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1 Opening items

1.1 Module introduction
Oscillations occur in many branches of physics, but in this module we will examine just two: mechanical
systems and electrical circuits. At first sight a mass oscillating on a spring and the tuning circuit of a radio
appear to have little in common; but the mathematics that models them is almost indistinguishable, and both can
be described in terms of a second-order differential equation with constant coefficients. In Section 2 of this
module we examine the way in which such equations arise and consider some of the oscillatory phenomena their
solutions represent. In particular we look at simple, damped and driven oscillations, and we pay particular
attention to the way in which solutions of the latter kind typically consist of a steady state term that oscillates
and gradually becomes dominant, and a transient term that may be important initially but gradually dies away
and eventually becomes insignificant. In some circumstances the amplitude of these dominant driven oscillations
can become very large; this is the phenomenon of resonance which we consider in Subsection 2.7.
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Very often it is only the steady state behaviour of the system that is of interest, and we may then assume that the
transient term is zero. In such cases we are able to abandon the differential equation approach, and use a much
simpler method based on complex numbers. This technique is particularly relevant to the analysis of alternating
currents in electrical circuits, and in Section 3 we use it to develop a complex version of Ohm’s law. We will see
that the current and the applied voltage oscillate at the same rate, but they do not necessarily do so in phase due
to the complex impedance of the circuit concerned. In Subsection 3.3 we use complex methods to calculate the
power dissipated in an electrical circuit, and in the final section we examine how complex numbers may be used
to combine simple harmonic motions.

Study comment Having read the introduction you may feel that you are already familiar with the material covered by this
module and that you do not need to study it. If so, try the Fast track questions given in Subsection 1.2.  If not, proceed
directly to Ready to study? in Subsection 1.3.
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1.2 Fast track questions

Study comment Can you answer the following Fast track questions?. If you answer the questions successfully you need
only glance through the module before looking at the Module summary (Subsection 5.1) and the Achievements  listed in
Subsection 5.2. If you are sure that you can meet each of these achievements, try the Exit test in Subsection 5.3. If you have
difficulty with only one or two of the questions you should follow the guidance given in the answers and read the relevant
parts of the module. However, if you have difficulty with more than two of the Exit questions you are strongly advised to
study the whole module.

Question F1

Write down the differential equation for the current I(t) in a circuit containing a resistance R, a capacitance C
and an inductance L in series, that is driven by an applied voltage V01sin1(Ω1t). What is the general form of the
steady state solution to this equation?
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Question F2

If   Z = R + iω L + 1 (iω C)  (where R, ω, L and C are all real and positive) find expressions for Re(Z), Im(Z) and
|1Z1|. For what value of ω does |1Z1| take its least value?

Write down the principal values of the arguments of R, ZL and ZC, where

Z1L = iω1L4and4  ZC = 1 (iω C)

and illustrate these complex numbers on an Argand diagram.

Question F3

An inductance of 3.001H and a capacitance 0.101F are connected in parallel, and this combination is then
connected in series with a resistance of 5.001Ω. Find the current that passes through the resistor when a voltage
V(t) = a1cos1(Ωt), where a = 4.001V and Ω = 3.001Hz, is applied to the circuit.
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Study comment Having seen the Fast track questions  you may feel that it would be wiser to follow the normal route
through the module and to proceed directly to Ready to study? in Subsection 1.3.

Alternatively, you may still be sufficiently comfortable with the material covered by the module to proceed directly to the
Closing items.



FLAP P5.5 The mathematics of oscillations
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

1.3 Ready to study?

Study comment This module is intended to form a link between the maths and physics strands of FLAP. It therefore makes
much heavier mathematical demands than most modules, though it assumes less knowledge of physics. To begin the study of
this module you will need to be familiar with the solution of second-order differential equations with constant coefficients
(though we provide a brief review of this topic in Subsection 2.3), and you should also know how such equations arise from
Newton’s second law of motion. You should be able to manipulate trigonometric identities. You should also be familiar with
the Cartesian coordinate system, complex numbers, including their exponential representation (z = reiθ), the Argand diagram
and the real part, imaginary part, modulus argument and complex conjugate of a complex number (although we provide you
with a short summary of the subject in Subsection 3.1). You should also be able to differentiate and integrate standard
functions such as sin1(x0), cos1(x0) and exp1(x0). A familiarity with geometric progressions would also be useful, although not
essential. It would be helpful if you have seen how oscillatory systems arise in physics, but we assume no prior knowledge in
this area. If you are unfamiliar with any of these topics you can review them by referring to the Glossary, which will indicate
where in FLAP they are developed. The following Ready to study questions will help you to establish whether you need to
review some of the above topics before embarking on this module.
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Question R1

Sketch the graph of y = 31sin1(ω1t + δ1) for

(a) ω = 21s−1 and δ = 0, (b) ω = 21s−1 and δ = −π/2.

How would the first graph you drew change if

(c) ω = 21s−1 and δ = −4, (d) ω = 21s−1 and δ = 4.

(e) Describe (without drawing a diagram) the graph of y = sin1(ω1t + π/2).

Question R2

Calculate the value of φ given that

cos φ = 2

22 + 32
 and sin φ = −3

22 + 32
☞

Use the trigonometric identity cos(A + B) = cos A cos B − sin Asin B  to express 2 1cos1(ω1t) + 31sin1(ω1t) in the
form R1cos1(ω1t + φ).
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Question R3

Solve the quadratic equation h2 + 5h + 6 = 0.

Question R4

If z is defined by z = 4e5i1π0/04, what are the principal values of arg(z), |1z1|, Re(z) and Im(z)?

If you are unsure about any of these terms consult complex numbers in the Glossary.

Question R5

(Optional) What is the sum of the geometric series

1 + r + r02 + r3 + … + r1n−1

What is the sum for the particular case of r = i (where i12 = −1) and n = 9?

Mike Tinker
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Figure 14The vibrations
of a mechanical system.

2 Oscillations and differential equations

2.1 Introducing mechanical and electrical oscillations
Figure 1 shows a small body of mass m  held between two stretched springs on a
smooth horizontal table. Under the influence of the springs, the body is able to move
to and fro along a line that we will take to be the x-axis of a system of Cartesian
coordinates.

The equilibrium position of the body will be taken to be the point x = 0, so the
position coordinate of the body at any time t determines its displacement from
equilibrium at that time.

If the body is released from rest at a point slightly to the right of its equilibrium
position at some initial time t = 0 (diagram A), it will subsequently oscillate back and
forth about its equilibrium position, as indicated in diagrams B, C, D and E.

As a result, the instantaneous position of the body will be a function of time and can
be denoted by x(t). The dashed line in Figure 1 is a graphical representation of this
function, although it would be more natural for us to draw the graph of x(t) with the t-
axis horizontal and the x-axis vertical,
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Figure 2a4Time–displacement graph
for the system shown in Figure 1.

as in Figure 2a (with a suitably scaled t-axis to make the figure a
manageable size). In the absence of dissipative effects, such as friction or
air resistance, the total energy (kinetic plus potential) of the oscillator
will be constant, and the displacement–time graph of
Figure 2a will be sinusoidal (i.e. of the same general shape as the graph
of a sine or cosine function). A displacement–time graph of this kind is
characteristic of the particular kind of motion known as
simple harmonic motion (SHM) which occurs in many branches of
physics and engineering. The function whose graph is shown in
Figure 2a may be represented algebraically by an expression of the form

x(t) = A01sin1(ω0t + π/2)

and is a special case of the class of functions that provide the most general mathematical description of simple
harmonic motion

x(t) = A01sin1(ω000t + φ) (1) ☞

where A0, ω0 and φ are constants that characterize the motion and are, respectively, referred to as the amplitude,
the angular frequency and the phase constant (or initial phase) of the oscillation. The amplitude is equal to
the magnitude of the maximum displacement from equilibrium that occurs during each cycle of oscillation.
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The angular frequency is related to the period T (i.e. the time required for one complete oscillation such as that
from A to E in Figure 1) and to the frequency f by the relation

ω0 = 2π/T = 2πf

Thus the frequency (1f = 1/T) is the number of oscillations per second, and the angular frequency is just 2π times
that value. The phase constant determines the value of x at t = 0, since x(0) = A01sin1(φ). Note that the alternative
name for φ, the initial phase, arises because the quantity (ω0t + φ) which determines the stage that the oscillator
has reached in its cycle at any time t is called the phase, and φ is simply the value of the phase at t = 0.
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Figure 2b shows the effect of changing the initial phase of an oscillator. The
equation describing the dashed line was given above as
x(t) = A01sin1(ω0t + π/2), so it corresponds to a phase constant φ = π/2. This
may be contrasted with the equation describing the solid curve, which may
be written

x(t) = A1sin1(ω1t + π/2 − ω0t0)

and which corresponds to a phase constant φ = π/2 − ω0t0. The quantity t0
indicates the extent to which the behaviour of the oscillator represented by
the solid curve lags behind that represented by the dashed curve. We can
therefore say that there is a phase difference between the two oscillators, and
that the former (represented by the solid curve) lags the latter (represented by
the dashed curve) by ω0t0.
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Figure 2c4Effect of damping on the
time–displacement graph for the system
shown in Figure 1.

In practice, an oscillating system of the kind shown in Figure 1 would be
subject to friction and other dissipative effects and would lose energy to
its environment. As a result of this energy transfer, the maximum
displacement attained during each oscillation generally tends to decrease
with time, resulting in the sort of damped oscillations indicated in
Figure 2c. Provided the damping is sufficiently light it is possible to
describe this kind of oscillation in a similar way to the simple harmonic
oscillation described above. Of course, the description is not exactly the
same; the damping generally tends to reduce the angular frequency from
ω0 to some lower value ω, and causes the amplitude to become a
(decreasing) function of time A(t), but apart from these changes we can
often describe the damped oscillations by a function of the form

x(t) = A(t)1sin1(ω1t + φ) (2)
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Now consider the system shown in Figure 3a, in which a body of mass m is
attached to one end of a horizontal spring, the other end of which is attached
to a fixed point P. The body can slide back and forth along a straight line,
which we will again take to be the x-axis, but this time it is subject to an
externally imposed force (acting along the x-axis) in addition to the force due
to the spring and any dissipative force that may act. In this situation the
externally imposed force is called a driving force and the oscillations that it
helps to produce and sustain in the oscillator are called forced or driven
oscillations. If the driving force varies sinusoidally with time, at angular
frequency Ω , ☞  so that it may be described by an expression of the form
F01sin1(Ω1t), we will eventually find that the motion of the oscillating body
under the influence of the driving force is described by

x(t) = A1sin1(Ω1t − δ1) (3) ☞

where A and δ are constants whose values depend on the angular frequency of the driving force, Ω, and the
characteristics of the oscillator, but are independent of time. The steady nature of the eventual motion shows that
in this case work done by the driving force is somehow compensating the oscillator for the energy it loses due to
dissipative effects.

