a flow of (positive) current in a certain direction consists (in metals) of electrons flowing in the
opposite direction. ☞  We conventionally define the direction of positive current as the direction in which
positive charge would flow, but bear in mind that the electrons are actually moving in the opposite direction1—1

it is only when we are considering microscopic aspects of current that this becomes important.  The possibility
that the current from A to B may be positive or negative is a direct consequence of Equation 2.

 I = dq

dt
(Eqn 2)

Reversing either the sign of the charge being transferred or its direction of flow would reverse the sign of the
current. However, in the absence of any clear indication of the direction of positive current flow (such as an
arrow on a diagram or the words ‘from A to B’) it is the convention to use the term ‘current’ to describe the
(positive) magnitude of the rate of charge transfer. Thus, unless a direction is explicitly indicated, currents
should always be positive quantities.
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Question T1

If 4.802×21010 electrons pass through a plane perpendicular to the axis of a wire in 51s, what is the average
current in the wire?3❏

F = weight

height
difference

Figure 33Water in a pipe flows from
places of high gravitational potential
energy to places of low gravitational
potential energy.

2.2 Voltage: why currents flow
In an isolated wire there is no net charge flow. The ions are in their
lattice positions and their only movements are very small vibrations, the
size (amplitude) of which depends upon the temperature of the wire.
The free electrons will also have a certain amount of kinetic energy
associated with their temperature, but this thermal motion will be
randomly directed like that of molecules in a gas and certainly won’t
cause a current. So how is it possible to arrange for a net movement of
electrons through the wire?

The simplest answer follows from considering the energetics of the
system. Electrons will flow from A to B in a wire if, by so doing, the
potential energy of the system is reduced. You may find helpful the
analogy between the flow of water in a pipe (Figure 3) and the flow of
electrons in a wire.
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Figure 43An electron between charged
plates.

F = weight

height
difference

Figure 33Water in a pipe flows from
places of high gravitational potential
energy to places of low gravitational
potential energy.

Water flows through the pipe
when there is a height
difference, and therefore a
difference in gravitational
potential energy, between the
ends of the pipe. It is the
weight of the water1—1

the gravitational force acting
on it, arising from the
gravitational field1—1that pushes the water along the pipe.

For the flow of electrons in a wire, it is the electric potential energy
which is important. The idea of electric potential energy (sometimes just
called electrical energy) is illustrated by the situation shown in Figure 4. An electron, free to move, placed
between charged plates will accelerate towards the positive plate, just as water will flow down the pipe in Figure
3. The electric potential energy of the system is reduced as the electron gains kinetic energy and moves towards
the positive plate. In terms of forces, the electron has been moved by an electrostatic force arising from the
electric field between the plates. The source of the electric field could be a battery (the plates would be charged
by connecting one to each battery terminal), in which case the battery would also be the source of the electron’s
kinetic energy1—1there would be a net transfer of energy from the battery to the electron as it moved. ☞
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Figure 53Electrons move from places of high electric potential energy
to places of low electric potential energy.

If the terminals of a battery were joined by a
wire, the battery would produce an electric
field within the wire and the free electrons in
the wire would move towards the positive
terminal (Figure 5), rather like the water
moving downhill in the pipe. Again, there
would be a net transfer of energy from the
battery to the electrons.

The change in the electric potential energy
of a particle as it moves within an electric
field is proportional to the charge of that
particle. Thus, if we divide the change in a
particle’s electric potential energy by its
charge we get a new quantity, the change in
electric potential energy per unit charge,
that is independent of the particle’s charge
and therefore tells us more about the
electrical environment (i.e. the electric field)
in which the particle is located.
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✦ What are the SI units of ‘change in electric potential energy per unit charge’?

The change in electric potential energy per unit charge between two points is known as the electric potential
difference or, more commonly, the potential difference (p.d.), between those points. The SI unit of potential
difference is the volt (unit symbol V), where 11V = 11J1C1−1. The electric potential difference is therefore also
known as the voltage difference, and can be represented by the symbol ∆V.  Thus, the change in electric
potential energy ∆Eel when a charge q moves through a potential difference of ∆V is given by

∆Eel = q∆V (3) ☞

The electric potential energy per unit charge at a given point is called the electric potential (often just ‘the
potential’) at that point and is denoted by the symbol V. Electric potential at a point has (like p.d.) the volt as its
SI unit, and is often referred to simply as ‘the voltage’ at that point.

Note that it is only the difference in electric potential between two points that is physically significant since it is
that difference that tells us the change in electric potential energy when unit charge moves between those points.
We are therefore free to choose any convenient reference point as the place where a charge has zero electric
potential, and then define the electric potential at any other point relative to that reference point.
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Also note that potential is defined in terms of the electric potential energy of unit positive charge. If a free
positive charge moved spontaneously from some point A to our chosen point of zero potential, it would be
losing electric potential energy as it did so1—1point A must therefore be at a higher (i.e. more positive) potential
than the chosen zero point. If, though, a free positive charge moved spontaneously from a point of zero potential
to some other point B, then the potential at B must be negative, otherwise such a movement would represent a
spontaneous increase in electric potential energy. ☞

If a point in a circuit is earthed (literally, connected to the Earth by a wire) then that point is generally taken to
be the point of zero electric potential, often referred to as earth potential. If a circuit is not earthed, then the
negative terminal of a battery is generally taken as having a potential of 01V.

Question T2

A battery has a potential difference of 121V between its terminals. How much electrical energy is released when
there is a spontaneous net charge transfer of 51C between the terminals?3❏
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Question T3

Suppose it was decided to define the positive terminal of a 121V battery as being at zero potential. What would
be the potential at the negative terminal?3❏

A note on symbols and conventions3We have used the subscript ‘el’ to make it clear that we are dealing with
electrical energy changes. However, when dealing with voltage and voltage difference, no ambiguity arises if
the subscript is dropped, so we have omitted it. We have also been careful to distinguish the voltage difference
between two points (∆V1) from the voltage at a point (V1). However, many texts do not make the distinction so
explicit, they often refer just to ‘the voltage’ and use the symbol V to mean the voltage difference between two
points. In the remainder of this module, we too will generally omit the ∆ when referring to a voltage difference.
However, in common with many other texts, we will sometimes use VA to represent the potential at a point A,
and VAB for the potential difference between the points A and B (so, VAB = VB − VA). ☞
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Figure 63I–V characteristic graphs for
(a) an ohmic metal and (b) a
semiconductor diode. The diode is highly
non-linear.

2.3 Ohm’s law and resistance
Within certain limits, the rate at which water passes through a pipe is
proportional to the difference in gravitational potential (or height)
between the ends of the pipe. In 1827 a German physicist, Georg Simon
Ohm (1787–1854), found an equivalent relationship for charge flow in
metal wires: the current I through a wire is proportional to the electric
potential difference V between its ends: I ∝  V.

