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1 Opening items

1.1 Module introduction
The idea of waves is familiar from everyday life, with the most common example being water waves. Most of us
have seen ocean waves moving toward a beach, or have generated waves ourselves by dropping stones in a
pond. Despite this everyday familiarity, it turns out to be mathematically quite difficult to discuss water waves in
detail. In fact, the entire subject of wave motion is rather mathematical. Nonetheless, it is very important that
you understand the nature of waves both physically and mathematically, because the concept of a wave is one of
the most fundamental and wide-ranging ideas in physics. In this module we examine only the simplest
mathematical examples, but they are still quite complicated. It is important at each stage to visualize what the
mathematics means, and to keep in mind the underlying physical situation.

We start, in Section 2, by describing certain simple waves mathematically, in a way that is similar to that of
simple harmonic motion. In this discussion, we will come to grips with the essential ideas of wave motion.
We will concentrate on waves on a string, since these have the virtue of being easy to visualize and relatively
easy to describe mathematically. Waves on a string are an example of transverse waves and as such are central
to the theme of this module. In the course of studying them you will see how the application of Newton’s laws
of motion to waves on a string leads to an equation which describes wave motion in general, and determine the
speed of waves on a string.
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You will also learn how such investigations involve a mathematical technique known as partial differentiation.
(You are not expected to be familiar with this technique, but a limited knowledge of ordinary differentiation is
presumed in this module.)

Section 3 is devoted to a fundamental idea in the physics of waves; the principle of superposition. This allows us
to regard complicated waves as assemblies of simple waves, and thereby simplifies many problems. It also
introduces the important idea of interference between waves.

The superposition principle leads naturally to the discussion of the physical principles behind, and mathematical
description of, standing waves. These waves are discussed in Section 4, which also looks at their importance in
the context of stringed musical instruments.

Finally, in Section 5, we consider transverse waves in more complicated systems that require more than one
dimension for their description. These will include an elastic membrane and waves on water (finally!).

Study comment Having read the introduction you may feel that you are already familiar with the material covered by this
module and that you do not need to study it. If so, try the Fast track questions given in Subsection 1.2.  If not, proceed
directly to Ready to study? in Subsection 1.3.
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1.2 Fast track questions

Study comment Can you answer the following Fast track questions?. If you answer the questions successfully you need
only glance through the module before looking at the Module summary (Subsection 6.1) and the Achievements  listed in
Subsection 6.2. If you are sure that you can meet each of these achievements, try the Exit test in Subsection 6.3. If you have
difficulty with only one or two of the questions you should follow the guidance given in the answers and read the relevant
parts of the module. However, if you have difficulty with more than two of the Exit questions you are strongly advised to
study the whole module.

Question F1

A periodic wave is described by the equation

y(x, t) = (31m)1sin1[(21m−1)0x − (51s1−1)0t]

where y and x are measured in metres and t is measured in seconds. What are the amplitude, wavelength, angular
frequency and phase speed of this wave?
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Question F2

A string has a linear mass density of 0.11kg1m0−1 and is under a tension of 5001N. What is the phase speed for
transverse sinusoidal waves propagating along this string?

Question F3

The string described in Question F2 is held rigidly at the positions x = 01m and x = 21m. Describe the motion of
the string when transverse standing waves are set up in this segment. What are the allowed linear frequencies
and wavelengths of transverse stationary waves on this segment of the string?

Study comment Having seen the Fast track questions  you may feel that it would be wiser to follow the normal route
through the module and to proceed directly to Ready to study? in Subsection 1.3.

Alternatively, you may still be sufficiently comfortable with the material covered by the module to proceed directly to the
Closing items.
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1.3 Ready to study?