✦ What physical interpretation can you give to the parameters A and δ that appear in Equation 3?
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Oscillations, whether simple, damped or driven are not confined to mechanical systems. All sorts of physical
systems exhibit oscillations. Temperatures may oscillate from day to day or season to season; concentrations of
different chemicals may rise and fall in oscillating chemical reactions; electric charges may oscillate back and
forth in appropriately constructed electrical circuits; and so on. The properties of electrical oscillations are
particularly important and provide interesting analogies with mechanical oscillations. We will now briefly
describe some of the situations in which electrical oscillations arise, and then investigate the reasons why such
apparently different systems should exhibit such closely similar behaviour.
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Figure 3b4A simple LCR circuit
containing a resistor, a capacitor and an
inductor connected in series. At the
instant shown the current is increasing
in the direction shown and the
directions (polarity) of the voltages are
shown by arrows.

An electric circuit is a closed path around which electric charge may
flow. A typical circuit, such as that of Figure 3b, contains a number of
electrical components that assist or retard the flow of charge and thereby
give the circuit its particular characteristics. In order for the flow of
charge to occur at all there must generally be a potential difference
between one part of the circuit and another; this is measured in volts (V,
where 11V = 11J1C−1) and is often referred to as a voltage. It might be
supplied by a battery, but in the case of Figure 3b there is a
voltage generator, shown by the symbol at the top of the diagram, which
produces a time dependent potential difference V(t) between its terminals.
The instantaneous rate of flow of charge at any point in the circuit
constitutes the instantaneous current I(t) at that point, and may be
measured in amperes (A, where 11A = 11C1s−1). The conventional current
direction is taken to be that of positive charge flow. The rest of the circuit
shown in Figure 3b consists of a resistor (shown as the rectangle), a
capacitor (shown as parallel bars) and an inductor (shown as the coil),
connected in series, so that the same current flows through each
component. Such circuits are called series LCR circuits.
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A resistor is a component that dissipates energy. When there is a potential difference VR across a resistor, a
current will flow through it. The current and the voltage will be related by Ohm’s law

VR (t) = I(t)R (4)

where R is a constant, called the resistance of the resistor, which may be measured in ohms (Ω, where
11Ω = 11V1A−1). ☞ The energy dissipated per second (i.e. the power dissipated) when a current I flows through a
resistor of resistance R is

P = I02R = VR
2/R = IVR (5)

A capacitor is a device for storing electrical charge (and thereby storing energy in the associated electric field).
The simplest such device consists of a pair of parallel metal plates placed a short distance from one another and
the symbol used to represent the capacitor reflects this. When charged, these plates carry charges of equal
magnitude but opposite sign, +q and −q. The charge q is measured in coulomb (C, where 11C = 11A1s), and is
related to the voltage VC across a capacitor by the relation

VC (t) = q(t)
C

(6)

where the constant C that characterizes the capacitor is called its capacitance and is measured in farad (F, where
11F = 11A1s1V−1).
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An inductor is another device that can be used to store energy, in the
magnetic field produced when a current flows through it. In the case of an
inductor, the instantaneous voltage across the inductor is proportional to
the rate of change of the instantaneous current through the inductor,
hence

VL (t) = L
dI(t)

dt
(7)

where the constant L  that characterizes the inductor is called its
inductance and is measured in henry (H, where 11H = 11V1s1A−1).
The direction or polarity of the induced voltage is always such as to
oppose the change which causes it1—1this is known as Lenz’s law.

The quantities VR, VC, VL that have been introduced above have polarities
and so may each be positive or negative. We must ensure that we
understand the significance of the signs of these quantities. Figure 3b
shows the situation at the instant where the capacitor charge is increasing
on the upper plate and VC is growing with the polarity shown. We are
also illustrating the case where the current is increasing in the direction
shown, so Lenz’s law gives the polarity of VL as being opposite to the
increasing current direction.



FLAP P5.5 The mathematics of oscillations
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

R

~

C

(b)

V(t)

L

VC(t)VR(t)

I(t)

VL(t)

Figure 3b4A simple LCR circuit
containing a resistor, a capacitor and an
inductor connected in series. At the
instant shown the current is increasing
in the direction shown and the
directions (polarity) of the voltages are
shown by arrows.

The voltage VR has a polarity opposite to the direction of the current.
Each of these instantaneous voltages and that of the generator are
conveniently shown by arrows, with the arrows pointing in the direction
of increasing positive voltage as shown. A positive value for the voltage
across the capacitor implies that the upper plate is at a higher voltage
than the lower plate and a positive  value for VL and VR implies that in
each case the end nearer to the generator is positive.

If we let q represent the instantaneous charge on the upper plate of the
capacitor, then q will be positive when the capacitor voltage is positive.
Moreover, if the instantaneous current is positive, then positive charge
will be flowing onto the upper plate of the capacitor and q will be
increasing, this tells us nothing about the sign of q but it does ensure that

I = dq

dt
(8)
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As you can see from the above discussion, the circuit shown in
Figure 3b will be characterized by the relevant values of R, C and L.
Given these three values and the specific form of the externally supplied
voltage V(t), it is possible to determine the current I(t) that flows through
the circuit, and the associated charge q(t) on the upper plate of the
capacitor. Interestingly the circuit turns out to be an electrical analogue
of the driven mechanical oscillator shown in Figure 3a. In particular, if
the external voltage is of the form V(t) = V01sin1(Ω1t), then eventually,
after any transient currents have died away:

q(t) = A1sin1(Ω1t − δ1) (9)

and, consequently I(t) = dq

dt
= AΩ cos(Ω t − δ ) (10)

Figure 34(a) A mass subject to restoring, damping and driving forces.
(b) A simple LCR circuit containing a resistor, a capacitor and an inductor
connected in series. At the instant shown the current is increasing in the direction
shown and the directions (polarity) of the voltages are shown by arrows.
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If you compare Equation 9 with Equation 3

q(t) = A1sin1(Ω1t − δ1) (Eqn 9)

x(t) = A1sin1(Ω1t − δ1) (Eqn 3)

you will see that they are both of the same form. It is in this sense that the charge oscillations in the series LCR
circuit driven by an externally supplied sinusoidal voltage may be said to be analogous to the displacement
oscillations of the mechanical oscillator driven by an externally supplied sinusoidal force.

In the next subsection you will see why these two very different physical systems give rise to essentially
identical oscillatory phenomena. The essential point is that the underlying physics of both systems is described
by very similar equations.
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2.2 Mathematical models of mechanical and electrical oscillators
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Figure 3a4A mass subject to
restoring, damping and driving
forces.

A driven mechanical oscillator

The oscillating body in Figure 3a is subject to three forces:

1 A restoring force F1x due to the spring that tends to return the body to its
equilibrium position. This will be taken to be

F1x(t) = −kx(t) (11a)

where k is the positive spring constant that characterizes the spring.

2 A damping force F2x, due to friction and air resistance, that opposes the
motion of the body. We will assume that the magnitude of this force is
proportional to the instantaneous velocity of the sliding body, so that

F2 x (t) = −b
dx(t)

dt
(11b)

where b is a positive constant that characterizes the dissipative forces.
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3 A driving force F3x provided by an external agency. We will assume that
this force varies with time in a periodic way, and has the relatively simple
form

F3x(t) = F01sin1(Ω1t) (11c)

where F0 is the maximum magnitude that the driving force attains, and Ω
is the angular frequency of the driving force. Note that the angular
frequency Ω is externally imposed and is not necessarily related in any
way to the natural  frequency of the system in
Figure 3a.

Using Newton’s second law of motion we can therefore say that the sliding
body must obey an equation of motion of the form

m
d2 x(t)

dt2
= F1x (t) + F2 x (t) + F3x (t)

so, in this case m
d2 x(t)

dt2
= −kx(t) − b

dx(t)
dt

+ F0 sin (Ω t) (12)
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which can be rearranged to isolate the time-dependent driving term as follows:

m
d2 x(t)

dt2
+ b

dx(t)
dt

+ kx(t) = F0 sin (Ω t) (13)

This is known as the equation of motion of a harmonically driven linearly damped oscillator. The function
x(t) = A1sin1(Ω1t − δ01) that we introduced in Subsection 2.1 (Equation 3) to describe the steady state behaviour of
the driven oscillator is a solution of this equation, provided we choose A  and δ appropriately, as we will
demonstrate in the next subsection.
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Figure 3b4A simple LCR circuit
containing a resistor, a capacitor and an
inductor connected in series. At the
instant shown the current is increasing
in the direction shown and the
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shown by arrows.

A series LCR circuit
In order to determine the differential equation that describes the
behaviour of the series LCR circuit of Figure 3b we need to introduce
two basic principles of circuit analysis (based on Kirchhoff’s laws):

1 In a series circuit the instantaneous current I(t) through each
component is the same. The physical basis for this is the principle of
the conservation of electric charge.

2 In a series circuit the sum of the instantaneous voltages across each
passive component ☞  is equal to the externally supplied voltage
V(t). The physical basis for this is the principle of the conservation of
energy.
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Now, we already know from Equations 4, 6 and 7 that

VR(t) = I(t)R (Eqn 4)

VC (t) = q(t)
C

(Eqn 6)

VL (t) = L
dI(t)

dt
(Eqn 7)

So we can use the second of the two principles given above (conservation of energy.) to write

V(t) = VR(t) + VC(t) + VL(t)

Using the first principle (conservation of electric charge.), together with Equations 4, 6 and 7, this gives us

 V(t) = RI(t) + q(t)
C

+ L
dI(t)

dt
(14)
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However, we also know that the current in the circuit is given by the rate of change of the charge q on the upper
plate of the capacitor, so we can write

I(t) = dq(t)
dt

(Eqn 8)

and hence
dI(t)

dt
= d2q(t)

dt2
(15)

Substituting Equations 8 and 15 into Equation 14

 V(t) = RI(t) + q(t)
C

+ L
dI(t)

dt
(Eqn 14)

we see that

V(t) = R
dq(t)

dt
+ 1

C
q(t) + L

d2q(t)
dt2
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which may be rearranged to give

L
d2q(t)

dt2
+ R

dq(t)
dt

+ 1
C

q(t) = V(t) (16)

Finally, substituting the relevant expression for V(t) we obtain

L
d2q(t)

dt2
+ R

dq(t)
dt

+ 1
C

q(t) = V0 sin (Ω t) (17)

Now, if you compare Equations 13 and 17

m
d2 x(t)

dt2
+ b

dx(t)
dt

+ kx(t) = F0 sin (Ω t) (Eqn 13)

you will see that they have the same form. One may be obtained from the other by making the following
substitutions:

q ⇔ x L ⇔ m ☞

R ⇔ b 1/C ⇔ k V0 ⇔ F0
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Note that we are not claiming some sort of mystical link between charge and displacement, or inductance and
mass, but simply drawing attention to the fact that the two very different physical systems can both be described
by similar equations. It is the mathematical model that is the same in both cases, not the system it is
representing.