This relationship is usually written in the form

I = V

R
Ohm’s law (4)

and is known as Ohm’s law. The constant of proportionality is written
as (1/R) where R is called the resistance. The unit of resistance, the
ohm, has the symbol Ω (Greek letter omega). Equation 4 may be used
to define the ohm: 11Ω = 11V1A−1.
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Figure 63I–V characteristic graphs for
(a) an ohmic metal and (b) a
semiconductor diode. The diode is highly
non-linear.

Ohm’s law is not a fundamental law of physics. It is an empirical law
based on observations of certain metals in certain circumstances and,
even for these metals, applies only if the temperature of the metal is
kept constant. For an ohmic metal (i.e. one described by Equation 4),

I = V

R
Ohm’s law (Eqn 4)

a graph of current against voltage (Figure 6a) is a straight line, the
gradient of which is the reciprocal of the resistance, 1/R. Such a graph
for an electrical component is known as an I–V characteristic graph.

If a particular electrical component has a linear (i.e. straight line) I–V
graph, it is called a linear component. (This property is of importance
when we come to consider superposition in Subsection 3.1.) Not all
electronic components are linear. For example, Figure 6b shows the I–V
characteristic of a component known as a semiconductor diode, which is
highly non-linear. Such a component does not have a single value of
resistance: its effective resistance will depend on the voltage at which it
is being operated.

Mike Tinker


Mike Tinker
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2.4    Resistivity and conductivity
To appreciate how the dimensions of a wire influence the flow of charge we can again appeal to our intuitive
understanding of water flow in pipes1— 1short fat pipes allow water to flow more easily than long thin pipes.
When we examine the factors determining the current in a wire we find that for a given applied voltage
difference between the ends of the wire:
o Increasing the length of wire decreases the current: I ∝  1/l, i.e. R ∝  l.
o Increasing the cross-sectional area of the wire increases the current: I ∝  A, i.e. R ∝  1/A.

These two proportionalities may be combined in the approximate equation

R = ρ l

A
(5) ☞

where the constant of proportionality ρ (Greek letter rho) is called the resistivity and has the units of Ω1m. ☞
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The reciprocal of resistivity is conductivity which is usually given the symbol σ (Greek letter sigma) and the
units are either (Ω1m)−1 or, equivalently, siemens per metre (S1m−1).☞

σ = 1
ρ

(6)

The principal contribution to the resistance of a metal usually comes from electron collisions with the lattice
ions. The ions vibrate with an amplitude which increases with temperature, and it is these lattice vibrations
which impede the flow of current. Interestingly a sophisticated analysis of solids indicates that a perfect lattice of
stationary ions would offer no resistance at all to electrons moving through it. As you will see in Subsection 2.5,
some materials (superconductors) do show exceptionally low resistance at very low temperature but this is not,
so far, a phenomenon that can be produced at room temperature.
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Material Resistivity
/Ω1m

conductor silver 1.65 × 10−8

copper 1.67 × 10−8

gold 2.35 × 10−8

aluminium 2.63 × 10−8

tungsten 5.51 × 10−8

nickel 6.84 × 10−8

iron 9.71 × 10−8

semi-
conductor germanium ~10−1–10

silicon ~102–105

carbon ~4  × 10−3

insulator glass 1010–1014

PVC > 1010

mica > 1012

PTFE > 1015

fused quartz > 1015Table 13Resistivities of some conductors, semiconductors and insulators.

The size of the current in a material when a voltage is applied across it will
depend not only on the impedance to charge flow offered by the lattice
vibrations but also on the number of mobile charged particles in the
material. This latter factor, the number of mobile charge carriers, shows
enormous variations from one type of material to another and is
responsible for giving resistivity the widest variation of any known
physical property. Table 1 lists some typical resistivities and also shows
how materials are classified according to their resistivity.
A conductor is a material with a large number of mobile charge carriers
(usually free electrons) and hence a very low resistivity. All metals are
conductors.
An insulator has very few mobile charge carriers and its resistivity is
extremely high.
A semiconductor has a moderate number of mobile charge carriers and
intermediate resistivity: the number of charge carriers, and hence the
resistivity, is strongly dependent on temperature and on the presence of
impurities. Raising the temperature of a semiconductor usually greatly
increases the number of mobile charge carriers and thus reduces the
resistivity.
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Question T4

A piece of nickel wire is 1.201m long and has a cross-sectional area of 2.502×210−8
1m2.

Calculate (a) the resistance of the wire (b) the current in the wire when there is a p.d. of 6.401V between its
ends.3❏

Question T5

A certain material has a conductivity of 4.602×2107
1S1m−1. Would you classify it as a conductor, semiconductor

or insulator?3❏
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2.5 Resistance and temperature
In Subsection 2.4 we explained that as the temperature of a metal is raised, the amplitude of lattice ion
oscillations increases, causing the resistivity, and hence the resistance of a given specimen, to increase.
The relationship between resistance R and temperature T is approximately linear over a temperature range
−501°C < T < +1501°C and may thus be represented by the approximate equation

RT ≈ R0 (1 + α 1T1) (7)

where RT is the resistance at temperature T, R0 is the resistance at 01°C, and α, the temperature coefficient of
resistance, is defined as the mean fractional change of resistance per °C over the temperature range T = 01°C to
T = 1001°C,

i.e. α = R100 − R0

100R0
° C( )−1 (8)

Typical metals have α between about 3.52×210−3
1(°C)1−11 and 6.52×210−3

1(°C)1−11. Such values may seem small but
the effect is quite large and is important in many applications.
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✦ The temperature coefficient of resistance of copper is 4.262×210−3
1(°C)1−11. The resistance of a certain piece

of copper at 01°C is 1001Ω. What will be its resistance at 1001°C?

RT ≈ R0 (1 + α 1T1) (Eqn 7)

Equation 7 is only an approximation and, for most materials, its use for temperature changes of more than a
hundred or so degrees will lead to large inaccuracies. However, the reproducibility of the temperature variation
of resistance, particularly in samples of platinum, has resulted in platinum resistance thermometers being
adopted as the international practical method of measuring temperature over the range from about
141K (−2591°C) to 9041K (11771°C). ☞
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If we extend our discussion beyond pure metals, there are three commercially important materials with unusual
temperature coefficients which should be mentioned.

o One is carbon, often deposited as a thin film on the surface of an insulator to make resistors for electronic
circuitry. These carbon film resistors have a very small negative temperature coefficient (NTC)
(α  ≈ −52×2101−141(°C)1−11) so the resistance decreases as the temperature is raised.

o Second, the resistors known as thermistors (from thermally sensitive resistor) are made from
semiconductors with large NTCs, and are widely used in temperature measurement and control circuitry.

o Third, there is an alloy of copper and nickel (UK trade name Constantan) with a very small temperature
coefficient. Wire-wound resistors are frequently made from Constantan.
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R

T(a)

Figure 7a3The resistance of (a) a
metal at low temperature

A graph of resistance against temperature for a typical sample of metal
(Figure 7a) is roughly linear down to quite a low temperature, where it
flattens out. In this region the temperature is such that the lattice vibrations
have become very small and the main contribution to resistivity comes
from impurities and imperfections in the lattice.
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R

TTc(b)

Figure 7b3The resistance of  (b) a
superconductor above and below its
transition temperature.

Experimental observations of resistance at very low temperatures were not
made until 1911 when H. Kammerlingh Onnes (1853–1926), who had
previously discovered how to liquefy helium (boiling point 4.21K), made
the remarkable observation that the resistance of a specimen of mercury
dropped abruptly to zero once a critical transition temperature Tc of
about 4.11K was reached (see, for example, Figure 7b). Many other metals
have since been found to behave similarly. Materials which show this
effect are called superconductors. The resistivity of a superconductor
does appear to be truly zero: it is at least 1017 times smaller than that of
metals at normal temperatures. A current flowing around a
superconducting ring will continue to circulate for years1—1no voltage
source is required to keep it going.
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Until recently, no material had been found with a superconducting transition temperature (Tc) higher than about
231K. Reaching such low temperatures needs liquid helium, which is very expensive, so uses of superconductors
were few and mainly confined to the production of very large magnetic fields from large currents in
superconducting rings. ☞

In 1986 Karl Muller and Johannes Bednorz found a ceramic material with a Tc of about 401K. This was followed
by intense experimentation in research laboratories around the world, resulting in ceramic materials with Tc well
above 771K, the boiling point of nitrogen1—1and liquid nitrogen is much cheaper and more widely available than
liquid helium. Devices requiring large currents, employing high magnetic fields, or in situations (such as power
transmission lines) where resistive power loss (see Subsection 2.6) is a limiting factor, may be changed beyond
recognition once the technology of manufacturing these ceramics is established. If materials with room-
temperature Tc are ever developed, then even further advances will become possible.
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VAB = VB − VA

charged 
particle

A

B

q

charged plate

charged plate

VA

VB

Figure 83A charged particle moving
through a potential difference.

2.6 Energy and power
This section is mainly concerned with the conversion of electrical
energy in resistors, but we will first consider the system shown in
Figure 8 (which is similar to that shown in Figure 4). Here, a particle
with a charge q starts from rest at a point A and, under the influence of
an electric field, accelerates in free space (a vacuum) to a point B,
through a potential difference VAB = VB – VA. The resulting change in
the particle’s electric potential energy will be qVAB (from Equation 3).

∆Eel = q∆V (Eqn 3)

This will be a negative quantity since a spontaneous motion will reduce
the electric potential energy and hence q and VAB must have opposite
signs. Now suppose that N such charges cross from A to B. The total change in electric potential energy will be
∆Eel = NqVAB and this too will be negative since the movement of the charges will have reduced the electric
potential energy. If the time required for the transfer of these charges is ∆t, the average rate of change of electric
potential energy will be the negative quantity

∆Eel

∆t
= NqVAB

∆t
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Now, Nq/∆t is just the average charge transferred per second, i.e. the average current I  (Equation 1),

I  = q/t (Eqn 1)

so
∆Eel

∆t
= I VAB

The conservation of energy demands that as the particles lose electric potential energy they must gain kinetic
energy at the same rate. Clearly, as the particles come to rest at B they must shed this kinetic energy.
If the particles are electrons, then almost all of this energy goes into increasing the thermal energy of the plates
at B. So, if the plate being bombarded by particles is to remain at a constant temperature it must dissipate energy
at the positive rate ☞

P = − I VAB ☞

The quantity P in this equation describes the rate at which energy is released (dissipated) at B and is called the
power. Power is measured in watts (unit symbol W), where 11W = 1 J1s−1.
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What is different when A and B are joined by a wire of finite resistance instead of by empty space? If there is
still a voltage difference V between the ends of the wire, there will still be an electric field which will accelerate
the free electrons. They will not accelerate smoothly, however, because they will be impeded by lattice
vibrations. The electrons will collide with the lattice ions and transfer their kinetic energy (acquired from the
electric field) to the ions along their path, increasing the thermal energy of the wire and tending to raise its
temperature. This process is called resistive heating or Joule heating. Apart from the details of the heating, the
same basic principles still apply and the rate at which energy is released will still be given by the product of a
current and a voltage difference.

In general, if we wish to calculate the energy dissipated in a resistive component (i.e. the power) of a d.c. circuit
we simply use the formula

electric power P = IV (9)

where I is the steady current in that component, and V is the voltage across that component. Similarly, the power
drawn from a voltage source is the product of the output voltage of that source and the current drawn from that
source. Note that by using I and V in this sense we remove the need to worry about directions and signs.
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Since the resistance of a component is defined by R = V/I we can rewrite Equation 9

electric power P = IV (Eqn 9)

in the following equivalent forms:

P = V12/R (10)

and P = I12R (11)

The powers of domestic electrical appliances are usually quoted in kilowatts (kW), e.g. a one-bar electric heater
is usually 11kW, and a typical kettle is 2.21kW. If Equation 9 is rearranged to give I = P/V, we can calculate the
current in an appliance and hence decide the value of the fuse to be fitted where the (UK) mains supply voltage
is 2401V. (A fuse is an electrical safety device designed to shut off current flow if that current exceeds a certain
fixed value.) The 11kW heater takes a current of about 41A  ☞  In an appliance such as a heater, the quoted
power (and hence the calculated current) are for the hot resistance wire. When the heater is first switched on it
will be cold and the resistance will be much smaller than when fully heated, so the fuse has to cope with an
initial surge of current which is greater than the value calculated. The practice is therefore to use a standard 13 1A
(rather than a 51A) fuse for such cases, otherwise the fuse would blow each time the heater was switched on.
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Electric supply companies bill customers for energy. We can, for example, calculate the contribution that using
the kettle for five minutes will make to our next bill. The rate at which the kettle transfers energy is 2.21kW or
2.22×2103

1J1s−1. In five minutes the total energy transferred by heating is 2.22×2103
1J1s−1

2×252×2601s,
 i.e. 6.62×2105

1J. In order to avoid dealing with such large numbers, the much larger commercial ‘unit’ of
electricity is used. This unit is the kilowatthour (kW1h). 11kW1h = 11kW2×211h = 103

1J1s–1
2×23.62×2103

1s
= 3.62×2106

1J. The price is quoted as so much per unit. Repeating the above calculation gives us the energy used
by the kettle as 2.21kW2×2(1/12)1h = 0.181kW1h, i.e. 0.18 units.