Equations 13 and 17

m
d2 x(t)

dt2
+ b

dx(t)
dt

+ kx(t) = F0 sin (Ω t) (Eqn 13)

L
d2q(t)

dt2
+ R

dq(t)
dt

+ 1
C

q(t) = V0 sin (Ω t) (Eqn 17)

are examples (essentially the same example) of second-order differential equations with constant coefficients.
(From a mathematical point of view they are also linear and inhomogeneous). Solving such equations is an
inherently mathematical process, but it is of great interest to physicists since the possible solutions include the
various forms of harmonic motion that were described in Subsection 2.1.

Mike Tinker
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✦ By differentiating Equation 16,

L
d2q(t)

dt2
+ R

dq(t)
dt

+ 1
C

q(t) = V(t) (Eqn 16)

with respect to time, show that the instantaneous current in a series LCR circuit obeys a differential equation
similar to that satisfied by the charge q(t).
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2.3 Second-order differential equations1—1a brief review
This subsection describes the mathematical principles involved in solving second-order differential equations
with constant coefficients. This topic is discussed from the same point of view, but in greater detail, in the maths
strand of FLAP.

The general linear second-order differential equation with constant coefficients is of the form

a
d2 x(t)

dt2
+ b

dx(t)
dt

+ cx(t) = f (t) (20) ☞

where a, b and c are constants and f1(t) is independent of x.

If f1(t) = 0 for all values of t the equation is said to be homogeneous, otherwise the equation is said to be
inhomogeneous. The equation is said to be linear because the dependent variable x only appears once, and only
to the first power, in each of the terms that involves it at all1—1there are no terms involving x2 or (dx/d0t)2 or
x(dx/d0t) or anything else of that kind. The equation is second order because it involves no derivative of x higher
than the second derivative.
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As you can see, Equations 13 and 17

m
d2 x(t)

dt2
+ b

dx(t)
dt

+ kx(t) = F0 sin (Ω t) (Eqn 13)

L
d2q(t)

dt2
+ R

dq(t)
dt

+ 1
C

q(t) = V0 sin (Ω t) (Eqn 17)

are both of this general form.

a
d2 x(t)

dt2
+ b

dx(t)
dt

+ cx(t) = f (t) (Eqn 20)

In the cases that are of interest to us the constants a, b, and c are all positive, and the function f1(t) corresponds to
the external driving term.

When confronted with an equation such as Equation 20 our usual aim is to find its general solution. For such a
second-order differential equation this general solution expresses x in terms of t, the given constants that appear
in the equation and two additional arbitrary constants. The values of the arbitrary constants cannot be
determined from Equation 20 itself but must be found from supplementary conditions such as the initial values

of x  and its derivative, x(0) and 
dx(0)

dt
. These supplementary conditions are generally referred to as

boundary conditions or initial conditions as appropriate.
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In the case of Equation 20

a
d2 x(t)

dt2
+ b

dx(t)
dt

+ cx(t) = f (t) (Eqn 20)

the general solution is the sum of two parts, a particular solution xp(t), which may be any solution of
Equation 20 that does not contain arbitrary constants, and a complementary function xc(t) which does contain
two arbitrary constants, and which satisfies the corresponding homogeneous equation

a
d2 x(t)

dt2
+ b

dx(t)
dt

+ cx(t) = 0 (21)

Question T1

Show that x(t) = xc(t) + xp(t) will satisfy Equation 20 and will contain two arbitrary constants, as the general
solution should.4❏

We will now outline the procedure for determining the complementary function in any give case, and then
comment on the determination of a particular solution.
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Finding the complementary function
1 Given the values of a, b and c in Equation 21 write down the so-called auxiliary equation

ap2 + bp + c = 0

2 Find the solutions p1 and p2 (of this quadratic equation, see Question R3).

3 (a) If b2 > 4ac the solutions will be two different real numbers and the comp-lementary function will be

xc(t) = B1exp1(1p1t) + D1exp1(1p2t) (22) ☞
(b) If b2 < 4ac the solutions will be two different complex numbers which may be written

p1 = −2γ + iω4and4p2 = −2γ − iω

where γ = b/a4and4ω = c

a
− γ 2

4
(23)

and the complementary function will be

xc(t) = e−γ1t1/12[E1cos1(ω1t) + G1sin1(ω1t)] (24)

(c) If b2 = 4ac the solutions will be two equal real numbers p1 = p2 = −b/02a = −γ1/2, and the complementary
function will be

xc(t) = (H + Jt)e−γ1t1/12 (25)
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Finding a particular solution

Determining a particular solution is generally much more difficult, and usually comes down to educated
guesswork. However, in the cases that will be of interest to us in this module the driving term f1(t) will usually
have the general form

f1(t) = f01sin1(Ω1t) (26)

and the particular solution will have the corresponding form

xp(t) = A1sin1(Ω1t − δ0) (27)

where A = f 0

(c a − Ω 2 )2 + (γ Ω )2
 and δ = arctan

γ Ω
c a − Ω 2







(28) ☞

Note that the constants A and δ appearing in the particular solution are not arbitrary constants; their values are
determined by the given values of a, b, c, f0 and Ω and not by any initial or boundary conditions.

Note also that for the homogeneous equation the particular solution can always be set equal to zero since f0 can
then be set equal to zero, so A = 0.

Using Equations 22 to 28 it is now possible to solve a wide a range of oscillatory problems.
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Example 1 Write down the complementary function, a particular solution, and finally the general solution of
the differential equation

L
d2q(t)

dt2
+ R

dq(t)
dt

+ q(t)
C

= V0 sin (Ω t) (29)

when L = 1.01H, R = 5.01Ω, C = 1/61F, V0 = 0.61V and Ω = 5.01s−1.
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Solution4Comparing Equation 29 with Equation 20,

L
d2q(t)

dt2
+ R

dq(t)
dt

+ q(t)
C

= V0 sin (Ω t) (Eqn 29)

a
d2 x(t)

dt2
+ b

dx(t)
dt

+ cx(t) = f (t) (Eqn 20)

and identifying a with L, b with R and c with 1/C, we see that in this case b2 > 4ac. Solving the auxiliary
equation leads to p1 = −21s−1 and p2 = −31s−1 so the complementary function takes the form of Equation 22

xc(t) = B1exp1(1p1t) + D1exp1(1p2t) (Eqn 22)

and is given by

qc (t) = B exp[−(2 s−1)t] + Dexp[−(3s−1)t]

where B and D are arbitrary constants.
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A particular solution is qp(t) = A1sin1[(51s−1)t − δ1 ]

where, from Equation 28,

A = f 0

(c a − Ω 2 )2 + (γ Ω )2
 and δ = arctan

γ Ω
c a − Ω 2







(Eqn 28)

A = 1.9 × 10−21C and δ = −0.92. ☞

The general solution of the differential equation is therefore

q(t) = qc (t) + qp (t) = B exp[−(2 s−1)t] + Dexp[−(3s−1)t] + (1.9 ×10−2 C)sin[(5s−1) t + 0.92]

4❏

Note that in this case the charge q(t) and hence Vc(t) lead the applied voltage V0 = A1sin1(Ω1t).

The constants B and D in the above example are determined by the initial state of the system, i.e. the initial
charge on the capacitor and the initial current. In practice however their values are usually unimportant, as the
following question invites you to show.
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✦ Suppose that in Example 1 we have B = 0.61C and D  = 0.61C. Calculate the values of q(t), qc(t) and qp(t)
when t = 01s, t = 11s, t = 31s, t = 51s and t = 81s. What do you notice about the values of q(t), qc(t) and qp(t) as t
increases? What part do B and D play in determining the eventual behaviour of q(t)?
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Figure 44The graphs of q(t) = qc(t) + qp(t) (solid
curve) and qp(t) (dashed curve) in Example 1.

Figure 4 shows the graphs of qp(t) (the dashed sinusoidal
curve) and q(t) = qc(t) + qp(t) (the solid curve). Initially they
are quite different, but for t > 4 1s they are indistinguishable.
Because of this behaviour qp(t) is said to represent the
steady state behaviour, whereas qc(t) is said to represent the
transient behaviour.

The important points to notice from Example 1 are:

o the transient part of the general solution is insignificant
for large values of t, so that eventually the steady state
term A1sin1(Ω1t − δ1) will dominate the solution;

o the constants B, D, E, G, H and J determine the initial
state of the system, but if we are only interested in what
happens for large values of t their values are irrelevant;

o the steady state term A1sin1(Ω1t − δ1) is a sinusoidal function with the same angular frequency as the driving
term V(t).
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C
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L
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m

xrough surface

P

(a)

VL(t)

An important consequence
If we start to drive the mechanical oscillator shown in Figure 3a, or close
a switch so as to complete the circuit shown in Figure 3b, there will be a
short period of time when the transient behaviour is significant, but in
most practical situations the behaviour rapidly moves to a steady state in
which the oscillation is sinusoidal. If we are only interested in the steady
state, which is usually the case, then we can totally ignore the transient
term in the solution of the differential equation. Even more significantly,
if we are only interested in the steady state behaviour, we can often
abandon this approach entirely and avoid the difficult business of
solving differential equations altogether. In Section 3 we will introduce a
much simpler method of analysing harmonically driven oscillators based
on the assumption that the oscillation is sinusoidal.

Figure 34(a) A mass subject to restoring, damping and driving forces.
(b) A simple LCR circuit containing a resistor, a capacitor and an inductor
connected in series. At the instant shown the current is increasing in the direction
shown and the directions (polarity) of the voltages are shown by arrows.
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Question T2

A mechanical oscillator satisfies the differential equation

a
d2 x(t)

dt2
+ b

dx(t)
dt

+ cx(t) = 0

where a = 11s2, b = 41s and c = 3. Write down the auxiliary equation and solve it. Hence find the general solution
of this (homogeneous) differential equation.4❏
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2.4 Harmonic oscillations: simple, damped and driven
In this subsection we consider some special cases of the second-order linear differential equation

a
d2 x(t)

dt2
+ b

dx(t)
dt

+ cx(t) = f 0 sin (Ω t) (30)

Each of the cases we consider will correspond to a particular kind of oscillatory behaviour, and may be applied
to mechanical or electrical systems (or any other system that may be similarly modelled).

b = 0, f0 = 0; the case of simple harmonic oscillation

In this case Equation 30 may be written in the form

a
d2 x(t)

dt2
+ cx(t) = 0 where a ≠ 0

It is conventional to rewrite this by dividing both sides by a and introducing

the natural angular frequency ω0 = c a (31)

so that
d2 x(t)

dt2
+ ω0

2 x(t) = 0 (32)
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In this (homogeneous) case a particular solution is xp(t) = 0. Moreover, b2 < 4ac, so the complementary function,
and hence the general solution, takes the form of Equation 24 with γ = b/c = 0, and ω = c a = ω0

i.e. x(t) = E1cos1(ω00t) + G1sin1(ω00t) (33)

✦ Show that this solution can be written in the equivalent form

x(t) = A01sin1(ω00t + φ) (34)

and hence confirm that it can be used to represent simple harmonic motion with amplitude A0, angular frequency
ω0 = c a  and phase constant φ.

Question T3

A simple series circuit consists of a capacitor connected in series with an inductor. If the charge on the capacitor
at time t = 0 is q0, and there is no current in the circuit at that time, determine the differential equation that
describes the variation of q with time, write down its general solution, and show that the charge exhibits simple
harmonic oscillations with angular frequency ω0 = 1 (LC) .4❏
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f0 = 0; the case of linearly damped oscillation

In this case Equation 30

a
d2 x(t)

dt2
+ b

dx(t)
dt

+ cx(t) = f 0 sin (Ω t) (Eqn 30)

may be written in the form

a
d2 x(t)

dt2
+ b

dx(t)
dt

+ cx(t) = 0 (35)

It is conventional to rewrite this by dividing both sides by a and introducing

the damping constant γ = b/a (36a)

and the natural angular frequency ω0 = c a (36b)

so that
d2 x(t)

dt2
+ γ dx(t)

dt
+ ω0

2 x(t) = 0 (36c)
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In this case a particular solution is xp(t) = 0, and the complementary function may take any of the forms
described by Equations 22, 24 or 25,

xc(t) = B1exp1(1p1t) + D1exp1(1p2t) (Eqn 22)

xc(t) = e−γ1t1/12[E1cos1(ω1t) + G1sin1(ω1t)] (Eqn 24)

xc(t) = (H + Jt)e−γ1t1/12 (Eqn 25)

depending on the values of γ and ω0.
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(a) If γ 2 > 4ω0
2  the oscillator is said to be overdamped and the general solution has the form

x(t) = B1exp1(1p1t) + C1exp 1(1p2t) (37)

where p1 = −γ
2

+ γ 2

4
− ω0

2 4and4 p2 = −γ
2

− γ 2

4
− ω0

2 (38)

(b) If γ 2 < 4ω0
2  the oscillator is said to be underdamped and the general solution has the form

x(t) = e−γ1t1/12[E1cos1(ω1t) + G1sin1(ω1t)] (39)

where ω = ω0
2 − γ 2

4
(40)

(c) If γ 2 = 4ω0
2  the oscillator is said to be critically damped and the general solution has the form

x(t) = (H + Jt)1e−γ1t1/12 (41) ☞
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Some typical examples of damped oscillatory
behaviour are shown in Figure 5. Notice that only in
the underdamped case is it mathematically justified
to claim that there is a well defined angular
frequency associated with the oscillation since only
then is at least one full cycle completed. Also notice
that the vibrations decrease more rapidly as the
value of b (and hence γ1) is increased. In practical
situations there is always resistance in a circuit, or
friction in a mechanical system, so we are generally
justified in assuming that b > 0.

Figure 54Oscillatory behaviour as the damping
increases. from a to d

Question T4

Show that in the case of underdamped oscillations, the general solution may be written in the form

x(t) = e−γ1t1/12[A01sin1(ω1t + φ)] (42)4❏



FLAP P5.5 The mathematics of oscillations
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

The general case of harmonically driven linearly damped oscillation

In this case we take Equation 30

a
d2 x(t)

dt2 + b
dx(t)

dt
+ cx(t) = f 0 sin (Ω t) (Eqn 30)

and, as with the undriven case, it is conventional to rewrite this by dividing both sides by a and introducing

the damping constant γ = b/a (43)

the natural angular frequency ω0 = c a (44)

and a0 = f01/a (45)

so that
d2 x(t)

dt2
+ γ dx(t)

dt
+ ω0

2 x(t) = a0 sin (Ω t) (46)
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In this case the general solution is the sum of a transient term (a complementary function) given by the
appropriate solution to the linearly damped oscillator equation, and a steady state term (particular solution) as
given by Equations 27 and 28

xp(t) = A1sin1(Ω1t − δ0) (Eqn 27)

A = f 0

(c a − Ω 2 )2 + (γ Ω )2
 and δ = arctan

γ Ω
c a − Ω 2







(Eqn 28)

with f0 replaced by a0.

Thus, in the physically important case of underdamping

x(t) = e−γ1t1/12[A01sin1(ω1t + φ)] + A1sin1(Ω1t − δ1) (47)

where A0 and φ are arbitrary constants, ω = ω0
2 − γ 2

4
(48)

A = a0

(ω0
2 − Ω 2 )2 + (γ Ω )2

 and δ = arctan
γ Ω

ω0
2 − Ω 2







(49)
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Note that as t increases the relative importance of the first term on the right in Equation 47

x(t) = e−γ1t1/12[A01sin1(ω1t + φ)] + A1sin1(Ω1t − δ1) (Eqn 47)

decreases, so in the steady state the solution is effectively

x(t) = A1sin1(Ω1t − δ) (50)

where Ω is the driving angular frequency, and δ is the extent to which the phase of the oscillator lags behind that
of its driver. Once again, note that A and δ are not arbitrary constants but are determined by the given values of
γ, ω0, Ω and a0.

✦ A series circuit of negligible total resistance consists of a switch, a 2.41V battery, a capacitor of capacitance
0.011F and an inductor of inductance of 5.01H. Write down the differential equation that determines the current
I(t) at a time t after the circuit is completed. Write down an expression for I(t) assuming that the capacitor is
initially uncharged.
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Figure 64Some simple circuits.

2.5 Electrical
impedance
Figure 6 shows three simple
circuits. Each contains a single
component, and is driven by an
externally applied voltage
V(t) = V01sin1(Ω1t). We will now
determine the steady state
current that flows in each of
these circuits.
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R

~

(a)

V(t)
I(t)

Figure 6a4A simple
circuit containing a
resistor

(a) For the circuit containing the resistor (Figure 6a), Equation 14

 V(t) = RI(t) + q(t)
C

+ L
dI(t)

dt
(Eqn 14)

gives

  

     V(t)     
potential difference
supplied by the 
voltage generator

1 24 34 =      RI(t)    
potential difference
across the resistor

1 24 34

so that V01sin1(Ω1t) = RI(t) and therefore

I(t) = V0

R
sin (Ω t) (57)

Notice that the current I(t) and the applied voltage are in phase in this case.
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~

(b)

V(t)

L

I(t)

Figure 6b4A simple
circuit containing an
inductor

(b) For the circuit containing the inductor (Figure 6b), Equation 14

 V(t) = RI(t) + q(t)
C

+ L
dI(t)

dt
(Eqn 14)

gives

  

     V(t)     
potential difference
supplied by the 
voltage generator

1 24 34 =     L
dI(t)

dt
    

potential difference
across the inductor

1 244 344

so that V0 sin (Ω t) = L
dI(t)

dt
 implying that 

dI(t)
dt

= V0

L
sin (Ω t)
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Hence, in the steady state integration gives us

I(t) = − V0

Ω L
cos(Ω t) = V0

Ω L
sin (Ω t − π 2) (58) ☞

Comparing Equations 58 and 57

I(t) = V0

R
sin (Ω t) (Eqn 57)

we see that an inductor behaves rather like a resistor with effective resistance Ω1L, but the phase of the current
lags that of the voltage by π/2.
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(c)

V(t)

C
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Figure 6c4A simple
circuit containing a
capacitor.

(c) For the circuit containing the capacitor (Figure 6c), Equation 19

L
d2 I(t)

dt2 + R
dI(t)

dt
+ 1

C
I(t) = dV(t)

dt
(Eqn 19)

gives

I(t)
C

= dV(t)
dt

so that

I(t) = C
dV(t)

dt
= Ω CV0 cos(Ω t) = V0

1 (Ω C)
sin (Ω t + π 2) (59)

Comparing Equations 59 and 57

I(t) = V0

R
sin (Ω t) (Eqn 57)

we see that a capacitor behaves rather like a resistor with effective resistance 1/(Ω 1C), but the phase of the
current leads that of the voltage by π/2.
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The frequency dependent ‘effective resistance’ of an inductor, XL = Ω1L is known as its inductive reactance,
while the corresponding quantity for a capacitor, XC = 1/(Ω 1C), is known as its capacitive reactance.
These quantities, together with the resistance R of a resistor, play an important part in determining the current
I(t) that will flow through a component when a voltage V(t) is applied across it. We can summarize these
relationships contained in Equations 57, 58 and 59

I(t) = V0

R
sin (Ω t) (Eqn 57)

I(t) = − V0

Ω L
cos(Ω t) = V0

Ω L
sin (Ω t − π 2) (Eqn 58)

I(t) = C
dV(t)

dt
= Ω CV0 cos(Ω t) = V0

1 (Ω C)
sin (Ω t + π 2) (Eqn 59)

as follows.

If V(t) = V01sin1(Ω1t) and I(t) = I01sin1(Ω1t − δ1), then;

for an inductor V0/I0 = XL = Ω1L and δ = π0/02
for a resistor V0/I0 = R and δ = 0
for a capacitor V0/I0 = XC = 1/(Ω1C) and δ = −π/02 ☞
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The ability of inductors and capacitors to ‘react’ to an applied voltage by altering their ‘effective resistance’
according to its frequency is part of the reason for their significance in electronics. In particular, it allows them
to play an important role in filter circuits designed to pass signals (varying voltages) in certain frequency ranges
while inhibiting the passage of others. The differences in behaviour between resistors, capacitors and inductors
mean that appropriately designed combinations of these components can be used to manipulate signals in a
variety of ways.

The analysis of circuits in terms of the differential equations that represent them is a sophisticated study in its
own right, but provided we are only concerned with the steady state behaviour of networks of passive
components (resistors, capacitors and inductors), driven by applied voltages that vary sinusoidally with time, the
subject can be greatly simplified. As an example we will state without proof four more results for simple series
circuits. (These can be established by finding particular solutions for the appropriate versions of Equation 19.)

L
d2 I(t)

dt2 + R
dI(t)

dt
+ 1

C
I(t) = dV(t)

dt
(Eqn 19)

In each case the result consists of a description of the current I(t) = I01sin1(Ω11t − δ1) that flows in response to an
applied voltage V(t) = V01sin1(Ω11t), and in each case this requires that we provide an explicit expression relating
I0 to the known quantities V0, R, C and L. In order to do this each result provides an explicit expression for the
quantity Z = V0/I0, which is known as the impedance of the circuit. The impedance is measured in ohm (Ω), and
represents a generalization of resistance and reactance.
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R
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C

(a)

V(t)
I(t)

V(t)

Figure 7a4Circuits with two
components: resistor and
capacitor in series.

Resistor and capacitor in series

For the circuit shown in Figure 7a:

If V(t) = V01sin1(Ω1t) then I(t) = V0

Z
sin (Ω t − δ )

where Z2 = R2 + 1
(Ω C)2

 and tan δ = −1
Ω CR

(60)

✦ Given that V0 = 31V, Ω = 51s−1, R = 21Ω and C = 0.2 1F for the circuit shown in
Figure 7a, calculate the current I(t).
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R
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(b)

V(t)
I(t)

V(t)

L

Figure 7b4Circuits with
two components: resistor
and inductor in series.

Resistor and inductor in series

For the circuit shown in Figure 7b:

If V(t) = V01sin1(Ω1t) then I(t) = V0

Z
sin (Ω t − δ )

where Z12 = R2 + (Ω1L)2 and tan1δ  = Ω1L0/R (61)
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C

(c)

V(t)
I(t)

V(t)

Figure 7c4Circuits with two
components: inductor and
capacitor in series.