If, as in our example, energy is being transferred at a constant rate P, then the total energy transferred in a time t
is simply the product Pt.

If the power varies with time, however, then the calculation will need to take this into account and this will
generally require calculus. ☞
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Question T6

It takes 2.51s to start a car with an electric motor that draws 901A from its 121V battery.

(a) How much energy is drawn from the battery?

(b) The battery is recharged from the car’s 51W generator. How long will it take to recharge the battery?3❏

Question T7

At a particular time, a city consumes 2301MW of electrical power at a voltage of 1601kV. (It is transformed to a
much lower voltage before being distributed around the city!) The power lines connecting the power station to
the city have a total resistance of 7.61Ω.

(a) Find the power dissipated in the lines and express this as a percentage of the city’s power.

(b) How would the power dissipated in the lines change if the supply voltage to the city were doubled while
supplying the same power as before?3❏
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3 Circuit laws

A note on circuit conventions3The circuit components discussed in this module are mainly limited to d.c.
voltage generators (batteries, etc.), resistors and measuring instruments, joined by wires. We normally assume
that we can ignore any potential difference between the ends of a connecting wire. (In other words we make the
resistance of connections negligible compared with that of the components.) This is readily achieved in
laboratory experiments where typical voltage sources produce a few volts and components have resistances of
tens, hundreds or thousands of ohms. Copper wire of 11mm diameter has a resistance of about 2.21Ω per hundred
metres so the few centimetres we use to join our components together on the bench have very little
resistance.3❏
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Figure 93A circuit diagram illustrating
some conventional symbols.

Figure 9 illustrates some circuit diagram conventions that we will adopt
for the remainder of this module. The direction of a voltage is shown by
an arrow alongside the component with the arrowhead at the higher
voltage end. The direction of conventional (positive) current is shown
by the direction of arrows on connecting wires. The rectangular boxes
represent ohmic resistors (i.e. resistors that obey Ohm’s law). ☞
The open circle represents an ideal voltage generator (i.e. a device that
produces a constant voltage between its terminals regardless of what is
connected to it1—1see Subsection 4.3).

When assigning directions to the currents (I1, I2, I3, etc.) and the voltage
differences (V1, V2, V3, etc.) in Figure 9, or any similar figure, it is often
necessary to make the assignments on an arbitrary basis, and it is quite
possible that some of those assignments will be wrong. Fortunately, this
is not a major problem, since if such ‘mistakes’ are made it will
subsequently emerge that the currents or voltages involved will be
negative rather than positive quantities. Despite this, it’s still a good
idea to make the assignments as realistically as possible at the outset.
Starting at a voltage generator and remembering that (conventional) currents flow from high voltage to low
voltage will often give you a reasonable idea of the appropriate directions to choose.
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3.1 Linearity and superposition
The circuits of Figure 10 ☞  show batteries connected to an ohmic resistor. Each battery is represented
symbolically by a pair of parallel lines, the longer of which corresponds to the higher voltage terminal. If both
batteries are connected simultaneously as in (c) then the net voltage applied to the resistor is 51V and the net
current of 0.51A is the sum of the 0.31A and 0.21A of (a) and (b).

10 Ω3 V

Ia = 0.3 A

(a)

10 Ω2 V

Ib = 0.2 A

(b)

10 Ω

Ic = 0.5 A

(c)

3 V

2 V

Figure 103(a) A 31V battery connected to a 101Ω resistor. (b) A 2 1V battery connected to the resistor.
(c) Both batteries connected simultaneously across the resistor.
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Figure 113(a) For a linear (i.e. ohmic) device, the current when both batteries are present
is the sum of the currents when each battery is present on its own. (b) This result would no
longer apply if the resistor were replaced with a non-linear device.

This result is also shown
on the I–V characteristic of
Figure 11a. It is only
because the resistor is
ohmic (i.e. behaves
linearly) that the currents
generated by different
sources are additive
(taking account  of
directions). If the I – V
graph were not linear, then
as Figure 11b indicates,
the current when both
batteries are included
would not generally be the
sum of the separate
currents.
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The above example is generalized in the principle of superposition:

In a circuit made up of linear components and containing several voltage generators, the resultant current in,
or voltage across, any component will be the algebraic sum of those currents or voltages in or across that
component when each of the voltage generators is taken in turn, with all other voltage generators replaced
by short circuits.

The word algebraic is used here to mean giving the currents or voltages + or − signs to correspond to their
directions. Note, too, the use of the term short circuit, meaning a path of (effectively) zero resistance.



FLAP P4.1 DC circuits and currents
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

V3

V1

V0

V2

I3I2

I1

I4

R3R2

A

I

B

ED
C

G
FH

R1

Figure 123A circuit for analysis by
Kirchhoff’s laws.

3.2 Kirchhoff1’s laws
When analysing a circuit the usual aim is to obtain expressions for the
current and/or voltage and/or power in any component of that circuit.
Kirchhoff’s ☞   current and voltage laws of circuit behaviour are
fundamental in such analysis, although we do not always use them
explicitly we always rely on rules derived from them. In Subsection 3.3
and in Section 4 we will use Kirchhoff’s laws to obtain some useful
results about circuits. In this subsection each of the laws will be stated
and the statement will be followed by some explanatory comments.☞
Here is the first law:

Kirchhoff’s current law
The algebraic sum of the currents at a node is zero.

A node is a junction of connections to two or more components such as
the points A, B, C, D, etc. on Figure 12. The phrase algebraic sum
means ‘taking account of directions’; this is generally done by
associating a positive or negative sign with each current (I1, I2, etc.)
according to its assumed direction.
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Figure 123A circuit for analysis by
Kirchhoff’s laws.

In our case, we shall regard any current directed towards a particular
node as making a positive contribution at that node, and any current
directed away from the node as making a negative one. Thus, for the
three currents I1, I2 and I3 associated with node C in Figure 12 we
associate a + sign with I1 and − signs with I2 and I3, so Kirchhoff’s
current law takes the form

I1 − I2 − I3 = 0 ☞

The equivalent statement I1 = I22+2I3 gives an alternative form of the
law: The sum of the currents entering a node is equal to the sum of the
currents leaving the node.

Kirchhoff’s current law thus implies that, for a continuous circuit in the
steady state, there is no net build-up or disappearance of charge at any
point in the circuit. We can also apply the law to node G, where we get
I22+2I3 = I4 , but we have already seen that I22+2I3 = I1 , so we can
conclude that I1 = I4, thus confirming the continuity of current through
the voltage generator.