Inductor and capacitor in series

For the circuit shown in Figure 7c:

If V(t) = V01sin1(Ω1t) then I(t) = V0

Z
sin (Ω t − δ )

where

Z = 1
Ω C

− Ω L  and δ = π/2 if 
1

Ω C
< Ω L , or δ = −π/2 if 

1
Ω C

> Ω L (62)
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R

~

C

(b)

V(t)

L

VC(t)VR(t)

I(t)

VL(t)

Figure 3b4A simple LCR circuit
containing a resistor, a capacitor and an
inductor connected in series. At the
instant shown the current is increasing
in the direction shown and the
directions (polarity) of the voltages are
shown by arrows.

Resistor, inductor and capacitor in series

For the circuit shown in Figure 3b:

If V(t) = V01sin1(Ω1t)

then I(t) = V0

Z
sin (Ω t − δ ) (63a)

where Z2 = R2 + 1
Ω C

− Ω L






2

 and tan δ = 1
R

Ω L − 1
Ω C







(63b)
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The above results can be neatly summarized and generalized if we introduce a total reactance X = XL − XC, for
we can then say:

When a voltage V(t) = V01sin1(Ω1t) is applied across any series circuit of components of total resistance R and
total reactance X, the resulting steady state current will have the form I(t) = I01sin1(Ω1t − δ1)

where V0 = I0 Z4and4δ = arctan
1
(X0/R)

and the impedance Z is given by Z = R2 + X2 .
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Figure 84Geometrical interpretations of Z and δ in terms of XL, XC and R.

It is possible to give a simple geometric interpretation to the relationship between impedance, resistance and
reactance. This is indicated in Figure 8a, where XL is treated as a ‘vector quantity’ directed vertically upwards,
XC is treated as a vector directed vertically downwards, and R is treated as a vector directed to the right.
(The length of each ‘vector’ represents the relevant value of resistance or reactance.)

As Figures 8b to 8e indicate, the value of Z in each of the cases discussed above will be represented by the
length of the ‘vector sum’ of XL, XC and R, and the value of δ will be given by the angle (measured in the
anticlockwise direction) from the horizontal axis to the ‘vector’ representing Z  ☞. We will return to this
geometric interpretation of impedance in Section 3.
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Example 2 Calculate the impedance of a circuit which consists of a resistor of 101Ω, a capacitor of 0.051F and
an inductor of 2.01H in series. If a voltage V(t) = 31sin1[(21s−1)0t]1V is applied to the circuit, then by how much do
the current and voltage differ in phase in the steady state? Write down an expression for the steady state current.

Solution4From Equation 63b Z2 = R2 + 1
Ω C

− Ω L






2

so in this case, with Ω = 21Hz,

Z = 102 + 1
0.05 × 2

− 2 × 2





2

Ω ≈ 11.66 Ω

and tan δ = 1
R

Ω L − 1
Ω C







= 1
10

2 × 2 − 1
2 × 0.05





 = −0.60

so δ ≈ −0.54.

Thus I(t) = I0 sin (Ω t − δ ) = 3
11.66

sin[(2 s−1)t + 0.54]A

I(t) ≈ (0.26)sin[(2 s−1)t + 0.54]A4❏
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R
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C

(b)

V(t)

L

VC(t)VR(t)

I(t)

VL(t)

Figure 3b4A simple LCR circuit
containing a resistor, a capacitor and an
inductor connected in series. At the
instant shown the current is increasing
in the direction shown and the
directions (polarity) of the voltages are
shown by arrows.

Question T5

When the series LCR circuit of Figure 3b is driven by an applied voltage
V(t) = V01sin1(Ω1t), the current I(t) satisfies Equation 19.

L
d2 I(t)

dt2 + R
dI(t)

dt
+ 1

C
I(t) = dV(t)

dt
(Eqn 19)

Show that Equation 63

I(t) = V0

Z
sin (Ω t − δ ) (Eqn 63a)

Z2 = R2 + 1
Ω C

− Ω L






2

 and tan δ = 1
R

Ω L − 1
Ω C







(Eqn 63b)

really does provide a particular solution of this equation, as claimed
above. ☞4❏
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Question T6

Calculate the impedance of a circuit which consists of a resistor of 5.01Ω, a capacitor of 1/6 F and an inductor of

1.01H in series.

A voltage V(t) = 3
5 sin[(5s − 1) t]V  is applied to the circuit and the current is allowed to reach its steady state.

By how much do the steady state current and voltage differ in phase? Write down an expression for the steady
state current. Compare your answer with that of Example 1.4❏
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2.6 Mechanical impedance
We saw earlier that the mathematical description of a harmonically driven series LCR circuit is essentially
identical to that of a harmonically driven, linearly damped mechanical oscillator. In particular we saw that
charge oscillations in the circuit are directly analogous to the displacement oscillations of the mechanical
system. However, we have just seen that the circuit also displays current oscillations, the amplitude of which can
be expressed in terms of an impedance that depends on the angular frequency of the driving voltage.
Does the mechanical oscillator exhibit oscillations analogous to the current oscillations? If so, what are they,
how do they behave and what is the mechanical analogue of the impedance?

The current in the series LCR circuit is related to the charge on the capacitor by

I = dq

dt
(Eqn 8)

Since the mechanical analogue of the charge q is the displacement x, we should expect the mechanical analogue
of the current to be the velocity

  
vx = dx

dt
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m

xrough surface

P

(a)

Figure 3a4A mass subject to
restoring, damping and driving
forces.

✦ According to Equation 19

L
d2 I(t)

dt2 + R
dI(t)

dt
+ 1

C
I(t) = dV(t)

dt
(Eqn 19)

sinusoidally driven current oscillations satisfy a differential equation of the
form

L
d2 I(t)

dt2
+ R

dI(t)
dt

+ I(t)
C

= ΩV0 cos(Ω t)

Write down the analogous differential equation that you might expect
mechanical velocity oscillations to satisfy, and show that the mechanical
oscillator of Figure 3a does in fact obey such an equation.
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✦ Using the description of the current oscillations given in the last subsection, write down the corresponding
description of the velocity oscillations in the driven mechanical oscillator, and hence identify the mechanical
impedance Zm.

By analogy with the electrical case, it is possible to identify the mass m and the spring constant k as ‘reactive’
parts of the mechanical oscillator, since their contribution to the mechanical impedance depends on the angular
frequency of the driving force.
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2.7 Resonance and driven oscillations
The displacement oscillations described by Equations 49 and 50,

A = a0

(ω0
2 − Ω 2 )2 + (γ Ω )2

 and δ = arctan
γ Ω

ω0
2 − Ω 2







(Eqn 49)

x(t) = A1sin1(Ω1t − δ) (Eqn 50)

and the velocity oscillations described by Equations 65 and 66,

vx = v01sin1(Ω1t − δ1) (Eqn 65)

tan δ = 1
b

Ωm − k

Ω




 (Eqn 66)

both have an amplitude that depends sensitively on the angular frequency Ω of the driving force. The charge and
current oscillations in the driven LCR circuit show a similar sensitivity to the angular frequency of the driving
voltage.
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decreasing
values of R

Ω1
LC

I0

As an example of this behaviour, Figure 9 shows the way in which the amplitude
I0 of the steady state current varies with driving frequency for fixed values of C, L
and V0 at a variety of values of R. It is clear from Equation 63

I(t) = V0

Z
sin (Ω t − δ ) (Eqn 63a)

Z2 = R2 + 1
Ω C

− Ω L






2

 and tan δ = 1
R

Ω L − 1
Ω C







(Eqn 63b)

that in this case, for any fixed value of R , the impedance is a minimum and the
current amplitude a maximum when Ω = 1 (LC) .

This is an example of the phenomenon of resonance, the production of a large
response in a driven oscillator by driving it at a frequency close to the natural
frequency it would have in the absence of any driving or damping. As you can see,
the smaller the value of R, the taller and narrower the peak, i.e. the sharper the
resonance. In this particular case the resonant frequency at which the response is
a maximum is identical to the natural frequency ω0 = 1 (LC) , but that is not
always the case.

Figure 94The amplitude of the current I0 as a function of the driving angular frequency Ω.
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✦ The current and velocity oscillations have a resonant frequency that is independent of the resistance or
damping (R and b respectively). Is the same true of the resonant frequency of the charge and displacement
oscillations?
If not, what is the relationship between the resonant frequency, the natural frequency and the resistance or
damping in this case?

Question T7

A radio aerial for BBC Radio 4 contains an inductor L = 0.0011H (i.e. 1.01mH) and a variable capacitor C in
series. The transmitter induces a voltage in the aerial, and produces a potential difference V(t) = V01sin1(ω1t)
across the open circuit, where ω = 2π × 1981kHz. To what value should the capacitor be set in order to maximize
the amplitude of the current?4❏
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3 Oscillations and complex numbers
Complex numbers are often used in the analysis of sinusoidal oscillations. They can greatly simplify many
problems, so much so that they constitute the standard approach in most advanced work. As you pursue your
studies of physics it is inevitable that you will frequently encounter discussions of oscillatory phenomena based
on complex methods. This is particularly true in quantum physics, where complex numbers are not just useful,
but essentially unavoidable.

3.1 Complex numbers1—1a brief review
1 Any complex number, z, may be written as

z = x + iy
 where x and y are real numbers and i satisfies i2 = −1.

2 If z = x + iy (with x and y real) then x is known as the real part of z, written as Re(z), and y is known as the
imaginary part of z, written as Im(z). ☞ Thus,

z = Re(z) + iIm(z)

3 Complex numbers obey the rules of normal algebra except that i2 can be replaced by −1 whenever it
appears.
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4 The complex conjugate of z (written z*) is defined by

z* = x − iy = Re(z) − iIm(z)

5 The modulus of z = x + iy (written as |1z1|) is defined by

| z | = x2 + y2 = [Re(z)]2 + [Im(z)]2

6 For arbitrary complex numbers z and w

Re(z) = 1
2

(z + z*) Im(z) = 1
2i

(z − z*)

(zw)* = z*w* (z*)* = z4and4|1z1|2 = zz*

7 A complex number, z = x + iy, is said to be in Cartesian form or a Cartesian representation.

Such a complex number may also be written in the form,

z = r1(cos1θ + i1sin1θ)

where r and θ are real numbers, in which case it is said to be in polar form or a polar representation. When
written in polar form, the modulus of z is then given by |1z1| = r, and θ is referred to as the argument of z
(written as arg(z)). Adding 2π to the argument of a complex number does not change that complex number.
The principal value of the argument of a complex number is the value θ which lies in the range −π < θ ≤ π.
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8 We can convert from Cartesian to polar form using

r = x2 + y2 , cosθ = x

x2 + y2
 and sin θ = y

x2 + y2

and from polar to Cartesian form by means of

x = r1cos1θ4and4y = r1sin1θ
9 A complex number can be represented by a point on an Argand diagram (complex plane) by using (x, y) as

the Cartesian coordinates or (r, θ) as the polar coordinates of the point. (By convention, θ is measured
anticlockwise from the positive x-axis.)

10 A complex number may also be written in exponential form or exponential representation by using
Euler’s formula

e0i1θ = cos1θ + i1sin1θ

If z = r1ei1θ, then |1z1| = r, arg(z) = θ and z* = r1e−i1θ.
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11 Addition and subtraction of complex numbers is simplest in Cartesian form:

z + w = (x + iy) + (u + iv) = (x + u) + i0( 0y + v)

z − w = (x + iy) − (u + iv) = (x − u) + i0(0y − v)

Multiplication and division of complex numbers is simplest in exponential form:

zw = (r1e0i1θ)0(s1e0iφ) = (rs)10e0i1(θ + φ0)

z/w = (r1e0i1θ)/(s1e0i1φ) = (r/s)1ei01(θ − φ0)

The following result, known as Demoivre’s theorem is valid for any real value of n

e0n 1i1θ = (cos1θ + i1sin1θ0)n = cos1(nθ0) + i1sin1(nθ0)



FLAP P5.5 The mathematics of oscillations
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

3.2 Complex impedance

Study comment It is important to appreciate that in the following discussion of electrical circuits we are only interested in
the steady state, and we are therefore assuming that sufficient time has elapsed for the transient part of the current to be
negligible.
In this subsection when we refer to ‘the current’ we always mean the steady state current. Since we are only concerned with
the steady state, the phase of the applied voltage is unimportant1—1it is the phase difference between the applied voltage and
the current that is critical. Previously it was convenient to assume that the applied voltage was of the form V0 1sin1(Ω1t),
but here it is more conventional to choose V01cos1(ω1t), and to describe the steady state current by I0 1cos1(ω1t  − δ 1).
The effect is minimal and serves only to make the mathematics a little easier, and more standard.

The impedance Z and phase lag δ determine the relationship between the voltage that drives the LCR circuit of
Figure 3b, and the steady state current it eventually produces. There is however a very simple method of
determining these quantities in terms of the values of R, C and L, and, as we will see, this new method may be
used to analyse far more complicated circuits.



FLAP P5.5 The mathematics of oscillations
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

Ω L

1/Ω C
R

R

(a) (b) R

δ

Z

δ

Z

(c) (d)
R

(e)

δ

Z
1/Ω C Ω L

Ω L

1/Ω C

Ω L
= 1/Ω C

Figure 84Geometrical interpretations of Z and δ in terms of XL, XC and R.

We begin by referring once again to Figure 8, the geometric interpretation of impedance. If we interpret the
direction assigned to the ‘vector’ representing the resistance R as the real axis of an Argand diagram, and if we
allow the heads of the various ‘vectors’ in Figure 8 to denote complex numbers, then the values of both Z and δ
can be found very easily as the modulus and argument of the sum of the various complex numbers involved.

Adopting this approach, and noting that in this case we are dealing with an applied voltage with angular
frequency ω, we can identify the following complex quantities from Figure 8a

o the complex inductive reactance iω1L
o the complex capacitive reactance −0i0/ω1C
o the resistance (a real quantity) R
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Figure 84Geometrical interpretations of Z and δ in terms of XL, XC and R.

We can then define a new quantity, the complex impedance Z of a series LCR circuit by the relation

  
Z = R + iω L + −i

ω C







= R + i ω L − 1
ω C









 (67)

From Figures 8b to 8e it can be seen that this complex impedance has the following properties:

o its modulus is equal to the impedance, so |1Z1| = Z ☞
o its argument is equal to the phase lag, so arg(Z1) = δ
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Thus, the complex impedance can be written in the form Z = Z1e 1i1δ

We can take this representation further by expressing the applied voltage V(t) as the real part of a complex
voltage defined by

V1(t) = V01e0i1ω1t (68)

so that   V(t) = Re V (t)( ) = Re(V0eiω t ) = V0 cos(ω t)

It then follows that the instantaneous current I(t) in the series LCR circuit is given by the real part of the
complex current ((t) defined by

    
( (t) = V (t)

Z
(69)

since
    
Re[( (t)] = Re

V (t)
Z





 = Re

V0eiω t

Zeiδ






= Re
V0

Z
ei ω t −δ( )



 = I0 cos(ω t − δ )

i.e. Re[((t)] = I(t)
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( (t) = V (t)

Z
(Eqn 69)

Equation 69 plays an important role in the analysis of circuits carrying sinusoidally varying currents.
Such currents are generally referred to as alternating currents, or a.c. currents, and Equation 69 is sometimes
described as the complex or a.c. form of Ohm’s law.

Example 3 Use Equation 67

  
Z = R + iω L + −i

ω C







= R + i ω L − 1
ω C









 (Eqn 67)

to calculate the impedance of a circuit which consists of a resistor of 101Ω, a capacitor of 0.051F and an inductor
of 21H in series. If a voltage V(t) = 31cos1[(21s−1)t]1V is applied to the circuit, what is the phase difference between
the steady state current and the applied voltage? Use the complex form of Ohm’s law to write down an
expression for the steady state current. Plot the complex numbers representing V1(t) and ((t) at some arbitrary
time t on an Argand diagram. Indicate the quantities corresponding to V(t) and I(t) on your diagram.
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Solution4From Equation 67

  
Z = R + iω L + −i

ω C







= R + i ω L − 1
ω C









 (Eqn 67)

we have

  
Z = R + iω L − i

ω C
= 10 + (2 × 2)i − i

(2 × 0.05)







Ω = (10 − 6i)Ω

then Z = |1Z1| = |110 − 6i1| = 102 + 62 ≈ 11.66 Ω

and δ = arg(Z) = arctan1(−6/10) ≈ −0.54

and it follows that Z ≈ 11.661e−0.541i1Ω

In this case V1(t) = 31exp1[(21s−1)0i0t]1V

so from Equation 69
    
( (t) = V (t)

Z
= 3exp[(2 s−1)it]

10 − 6i
A = 3exp[(2 s−1)it]

11.66e−0.54 i
A
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φ

ωt

((t)

V (t)

((t)
V (t)

Figure 104Argand diagram for the

two complex numbers V1(t)/V and
((t)/A. (Not drawn to scale.) The
units have been omitted from the
diagram for clarity.

It follows that

I(t) ≈ Re 3exp[(2 s−1)it]( ) e0.54i

11.66


















A = Re

3
11.66

exp[(2 s−1)it + 0.54i]





i.e. I(t) = Re 0.26 exp[(2 s−1)it + 0.54i]{ }A = (0.26)cos[(2 s−1)t + 0.54]A

If we plot the complex numbers V1(t)/V and ((t)/A ☞ on the same Argand
diagram, as in Figure 10 (not drawn to scale), then they will lie on two
circles, of radius 3 units and 0.26 units, respectively. The real parts of these
quantities, indicated on the horizontal axis, represent the instantaneous
voltage and current. The essential point to notice is that, although the two
points move around the circles as t increases, they are fixed in relation to
each other. The magnitude of the angle φ in Figure 10 is 0.541radians, which
is the magnitude of the argument of Z . In this particular case we can see
immediately from the diagram that the current leads the voltage by this
amount.4❏
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Aside It is worth noting that the conversion of complex numbers from Cartesian to exponential (or polar) form that was at
the heart of this example is available as a standard function on many modern calculators. My calculator stores a complex
number 3 + 5i as (3 5) so to check this example I keyed in:

(10, 0) for the 101Ω resistance and then stored it as R,

(0, 2 × 2) for the iω1L term and stored it as Z1,

then 0, − 1
2 × 0.05





  for the 1/(iω1C) term and stored it as Z2.

Then I calculated 3/(R + Z1 + Z2) and finally converted it into polar form using a function labelled c → p on my calculator.
You may find that you can perform similar calculations on your own calculator.

If you compare the solution to Example 3 with the solution to Example 2, you will find that the answers are the
same (apart from a change of sin to cos), but this method is simpler.
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Question T8

Use Equation 67

  
Z = R + iω L + −i

ω C







= R + i ω L − 1
ω C









 (Eqn 67)

to calculate the impedance of a resistor R = 151Ω, a capacitor of C = 51µF and an inductor L = 41mH in series.
Find the complex impedance, Z, and hence find 1/Z, when a voltage V(t) = 101cos1[(1041s−1)t]1V is applied to the
circuit. By how much do the steady state current and the applied voltage differ in phase?

Write down an expression for the steady state current.4❏
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Figure 114Three components in
parallel.

Generalizing the complex method

We will now illustrate the power of the complex method by applying it to
the circuit shown in Figure 11 in which the three components are connected
in parallel.

This is the first time we have considered a parallel circuit in this module,
and we will need to use the principles (obtained from Kirchhoff’s laws) that

1 The current drawn from the voltage generator is equal to the sum of the
currents through the separate components.

2 The voltage across each component is the same.

The first of these principles implies that I(t) = IR(t) + IL(t) + IC(t), which may
be regarded as the real part of the following complex equation

((t) = (R(t) + (L(t) + (C(t) (70)
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and the common voltage across each component may be regarded as the real part of a common complex voltage
V(t), which will be related to the complex current in each component and its impedance by Equation 69,

    
( (t) = V (t)

Z
(Eqn 69)

as follows

V1(t) = R(R(t)

V1(t) = (iω1L)(L(t)

  
V (t) = −i

(ω C)
(C(t) ☞

Using these relations and recognizing that −0i/(ω C) can be more neatly written as 1/(iω1C), Equation 70

((t) = (R(t) + (L(t) + (C(t) (Eqn 70)

becomes

    
( (t) = V (t)

R
+ V (t)

iω L
+ V (t)

1 (iω C)
= V (t)

1
R

+ 1
iω L

+ 1
1 (iω C)







(71)
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Figure 114Three components in
parallel.

In other words, if we denote the complex impedance of a resistor, an
inductor and a capacitor in parallel by Z, then

  

1
Z

= 1
R

+ 1
iω L

+ 1
1 (iω C)

(72)

We can use this expression for Z, together with the above relations between
(R, (L, (C, ( and V to solve a wide variety of problems involving parallel
LCR circuits.

✦ Use Equation 72 to find an expression for the complex impedance Z of
the components shown in Figure 11, in Cartesian form. Hence determine the
(real) impedance of a 101Ω resistance and a 0.21H inductance, when
connected in parallel and used in a context where the driving voltage has an
angular frequency of 501Hz.
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Combining impedances
The expressions we have introduced for the complex impedance of components in series and parallel 
(Equations 67 and 72)

  
Z = R + iω L + −i

ω C







= R + i ω L − 1
ω C









 (Eqn 67)

  

1
Z

= 1
R

+ 1
iω L

+ 1
1 (iω C)

(Eqn 72)

are in fact particular cases of two general rules for combining complex impedances. With these general rules we
can analyse the behaviour of an enormous range of a.c. circuits, though we will not do so in this module.