FLAP P4.1 DC circuits and currents
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

V3

V1

V0

V2

I3I2

I1

I4

R3R2

A

I

B

ED
C

G
FH

R1

Figure 123A circuit for analysis by
Kirchhoff’s laws.

Kirchhoff’s voltage law

The algebraic sum of the voltages across all components in a
closed loop of a circuit is zero.

Here we have taken component to mean any part of an electrical circuit,
e.g. resistor or voltage generator. A closed loop (sometimes called a
mesh ) refers to any path in a circuit which may be followed
continuously around to its starting point.

The circuit of Figure 12 has three closed loops (meshes): ABCDHGI,
ABCEFGI and DEFH. We have labelled the voltages across the
resistors in Figure 12 and added direction arrows to these voltages.
Once again, the law demands an algebraic sum, so we must again
associate signs with each voltage in any particular loop. To do this we
arbitrarily assign a positive direction for voltages to each loop, a + sign
is then associated with voltages that point in this direction and a − sign
with those that point in the opposite direction. ☞ For example, in the
loop ABCDHGI we may decide (arbitrarily) to call clockwise-directed
voltages positive, and anticlockwise ones negative.
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Figure 123A circuit for analysis by
Kirchhoff’s laws.

Then, proceeding from A we have: −V1 − V22+2V0 = 0,
 i.e. V12+2V2 = V0.

For the loop ABCEFGI, using the same convention for assigning signs:
−V1 − V32+2V0 = 0, i.e. V12+2V3 = V0.

For loop DEFH: −V32+2V2 = 0, i.e. V3 = V2. ☞

These equations lead to an alternative statement of Kirchoff’s voltage
law: The potential difference between two points joined by more than
one continuous path is independent of the particular path considered.

This is equivalent to saying that if we connect a voltmeter between two
points of a circuit then we will only get one reading of the voltage,
regardless of which particular path we are thinking of at the time1
—1which is indeed what happens!
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Figure 133See Question T8.

Question T8

Use Kirchhoff’s laws to find the currents in the
circuit shown in Figure 13.3❏
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Figure 123A circuit for analysis by
Kirchhoff’s laws.

In Figure 12, Kirchhoff’s laws can also be used to show how the
current is divided between the resistors R2 and R3. First, Ohm’s law
gives us V2 = I2R2 and V3 = I3R3 which, together with V2 = V3 from the
voltage law, gives I2R2 = I3R3. If this expression is rearranged, we get
I2/I3 = R3/R2, i.e. the ratio of currents is the reciprocal of the
corresponding ratio of resistances. Going a step further, if we use
I1 = I22+2I3 from the current law, and substitute for I3 since
(I3 = I2R2/R3) we obtain:

I1 = I2 + I2 R2

R3
= I2

R2 + R3

R3







A similar expression can be found for I3 in terms of I1, R2 and R3.
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If both of these are rearranged we get the so called current divider equations.

The current divider equations:

I2

I1
= R3

R2 + R3
(12a)

I3

I1
= R2

R2 + R3
(12b)



FLAP P4.1 DC circuits and currents
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

B
V0

R1

R3

VAY

VXA

VAB

R2

R4VXB

VBY

Y

X

I1

I3

I2

I4

(b)

A

3.3 Applying circuit laws: the Wheatstone bridge
In the 1840s, Charles Wheatstone ☞  described the bridge circuit,
composed of a voltage source and four resistors, which carries his name.
It is usually drawn in a diamond shape (Figure 14a) but we will use a
rectangular format (Figure 14b) which is easier to draw and to
appreciate. The Wheatstone bridge has been used since the days of its
invention for determining the value of an unknown resistance.

V0

R1

R3

R2

R4

A B

(a)

Figure 143The Wheatstone bridge circuit drawn in (a) the traditional diamond
pattern and (b) a rectangular pattern.
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The usual procedure is to use a balanced bridge, i.e. to adjust the values
of the resistances until there is a zero reading on a sensitive current
meter connected between A and B. Examining the conditions that bring
this about shows us how the value of an unknown resistance can be
measured. Since there is no current between A and B (Imeter = 0), the
current law tells us that I1 = I3, and I2 = I4. Also, since there is no current
there must be no potential difference between A and B: so VAB = 0. It
then follows from the voltage law that VXA = VXB and VAY = VBY.

V0

R1

R3

R2

R4

A B

(a)

Figure 143The Wheatstone bridge circuit drawn in (a) the traditional diamond pattern and (b) a rectangular pattern.
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✦ Use Ohm’s law to write down expressions for VAY and VBY and for VXA and VXB in terms of I1, I2, R1, R2, R3
and R4. Hence obtain, and equate, two different expressions for I2/I1.

Now suppose R4 is an unknown resistance, R1 and R2 have known values and R3 is a finely-adjustable known
resistance. By alterations to R3, the current in the meter can be reduced to zero and R4 found from Equation 13.

R1

R2
= R3

R4
(Eqn 13)3

Question T9

(a) Rearrange Equation 13 to make R4 the subject. (b) Calculate the value of R4 that would balance a bridge
circuit in which R1 = 5001Ω, R2 = 4701Ω and R3 = 3271Ω.3❏

Nowadays the bridge is widely used to monitor changes in the resistance of sensors such as strain gauges and
resistance thermometers. This requires an unbalanced bridge, which we will discuss in Subsection 4.4 after
some further techniques of circuit analysis have been introduced.



FLAP P4.1 DC circuits and currents
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

4 Equivalent circuit techniques
For any other than the simplest of circuits, the application of Kirchhoff’s laws may require the solution of a large
number of simultaneous equations. This is precisely the sort of task for which computers are eminently suitable.
However, for analysis ‘by hand’, there are other methods that provide useful short cuts, such as replacing a
complicated circuit by a simpler equivalent circuit which has similar properties. One important technique is to
replace several resistors by a single resistor, applying rules derived using Kirchhoff’s laws.
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Figure 15a3Three resistors connected
in series.

4.1 Resistors in series and parallel
The circuit in Figure 15a shows an ideal voltage source and three
resistors connected in series, i.e. joined sequentially like the links of a
chain. We now seek the value of a single equivalent resistance which,
when connected across the same voltage source, will draw the same
current from the source. It is clear from Kirchoff’s current law that the
current in each resistor is the same. In addition we can apply the voltage
law to get V0 = V12+2V22+2V3. Using Ohm’s law this becomes:

V0 = IR1 + IR2 + IR3 = I(R1 + R2 + R3)

If we had a circuit consisting of the battery and a single resistor Rseries
then the same current would be drawn from the battery if we made

Rseries = R1 + R2 + R3

This Rseries is equivalent (as far as the rest of the circuit is concerned) to
the three resistors R1, R2 and R3.
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Clearly this argument can be extended for any number of resistors and we could write the equivalent of N
resistors in series as

Rseries = Rj
j = 1

N

∑ resistors in series (14) ☞



FLAP P4.1 DC circuits and currents
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

V1

R1

R2

R3

V2

V3

I2

V0

I I

I3

I1

(b)

A B

Figure 15b3Three resistors connected
in parallel.

Figure 15b shows three resistors connected in parallel, i.e. forming three
different paths between the nodes A and B. If the current law is applied
at node A we have I = I12+2I22+2I3, while the voltage law gives V0 = V1 =
V2 = V3. If Ohm’s law is used and these two expressions are combined
we obtain

I = V1

R1
+ V2

R2
+ V3

R3
= V0

1
R1

+ 1
R2

+ 1
R3







If we had a single resistor which drew the same current and had a value
Rparallel then

I = V0
1

Rparallel








If these equations are compared we find

   
1

Rparallel
= 1

R1
+ 1

R2
+ 1

R3
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The above argument can be extended to N parallel resistors, for which

1
Rparallel

= 1
Rjj = 1

N

∑ resistors in parallel (15) ☞

A useful alternative expression for two resistors in parallel is:
1

Rparallel
= 1

R1
+ 1

R2
= R1 + R2

R1R2

Thus, for two resistors in parallel

Rparallel = R1R2

R1 + R2
(16) ☞

Note that Equation 16 cannot be extended to three or more resistors. Also note that the equivalent resistance of a
pair of resistors in parallel is always less than the resistance of either individual resistor.
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Figure 123A circuit for analysis by
Kirchhoff’s laws.

Question T10

Find the resistance equivalent to (a) 101Ω in parallel with 201Ω (b) three
51Ω resistors in parallel.3❏

The equivalent circuits for resistors are often helpful when we want to
find the current (or voltage or power) elsewhere in a circuit.

✦ Use the above techniques to find an expression for the current I1 in
Figure 12 in terms of R1, R2, R3 and V0.

Suppose we now want to extend the analysis of this circuit (Figure 12)
to find the currents I2 and I3 and the voltages V1, V2, V3. One way of
proceeding is as follows: if we know I1 we can use Ohm’s law to find
V1; if we know V0 and V1 we can then find V2 and V3 since Kirchhoff’s

voltage law tells us V2 = V3 = V0 − V1. Finally, if we know V2 and V3 we can use Ohm’s law twice to find I2 and
I3.



FLAP P4.1 DC circuits and currents
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

10 Ω

20 Ω

C

30 Ω

50 Ω 100 Ω

A

B D

X

Figure 163See Question T11.

Question T11

Find the total resistance between each of the following pairs of
terminals A and B, B and C, A and C of Figure 16.3❏
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4.2 Adapting ammeters and voltmeters
Ammeters and voltmeters are devices for measuring currents and potential differences, respectively.
The techniques developed in the preceding subsections can now be applied to ammeters and voltmeters to see
how a general meter may be adapted for different purposes. Many meters nowadays are digital instruments, but
analogue meters with needles and dials, usually based on a moving-coil galvanometer (MCG), ☞ are also
used. A so-called multimeter can act either as an ammeter or a voltmeter, and may also include a means of
measuring resistance.

Ideally, adding a meter to a circuit should not alter the currents and voltages in that circuit. To measure a current
in a loop, the loop must be broken and an ammeter connected in series with it so that all the current flows
through it. For the ammeter not to change the current significantly, its resistance must be negligible compared
with that of the rest of the loop. An ideal ammeter therefore has zero resistance.

To measure the voltage difference between two points in a circuit, a voltmeter is connected to those two points
so that it is in parallel with the circuit component(s). For a voltmeter not to affect the voltage in the circuit, its
resistance must be very large compared to that of the other component(s), so that no current flows through it. An
ideal voltmeter therefore has infinite resistance, but most voltmeters have to draw some current in order to
operate and therefore have a large but finite resistance. A digital voltmeter generally has a higher resistance than
a moving-coil instrument, typically 101MΩ.
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Figure 17a3A moving-coil galvanometer used with a shunt resistor to
make an ammeter.

Now let us examine how to convert an
MCG into an ammeter. Suppose our MCG
has a resistance of 1801Ω and produces a
full-scale deflection in response to a current
through it of 1001µA. Provided the
resistance of the rest of the circuit is much
larger than 1801Ω, the meter can be used to
measure currents up to 1001µA ☞.
A current larger than 1001µA would
damage the meter. However, we can use the
MCG in circuits with larger currents if we
connect a bypass or shunt resistor (Rsh) in
parallel with it, this is shown in
Figure 17a where we represent the real
MCG ☞ (of resistance 1801Ω) by an ideal
meter (of zero resistance) in series with a
resistor RM. Suppose we want a full-scale
deflection on the meter when a current of I
= 1.001A flows into the combination of
MCG and shunt resistor.

Mike Tinker
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We know that we need a current IM = 1001µA to flow through the meter, so we use the current divider equation
(Equation 12)

I2

I1
= R3

R2 + R3
(12a)

I3

I1
= R2

R2 + R3
(12b)

to find Rsh

IM = Rsh

RM + Rsh
I (17)

If we substitute I = 1.001A, IM = 1.002×210−14
1A and RM = 1801Ω into Equation 17 we find Rsh = 0.0181Ω.

 (Note that, since Rsh << RM, ☞ Equation 17 simplifies to Rsh ≈ RMIM/I.)
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Figure 17b3A moving-coil galvanometer used with a series resistor to
make a voltmeter.

The same MCG can be converted into a
voltmeter, but now we have to add a series
resistor (Rs) to the MCG (Figure 17b).
Suppose we want to produce a full-scale
deflection for a potential difference of 101V
across the combination of meter and
resistor: we need that potential difference to
produce a current of 1001µA. If Ohm’s law
is applied we obtain

V = I(Rs + RM) (18)

which for V = 101V and RM = 1801Ω, I = 1.002×2101−141A gives Rs = 9.982×210141Ω.