Given a number of complex impedances Z1, Z02 … Z 0n, then in series their combined
complex impedance Z is given by

Z = Z1 + Z02 + … Z0n (73)

in parallel their combined complex impedance Z is given by

  

1
Z

= 1
Z1

+ 1
Z 2

+ … + 1
Zn

(74) ☞
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Figure 124See Question T9.

Question T9

Find the complex impedance of the circuit shown in Figure 12 in terms of
ω, R , C  and L. The circuit consists of a resistor in parallel with a
capacitor, in series with an inductor.4❏
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3.3 The power dissipated
The power dissipated, or rate of energy transfer from devices is often of physical interest. The instantaneous
power dissipated by a device in an electrical circuit is the product of the current flowing through it and the
potential difference across it, i.e. P(t) = I(t)V(t). We may regard this as the product of the real parts of a complex
current and a complex voltage, so we can write P(t) = Re[(0(t)] × Re[V1(t)]. Such products must be treated with
care, as the following question shows.

✦ Given that z = 2 + 3i and w = 1 − 2i, calculate Re(z) × Re(w) and Re(zw). ☞

P(t) varies from moment to moment, but for devices in a.c. circuits it is usually the average power dissipated
over a full cycle of oscillation, 〈 1P1〉, which is of interest. This is given by

    
〈P〉 = 1

T
Re[( (t)]Re[V (t)]

0

T

∫ dt (75)

where V1(t) is the potential difference across the device and ((t) is the current flowing through it. T = 2π/ω is the
period of an oscillation.
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We can simplify this result by introducing two new constants which may be complex, V0 and ( 0.
Any sinusoidally varying voltage may then be written as the real part of

V0(t) = V01e0i1ω1t (76) ☞

and any sinusoidally varying current as the real part of

((t) = (01e0i1ω1t (77)

With the aid of these generalized complex expressions, it is possible to show that Equation 75

    
〈P〉 = 1

T
Re[( (t)]Re[V (t)]

0

T

∫ dt (Eqn 75)

leads to the following useful result :

    
〈P〉 = 1

2
Re(( 0

*V 0 ) (78) ☞

If you are interested in knowing how this formula is obtained you can answer the following (fairly difficult)
question. If not, you can simply use Equation 78 to answer Question T11.
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Question T10

Prove this claim.

i.e. that
    
〈P〉 = 1

2
Re(( 0

*V 0 ) (Eqn 78)

(Hint: First show that eniω t

0

T

∫ dt = 0 for any non-zero integer, n, and then use that result to derive Equation 78

from Equation 75.)

    
〈P〉 = 1

T
Re[( (t)]Re[V (t)]

0

T

∫ dt (Eqn 75) 4❏
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Figure 3b4A simple LCR circuit
containing a resistor, a capacitor and an
inductor connected in series. At the
instant shown the current is increasing
in the direction shown and the
directions (polarity) of the voltages are
shown by arrows.

Question T11

Suppose that for the series LCR circuit shown in Figure 3b, we are told
that the current is I(t) = I01cos1(ω1t) (where I0 is real). Find the average
power, 〈 1P1〉 ,

    
〈P〉 = 1

2
Re(( 0

*V 0 ) (Eqn 78)

dissipated by the circuit in terms of L, C, R and I0. What effect would
varying the values of L and C have on the value of 〈 1P1〉?4❏
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4 Superposed oscillations and complex algebra
Simple harmonic oscillation is common in nature, and situations often arise in which an oscillating system is
subject to several independent influences each of which tends to promote SHM. For example, the steady state
current in a circuit might be the response of two independent sinusoidal voltage supplies, each of which drives
the circuit with a characteristic amplitude, angular frequency and phase constant. In such cases, provided the
circuit concerned has the property of linearity, i.e. provided its behaviour can be modelled by linear differential
equations, the response of the circuit at any time will be the sum of the responses it would have shown to each of
the applied voltages independently. This general feature of the behaviour of linear systems is enshrined in the
superposition principle:

When several oscillations are added, the resulting disturbance at any time is the sum of the disturbances due
to each oscillation at that time.

In view of the wide applicability of the superposition principle it is hardly surprising that the problem of adding
or rather superposing simple harmonic oscillations is frequently encountered in physics. From a mathematical
point of view these additions can be carried out in a number of ways (the use of phasors and of trigonometric
identities are both explored elsewhere in FLAP); however when large numbers of oscillations must be added
together it is often advantageous to make use of complex methods. It is this process that we will discuss in this
section.
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In what follows we will make use of the following general result from the arithmetic of complex numbers.

If α1 and α2 are arbitrary real numbers, then

exp1(iα 1) + exp1(iα 02)

= exp1[i(α1 + α2)/2]1exp 1[i(α1 − α2)/2] + exp1[i(α1 + α2)/2]1exp 1[−i(α1 − α2)/2]

= exp1[i(α1 + α2)/2]1{exp1[i(α1 − α2)/2] + exp1[−i(α1 − α2)/2]}

= exp1[i(α1 + α2)/2]1{cos1[(α1 − α2)/2] + i1sin1[(α1 − α2)/2]

+ cos1[(α1 − α2)/2] − i1sin1[(α1 − α2)/2]}

i.e. exp1(iα 1) + exp1(iα2) = 21exp1[i(α1 + α2)/2]1cos1[(α1 − α2)/2] (79)
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4.1 Superposition of two SHMs differing only in phase constant
Suppose we want to superpose the (real) oscillations A1cos1(ω1t + φ1) and A 1cos1(ω1t + φ2), which might represent
two simultaneous electric currents combining to produce a total current. We already know that each oscillation
may be written as the real part of a complex expression of the form A1exp[i(ω1t + φ1)], so we can write the sum of
the two oscillations as the real part of the quantity

z(t) = A exp[i(ω t + φ1)] + A exp[i(ω t + φ2 )]

= A exp(iω t)[exp (iφ1) + exp(iφ2 )]

Using Equation 79

exp1(iα 1) + exp1(iα2) = 21exp1[i(α1 + α2)/2]1cos1[(α1 − α2)/2] Eqn (79)

with α1 = φ1 and α2 = φ02 this may be written

z(t) = 2A cos
φ1 − φ2

2




 exp(iω t) exp

i(φ1 + φ2 )
2









FLAP P5.5 The mathematics of oscillations
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

and it follows that

Re[z(t)] = Re 2A cos
φ1 − φ2

2




 exp(iω t) exp

i(φ1 + φ2 )
2















i.e. Re[z(t)] = 2A cos
φ1 − φ2

2




 cos ω t + φ1 + φ2

2






which implies

  

A cos(ω t + φ1) + A cos(ω t + φ2 ) = 2A cos
φ1 − φ2

2






amplitude
1 2444 3444

cos ω t + φ1 + φ2

2




 (80) ☞

This result shows that adding two SHMs with the same amplitude A and angular frequency ω, but different
phase constants φ1 and φ2 gives a new SHM with:

o the same angular frequency, ω
o a new phase constant (φ1 + φ12)/2

o a new amplitude, 2A cos[(φ1 − φ12)/2].
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Figure 134Combining two SHMs that differ only
in phase.

The particular case A = 2.01m, ω = 3.01Hz, φ1 = −1.07 and φ2 =
2.57 is illustrated in Figure 13. The dotted and dashed curves
combine to give the solid lined curve.

Question T12

Use the complex method to find the sum of two SHMs which
have the form A1sin1(ω1t) and A1cos1(ω1t), where Α  and ω are
(real) constants.4❏
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4.2 Superposition of two SHMs differing in angular frequency and phase constant
Suppose now that we want to sum A1cos1(ω1t + φ1) and A1cos1(ω2t + φ2). We can do this by determining the real
part of

z(t) = A exp[i(ω1t + φ1)] + A exp[i(ω2t + φ2 )]

and using Equation 79,

exp1(iα 1) + exp1(iα2) = 21exp1[i(α1 + α2)/2]1cos1[(α1 − α2)/2] Eqn (79)

with α1 = ω01t+ φ1 and α 02 = ω12t+ φ2 ,

to obtain
z(t) = A exp[i(ω1t + φ1)] + A exp[i(ω2t + φ2 )]

= 2A exp i[(ω1 + ω2 )t + (φ1 + φ2 )] 2{ }cos
ω1 − ω2

2
t +

φ1 − φ2

2













FLAP P5.5 The mathematics of oscillations
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

Taking the real part we obtain

A1cos1(ω1t + φ1) + A1cos1(ω2t + φ2) = Re[z(t)]

= 2A cos
(ω1 − ω2 )t + (φ1 − φ2 )

2






cos
(ω1 + ω2 )t + (φ1 + φ2 )

2






(81)

This general expression is fairly complicated and so it is useful to consider a particular case as in the following
exercise.

Question T13

Use Equation 79

exp1(iα 1) + exp1(iα2) = 21exp1[i(α1 + α2)/2]1cos1[(α1 − α2)/2] Eqn (79)

to find the sum of two SHMs which have the form A1cos1(21ω1t + π/4) and A1cos1(23ω1t − π/4) where ω and A are
real constants. Sketch the resulting function of t and comment on the form of your result.4❏
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4.3 Superposition of many SHMs1—1the diffraction grating

S1

S2

d θ
θ

D

O

P
screen

N

Figure 144A diffraction grating.

Finally, we consider a problem that is of considerable importance in the
study of optics. This concerns the pattern of illumination created on a
distant screen when a uniform beam of light of a single colour
encounters a diffraction grating. For our present purposes a diffraction
grating may be thought of as consisting of a large number of narrow
parallel slits, each of which acts as a source of light. Two of these slits,
S1 and S2, together with the screen are indicated in Figure 14, though
the figure has not been drawn to scale (D should be so much larger than
d that the lines S1P and S2P are effectively parallel).

As explained elsewhere in FLAP, light may often be treated as a wave
phenomenon; so at a given point P on the screen, the effect of the light
spreading out from each of the slits is to create an oscillation that may
be represented by a1cos1(ω1t + φ), where the angular frequency of the
oscillation is determined by the colour of the light, and the phase
constant φ is determined by the distance between the relevant slit and
the point P.
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Figure 144A diffraction grating.

Because each slit is at a different distance from the screen, the
oscillation that each slit causes at P will be characterized by a particular
value of φ, and it may be shown that for oscillations due to any pair of
neighbouring slits these phase constants will differ by an amount

µ = 2πd

λ
sin θ (82)

where d is the separation of adjacent slits on the diffraction grating, λ is
another characteristic of the light (its wavelength), and θ is the angle
between the points P and O, measured from the diffraction grating.