Question T12

An MCG has a resistance of 25001Ω, and a current of 11mA pro-duces a full-scale deflection. Find the values of
the shunt and series resistors, respectively, to convert it into (a) an ammeter to measure currents up to 101A and
(b) a voltmeter to measure voltages up to 301V.3❏
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4.3 Voltage generators
As the current drawn from a realistic voltage generator, such as a battery
is increased, the terminal p.d. (the voltage VT between the terminals of
the generator) decreases linearly, as shown in Figure 18. ☞
This behaviour is described empirically by the equation VT = V0 − kI. The
voltage V0, the value of VT when I = 0, is called the open circuit voltage
(the voltage when there is an open circuit, i.e. no connection1—
1effectively an infinite resistance1—1between the terminals). Sometimes
this is called the electromotive force (e.m.f.) of the generator ☞ .
The constant k is the gradient of the straight-line graph and, as all three
terms of the equation must have the units of voltage, k must have the
units of resistance. We emphasize this by rewriting k  as R0, so the
equation becomes

VT = V0 − IR0 (19)

Figure 183(a) The output voltage of a non-ideal voltage generator decreases as
the current increases. (b) The circuit used to obtain the results plotted in (a). (A
variable resistor is represented in a circuit diagram by a box with a diagonal
arrow through it.)

Mike Tinker
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Figure 193The equivalent circuit of a
voltage generator which has an
internal (or output) resistance, R0.

Now consider the behaviour of the circuit in Figure 19 which includes an
ideal voltage generator ☞  and a resistance R0 as well as a variable
resistance R. If the current I in this circuit is changed by varying R, then
the voltage V recorded by the (ideal) voltmeter is

V = V0 − IR0 (20) ☞

The right-hand sides of Equations 19 and 20 are identical, so the circuit of
Figure 19 behaves just like that of Figure 18b and we can therefore say it
is an equivalent circuit. The behaviour of our real generator is identical to
that of an ideal generator in series with a resistance given that:

1 The voltage of the equivalent ideal generator is equal to the open-
circuit voltage, V0 of the real generator.

2 The resistance R0 in series with the ideal generator is determined from the V–I relationship of the real
generator.

R0 is called the internal resistance, or output resistance, of the voltage generator.
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For the purposes of circuit analysis, any real voltage generator may be replaced by an ideal voltage generator in
series with an output resistance. The output resistance of a generator may be ignored if it is negligible in
comparison with the resistance of the circuit to which it is connected, since VT is then little different from V0.

Question T13

Find the open circuit voltage and internal resistance of a battery the terminal p.d. of which is 91V when it
supplies 11A, and 61V when it supplies 41A.3❏
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Figure 203Thévenin’s theorem gives a simple equivalent circuit for any circuit
composed of resistors and voltage generators, between two terminals.

4.4 Thévenin’s theorem
You have seen how to replace
combinations of resistors with a
single resistor, and a real
voltage generator by an ideal
generator in series with a
resistor. These are just two
examples of a much more
general technique that can be
applied to any circuit consisting
of resistors and voltage
generators that supplies current to an external resistor (usually called the load resistor). This technique,
illustrated in Figure 20, is based on Thévenin’s theorem ☞ which may be expressed thus:

Thévenin’s theorem: For the purpose of calculating the current and voltage in a load resistor RL, any two-
terminal network of voltage generators and resistors can be replaced by an equivalent circuit consisting of a
single ideal voltage generator in series with a single resistor.
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The properties of the two parts of the equivalent circuit are found by applying two rules:

1 The voltage of the ideal voltage generator (the Thévenin voltage, VTh) is the open-circuit voltage (i.e. when
RL = ∞) between the two terminals.

2 The value of the series resistance (the Thévenin resistance, RTh) is the resistance between the two terminals
when all voltage generators in the circuit are replaced by their output resistances (or by short circuits if the
output resistances are negligible).
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As an example, we will apply Thévenin’s theorem to a voltage divider
circuit (Figure 21). This important circuit is used when we have a
voltage supply V0 which is too large for the purpose we have in mind,
so we wish to reduce it. This is accomplished by connecting two
resistors R1 and R2 in series with the supply (assumed here to have
negligible internal resistance) and then using the reduced voltage
across one of the resistors (R2). Using Rule 1, V Th is obtained by
removing RL, finding the current through R1 and R2 (these are in series
so this current is V0/(R12+2R2)) and then using Ohm’s law to find the
voltage across R2.

Figure 213Thévenin’s theorem applied to a voltage divider circuit.
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 Thus, the open circuit voltage between A and B from a voltage divider circuit is given by:

The voltage divider equation:

VTh = R2

R1 + R2
V0 (21)

From Rule 2,

RTh is the resistance between terminals A and B when the voltage generator is replaced by a short circuit.
But be careful! R1 and R2 are connected in series with the voltage generator, but when that generator is replaced
by a short circuit each resistor is connected directly between A and B so they are actually in parallel with A and
B, ☞ thus,

RTh = R1R2

R1 + R2

When a load resistance RL is connected between terminals A and B of the voltage divider circuit the voltage
between A and B will change, as you can confirm by answering the next question.
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Question T14

Find the voltage across RL for the circuit of Figure 21. Express your
answer in terms of V0, R1, R2 and RL.☞3❏

Figure 213Thévenin’s theorem applied to a voltage divider circuit.
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Figure 14b3The Wheatstone bridge
circuit drawn in  a rectangular pattern.

For a further example of Thévenin’s theorem we will return to the
(Wheatstone) bridge circuit of Subsection 3.3. As stated in the
introduction to this module, many physical quantities are nowadays
measured electrically using sensors. For example, strain gauges ☞
exploit the change in resistance with length (Subsection 2.4) to measure
the strains in engineering structures, and resistance thermometers use the
dependence of resistance on temperature (Subsection 2.5) to measure
temperature changes. The Wheatstone bridge is used to monitor such
changes in resistance.

If one of the resistors in the bridge (Figure 14b) changes with time, then
VAB (which we will call the output voltage) will also change and we will
have an unbalanced bridge1—1there will be a p.d., and hence a current,
between A and B. Now, VAB is just the difference between the potentials
at A and B, both of which can be measured with respect to X, so VAB =
VXB − VXA.
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Figure 14b3The Wheatstone bridge
circuit drawn in a rectangular pattern.

By comparing the voltage
divider circuit of Figure 21
with the bridge circuit of
Figure 14 you should be able
to convince yourself that

VXA = 
V0 R3

R1 + R3

3and similarly,

VXB = 
V0 R4

R2 + R4

Thus VAB = VXB − VXA

= R4

R2 + R4

− R3

R1 + R3







V0

(22)  ☞

Figure 213Thévenin’s theorem
applied to a voltage divider circuit.
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Figure 223An unbalanced Wheatstone
bridge.

The situation becomes slightly simpler if we consider the circuit of
Figure 22 where all resistors have the same value and the bridge is
initially balanced. If one of those resistors (the one at the bottom right,
say) increases its value by a small amount ∆R the bridge will become
unbalanced, and there will be a non-zero output voltage:

VAB = R + ∆R

R + R + ∆R
− R

R + R




 V0 = R + ∆R

2 R + ∆R
− 1

2




 V0

i.e. VAB = ∆R

2 2 R + ∆R( )
V0 (23)

If the change ∆R is much less than 2R then Equation 23 gives

VAB ≈ ∆R

4 R
V0 , i.e. VAB ∝  ∆R

If the output voltage VAB is connected to a chart recorder or to a
computer, then we can obtain an automated record of the changes in
resistance and hence of whatever causes them.
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5 Closing items

5.1 Module summary
1 The electric current I = dq/dt in a wire describes the rate at which net charge is transferred across a plane

perpendicular to the axis of that wire. Current in a metal is due to the flow of free electrons. The
conventional direction of current is that in which positive charge would flow.

2 Free charged particles move so as to minimize the electric potential energy Eel of a system. The difference
in electric potential energy per unit charge between two points is called the (electric) potential difference, or
voltage difference, between those points, so ∆V  = ∆Eel/q. A point connected directly to the Earth, or to the
negative terminal of a battery is usually chosen to be a point of zero electric potential energy. The electric
potential or voltage at any other point is then defined as the electric potential difference between that point
and the chosen point of zero electric potential.

3 Ohmic resistors are linear components that obey Ohm’s law V = IR. Where V is a potential difference
measured in volts (V), I is a current measured in amps (A) and R is a resistance measured in ohms (Ω).
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4 The resistance of a sample length l and cross-sectional area A is given by R = ρl/A where ρ is the resistivity
of the material. Conductors have low resistivity, insulators have high resistivity and semiconductors have
intermediate resistivity. Resistivity tends to increase with temperature, though some materials, particularly
semiconductors, show the opposite behaviour.

5 When a steady current I flows between points separated by a potential difference V the rate of energy
transfer is the power P = IV.

6 For linear components, the principle of superposition allows the analysis of circuits with more than one
voltage source.

7 The usual aim of circuit analysis is the evaluation of the current, voltage and power in any component of a
circuit. Kirchhoff’s current law (the algebraic sum of the currents at a node is zero) and Kirchhoff’s voltage
law (the algebraic sum of the voltages across all components in a closed loop is zero) underlie all circuit
analysis.

8 Analysis is often helped by replacing part of a circuit with a simpler equivalent circuit as described by
Thévenin’s theorem.
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9 Equivalent circuit techniques include replacing resistors in series by a resistance Rseries = Rj
j = 1

N

∑ , replacing

resistors in parallel by a resistance 1/Rparallel = 1 Rj
j = 1

N

∑ , replacing a voltage source by an ideal voltage

generator plus an output resistance, and adding either a shunt or a series resistor to a galvanometer to
produce a combination equivalent to an ammeter or voltmeter (respectively) with a desired range.

10 Results obtained from Kirchoff’s laws and Thévenin’s theorem include: the current divider equations for
resistors in parallel (Equation 12); the voltage divider equation for resistors in series (Equation 21); and the
condition for a Wheatstone bridge circuit to be balanced (Equation 13).
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5.2 Achievements
Having completed this module, you should be able to:

A1 Define the terms that are emboldened and flagged in the margins of the module.

A2 Relate the flow-rate of charged particles to a current.

A3 Calculate the resistances of specimens of known dimensions and resistivity or conductivity.

A4 Apply Ohm’s law to the currents and voltages in resistors.

A5 Make calculations relating resistance and temperature.

A6 Distinguish the resistive behaviour of metals when in the normal and superconducting states and appreciate
the importance of high Tc superconducting materials.

A7 Carry out simple calculations involving current, voltage, power and the release of electric potential energy.

A8 Explain how superposition is a consequence of linearity and apply the principle of superposition in the
analysis of circuits containing several voltage sources.

A9 Apply Kirchhoff’s current and voltage laws to the analysis of simple circuits.

A10 Determine the conditions for zero current output from a balanced Wheatstone bridge.
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A11 Find equivalent circuits for resistors in series and parallel and calculate the resistance between pairs of
terminals in complicated resistive circuits.

A12 Calculate the values of shunt and series resistors to convert moving-coil galvanometers into ammeters and
voltmeters with specified ranges.

A13 Use the equivalent circuit for a voltage generator with an output resistance and appreciate when it is
possible to ignore the presence of such an output resistance.

A14 Use Thévenin’s theorem to calculate the Thévenin equivalent voltage and resistance and find simplified
equivalents of circuits.

Study comment  You may now wish to take the Exit test for this module which tests these Achievements.
If you prefer to study the module further before taking this test then return to the Module contents  to review some of the
topics.
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5.3 Exit test

Study comment  Having completed this module, you should be able to answer the following questions each of which tests
one or more of the Achievements.

Question E1

(A3, A4 and A7)3The resistive element (a coil of wire) of an electric heater dissipates energy at the rate of 11kW
when operated at 2401V. By how much would the length of wire have to be changed to produce the same power
if the supply voltage were 1101V? (Ignore the fact that the operating temperatures may be different.)

Question E2

(A4 and A5)3A 1001W bulb operates at 2401V and the filament reaches a temperature of 22001°C. The filament
metal has an average temperature coefficient of resistance of 4.72×210−3

1(°C)−1 over the range of 01–122001°C
 (and you can take the variation of resistance with temperature to be linear over this range).

(a) Find the resistance of the filament at 22001°C and at 201°C.

(b) Hence find the current when the bulb is first switched on.
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Figure 233See Question E3.

Question E3

(A9)3Use Kirchhoff’s laws to find the currents
in Figure 23.

Question E4

(A7 and A11)3A resistor R is connected to a supply voltage V. Find the power dissipated in R and compare it
with that dissipated when R is replaced by two resistors, each of resistance R, connected (a) in series and
(b) in parallel. Assume the resistances do not change with temperature.
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Figure 243See Question E5.

Question E5

(A5 and A10)3Figure 24 shows a balanced Wheatstone bridge circuit
in which R1 = 12.51Ω, R2 = 1.601Ω and R3 = 9.201Ω.

(a) Find the value of R4.

(b) R4 is a length 2.701m of a material sample with a cross-sectional
area of 1.80 × 10−7

1m2. Calculate the resistivity of the material.
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Figure 253See Question E6.

Question E6

(A14)3(a) Find the Thévenin equivalent of the
circuit of Figure 25 between the terminals A and
B.

(b) Find the values of the Thévenin equivalent
voltage and resistance for V0 = 121V, R1 = 2001Ω,
R2 = 2001Ω, R3 = 11kΩ and R4 = 8001Ω.
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Study comment  This is the final Exit test question. When you have completed the Exit test go back to Subsection 1.2 and
try the Fast track questions if you have not already done so.

If you have completed both the Fast track questions and the Exit test, then you have finished the module and may leave it
here.
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