In order to determine the total superposition oscillation occurring at P
due to the light arriving from the n slits that make up the grating, we
need to determine the sum of n SHMs. In other words we need to evaluate a sum of the form

a1cos1(ω1t) + a1cos1(ω1t + µ1) + a1cos1(ω1t + 2µ1) + … + a1cos1[ω1t + (n − 1)µ1]

We can do this by finding the real part of the complex quantity

z(t) = a1e0i1ω1t + a1e0i1(ω1t + µ1) + a1ei1(ω1t + 2µ1) + … + a1e0i1[ω1t + (n − 1)µ1] = a1ei1ω1t [1 + ei1µ + ei12µ +  … + ei1(n − 1)µ]



FLAP P5.5 The mathematics of oscillations
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

z(t) = a1e0i1ω1t + a1e0i1(ω1t + µ1) + a1ei1(ω1t + 2µ1) + … + a1e0i1[ω1t + (n − 1)µ1] = a1ei1ω1t [1 + ei1µ + ei12µ +  … + ei1(n − 1)µ]

The sum in the square brackets is a geometric series with first term 1, and common ratio ei0µ and
(from Question R5) this can be written as

1 + eiµ + ei2µ + … + ei(n−1)µ = 1 − einµ

1 − eiµ (83)

and the resulting expression for z(t) is

z(t) = a eiω t 1 − einµ

1 − eiµ






The terms involving µ can be rearranged as follows

1 − einµ

1 − eiµ = einµ / 2

eiµ / 2

einµ / 2 − e− inµ / 2

eiµ / 2 − e− iµ / 2







=
einµ / 2 sin nµ 2( )
eiµ / 2 sin µ 2( ) (84)

Substituting this in the expression for z(t) and taking the real part gives

Re[z(t)] = a
sin(nµ 2)
sin(µ 2)

cos ω t + (n − 1)µ
2






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We can see from this result that:

o the angular frequency is ω;

o the phase constant is 
(n − 1)µ

2
;

o the amplitude, A say, is given by

A = a
sin(nµ 2)
sin(µ 2)

(85)

Substituting the value of µ from Equation 82

µ = 2πd

λ
sin θ (Eqn 82)

we can write this as

A = a
sin[nπd sin(θ ) λ ]
sin[πd sin(θ ) λ ]
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The square of this amplitude will be proportional to the intensity of illumination at any point on the screen,
provided that the slits are sufficiently narrow. Thus we can expect to observe an intensity distribution that varies
with θ in proportion to

I(θ ) = a2 sin2[nπd sin(θ ) λ ]
sin2[πd sin(θ ) λ ]

Note The slits must be sufficiently narrow so that light from each slit diffracts to the point of superposition. If the slits are
too wide, an additional effect, the diffraction pattern due to a single slit, will modify the intensity pattern, causing the various
intensity maxima to reduce in brightness away from the θ  = 0 maximum.
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2 slits

relative
intensity

4

9

3 slits

4 slits

16

5 slits

25

sinθ

This pattern is shown in Figure
15 for the case of 2, 3, 4 and 5
slits. As you can see, increasing
the number of slits makes the
intensity peaks taller and
narrower .  In  pract ice ,
diffraction gratings have a great
many slits (~101000), with the
result that the observed pattern
of illumination consists of well
separated bright lines. This
pattern is discussed in more
detail in the block of FLAP
modules devoted to light and
optics.

Figure 154A graph of

I(θ ) = a2 sin2 [nπd sin(θ ) λ ]

sin2 [πd sin(θ ) λ ]
 for n = 2, 3, 4, and 5.
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Question T14

Find the sum of

a1sin1(ω1t) + a1sin1(ω1t + φ) + a1sin1(ω1t + 2φ) + … + a1sin1[ω1t + (n − 1)φ]4❏
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5 Closing items

5.1 Module summary
1 Differential equations of second order with constant coefficients arise from many physical situations, in

particular: mechanical and electrical systems.

A mass m subject to a sinusoidal driving force F(t) = F01sin1(Ω1t), a damping force proportional to velocity
and a restoring force proportional to displacement from the origin, will satisfy a differential equation of the
form

m
d2 x(t)

dt2
+ b

dx(t)
dt

+ kx(t) = F0 sin (Ω t) (Eqn 13)

The charge q(t) on a capacitor in a series LCR circuit containing a resistance R, a capacitance C and an
inductance L, subject to an externally applied voltage V(t) = V01sin1(Ω1t), will satisfy a similar differential
equation

L
d2q(t)

dt2
+ R

dq(t)
dt

+ 1
C

q(t) = V0 sin (Ω t) (Eqn 17)

Both equations give rise to harmonically driven, linearly damped harmonic oscillations.
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2 In the absence of damping and driving, Equation 13

m
d2 x(t)

dt2
+ b

dx(t)
dt

+ kx(t) = F0 sin (Ω t) (Eqn 13)

reduces to the equation of simple harmonic motion ☞ (SHM) 
d2 x(t)

dt2
+ ω0

2 x(t) = 0 , where ω0 = k m .

This has the general solution x(t) = A01sin1(ω0t + φ) (Eqn 34)

where A0 and φ are arbitrary constants that are determined by the initial conditions. A0 is the amplitude,
φ the phase constant and ω0 is the (natural) angular frequency while the constants T = 2π/ω00 and
f = 1/T = ω00/02π are known, respectively, as the period and the frequency of the motion.

3 In the absence of any driving term, Equation 13 reduces to the equation of damped harmonic motion

 
d2 x(t)

dt2
+ γ dx(t)

dt
+ ω0

2 x(t) = 0, where ω0 = k m  and γ = b/m. The general solution depends on the

relative values of γ and ω00, but in the physically important case of underdamping it takes the form

x(t) = e−γ t /12[A01sin1(ω1t + φ)] (Eqn 42)

where A0 and φ are arbitrary constants and ω = ω0
2 − γ 2

4
.
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4 The equation of harmonically driven linearly damped oscillation may be written in the form

d2 x(t)
dt2

+ γ dx(t)
dt

+ ω0
2 x(t) = a0 sin (Ω t)

and has a general solution that is the sum of a transient term and a steady state term. In the case of
underdamping, this general solution takes the form

x(t) = e−γ1t1/12[A01sin1(ω1t + φ)] + A1sin1(Ω1t − δ1) (Eqn 47)

A0 and φ are arbitrary constants, ω = ω0
2 − γ 2

4
(Eqn 48)

A = a0

(ω0
2 − Ω 2 )2 + (γ Ω )2

 and δ = arctan
γ Ω

ω0
2 − Ω 2







(Eqn 49)

In the steady state this reduces to x(t) = A1sin1(Ω1t − δ1).
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5 When a voltage V(t) = V01sin1(Ω1t) is applied across a series LCR circuit, the resulting steady state current
has the form I(t) = I01sin1(Ω11t − δ1)
where V0 = I0Z4and4δ = arctan1(X/R)

Z being the impedance given by

Z = R2 + X2  and X = XL − XC = Ω1L − 1/(Ω1C) the total reactance.

6 In the case of the mechanical system described by Equation 13 the mechanical impedance is defined by Zm

= F0/v0 where v0 is the amplitude of the velocity oscillation and Zm = b2 + k

Ω
− Ω m





2

.

7 Resonance is the phenomenon whereby a driven oscillator exhibits large amplitude oscillations when driven
at a frequency close to the natural frequency it would have in the absence of any driving or damping.

8 When analysing a.c. circuits in their steady state, it is convenient to represent the applied voltage V(t) as the
real part of a complex quantity V1(t) =V01e0i1ω�1t and the current I(t) as the real part of a complex quantity ((t)
= (01e0i1ω1t, where V0 and (0 are complex constants. The complex form of Ohm’s law is then the equation
V(t) = ((t) Z where Z is the complex impedance. The value Z = |1Z1| is the impedance, and δ = arg(Z) is the
extent by which the phase of the current lags behind that of the driving voltage.
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9 For complex impedances combined in series

Z = Z01 + Z02 + … Z0n (Eqn 73)

For complex impedances combined in parallel

  

1
Z

= 1
Z1

+ 1
Z2

+ … + 1
Zn

 (Eqn 74)

For a single resistor, ZR = R, for a single capacitor ZC = 1/(iω1C), and for a single inductor ZL = iω1L.

10 The average power dissipated by a circuit carrying alternating current is

    
〈P〉 = 1

2
Re(( 0

*V 0 ) (Eqn 78)

11 The effect of superposing harmonic oscillations may be found by adding together appropriate complex
quantities and then taking the real part of the result (or the imaginary part if appropriate).
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5.2 Achievements
Having completed this module, you should be able to:

A1 Define the terms that are emboldened and flagged in the margins of the module.

A2 Use second-order differential equations to model a variety of oscillatory problems and to highlight the
analogy between mechanical and electrical systems in situations where both are modelled by similar
differential equations.

A3 To explain the significance of impedance and resonance in relation to the amplitude of the steady state
solution to the sinusoidally driven, linearly damped harmonic oscillator.

A4 Use complex numbers to solve simple problems involving LCR circuits and to display relative magnitudes
and phases of currents and voltages by means of an Argand diagram.

A5 To calculate the average power dissipated by a suitable component in a simple a.c. circuit.

A6 Use complex numbers to solve problems involving SHM, including the superposition of two or more
SHMs.

Study comment  You may now wish to take the Exit test for this module which tests these Achievements.
If you prefer to study the module further before taking this test then return to the Module contents  to review some of the
topics.
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5.3 Exit test
Study comment  Having completed this module, you should be able to answer the following questions each of which tests
one or more of the Achievements.

Question E1

(A2)4The general solution of the differential equation

d2 x(t)
dt2

+ 2qω dx(t)
dt

+ (n2 + q2 )ω 2 x(t) = 0

is x(t) = e−qω t [A cos(nω t) + Bsin (nω t)]

and a particular solution of the differential equation

d2 x(t)
dt2

+ 2qω dx(t)
dt

+ (n2 + q2 )ω 2 x(t) = h sin (Ω t)

is xp (t) = c cos(Ω t) + d sin (Ω t)

where c = − 2qωΩ h H  4and4 d = [(q2 + n2 )ω 2 − Ω 2 ]h H

with H = q4ω 2 + 2q2ω 2 (n2 + 1) + (n2ω 2 − Ω 2 )2  and n ≠ Ω /ω.
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Use this solution to write down the transient current and the steady state current in a series LCR circuit
containing a resistor 61Ω, a capacitor 1/131F and an inductor 11H, when it is driven by an applied voltage
V(t) = V01cos1(Ω1t + π), where V0 = 1.001V and Ω = 1.001s−1. Describe an analogous mechanical system.

Question E2

(A2)4What is the resonant frequency of the electrical circuit described in Question E1? What would you expect
to happen when the angular frequency of the applied voltage is close to this value?

Question E3

(A4 and A5)4Calculate the complex impedance of a resistance 61Ω, a capacitor 1/131F and an inductor 11H in
series. What is the current through the circuit if a voltage V(t) = V01cos1(ω1t + π), where ω = 11s−1, is applied to
the circuit? Sketch the complex current and voltage on an Argand diagram, and calculate the average power
dissipated.
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Question E4

(A6)4Use a complex representation to find the result of adding two SHMs of the form a1sin1(ω1t − kx) and
a1sin1(2ω1t + 2kx).

Study comment  This is the final Exit test question. When you have completed the Exit test go back to Subsection 1.2 and
try the Fast track questions if you have not already done so.

If you have completed both the Fast track questions and the Exit test, then you have finished the module and may leave it
here.
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