Study comment In order to study this module you will need to be familiar with the following terms from mechanics:
acceleration, displacement, energy (kinetic and potential), equilibrium, exponential function, force, Newton’s laws of motion,
position and work. In addition, you should have a good appreciation of the characteristics of simple harmonic motion.
This module is more mathematically demanding than the average FLAP module. You will need to be familiar with the
calculus notation dx/dt used to represent the rate of change of x with respect to t, and its interpretation in terms of the
gradient of a graph. You should also be able to differentiate simple functions such as sin1x  and cos 1x. In the latter part of the
module you will be required to use vectors. For the purposes of that section you should know how to express a vector in
terms of its components and how to relate those components to the magnitude of the vector. The formal definition of a
derivative is used in one subsection and the idea of a scalar product (of two vectors) also makes a brief appearance.
Familiarity with both of these items will be helpful but is not essential. If you are uncertain about any of these topics review
them in the Glossary, which will indicate where in FLAP they are developed. The following Ready to study questions will
allow you to establish whether you need to review some of the topics before embarking on this module.
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Question R1

The position of a particle oscillating about a fixed point may be described by the equation x0(t) = A1cos1(ω1t + φ),
where x is measured in metres, and the time t is measured in seconds. If A = 0.11m, ω = 0.51s−1 and φ = 0.2, ☞
sketch a graph showing how x varies with t for 01s ≤  t ≤  151s and use the graph to explain the physical
significance of A, ω and φ. What is the period of this motion?

Question R2

What is the acceleration of the particle from Question R1 as a function of time? If the particle has a mass of
0.11kg, what is the force required to produce this motion?
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Question R3

A straight segment of string lies on a flat surface which we can designate as the (x, y) plane of a coordinate
system. Outward forces of magnitude of 101N are applied parallel to the string at the ends of the segment, which
is oriented at an angle of 30° (measured in the anticlockwise sense) to the x-axis. Calculate the
x- and y-components of each force and the net force applied to the string segment. What is the magnitude of the
tension in the string?
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2 Travelling transverse waves

2.1 Physical description of travelling waves
We are all familiar with waves. Everyone has a mental image of ocean waves approaching a beach.
However, describing such waves physically is not an easy task; even the most basic features of the description
are problematic. For example, when a wave approaches a beach, what is it that is actually travelling? It can’t be
the water itself, or the entire ocean would gradually accumulate on the beach. Indeed, if you look at small boats
or other floating objects you will see that their main response to a passing wave is to move up and down, so it is
pretty clear that the movement of the water is essentially vertical — at right angles to the direction in which the
wave is travelling. (The water motion is actually slightly more complicated than this, but we will come back to
that later.) A similar problem arises when describing the wave that travels along a string or a rope that has been
jerked up and down at one end. If one small segment of the string is marked by bright colouring, it can be seen
that the marked segment simply moves up and down, it doesn’t travel along with the wave. In the case of
‘mechanical waves’ such as ocean waves and waves on strings, a medium (either the water or the string) is
essential to the existence of the wave, but it is clear that the wave does not consist of an overall motion of the
medium in the direction of the wave. Moreover, there are waves, such as the electromagnetic waves ☞
associated with light, that can travel through a vacuum and which therefore exist even in the absence of a
medium. So, if a wave does not consist of the overall motion of a medium, what is it that does constitute a wave?
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When we look at the moving crest of a water wave, we are looking at a region where the surface of the water is
raised above its mean (or equilibrium) position. This region of maximum surface displacement certainly moves
with the wave, even though the water of which it is composed at any particular moment does not. Similarly, in
the case of a wave on a string, it is the location of any point of fixed vertical displacement from the equilibrium
position that travels with the wave. Thus, in both these cases the quantity that is ‘waving’ is the vertical
displacement of the medium from its equilibrium position. More generally, given a physical quantity with a well
defined ‘equilibrium’ value at every point in some region we can say that, as far as that quantity is concerned:

A travelling wave is some sort of disturbance that moves from place to place.

In the case of mechanical waves, and in many other cases, the creation of these wave disturbances requires
energy, perhaps to distort a string or to raise a water level, so the movement of such disturbances indicates the
transfer of energy from place to place. We can therefore often associate travelling waves with the transfer of
energy. In the case of those waves that require a medium, it should be noted that this transfer of energy occurs
without a net motion of the medium itself. This kind of energy transfer should be distinguished from that which
occurs in streams or rivers (or in water flowing from a tap), in which there is a net motion of the medium.
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The displacements that constitute surface waves on water and waves on a string (and the electromagnetic
disturbances that account for light waves) all occur at right angles to the direction in which the wave itself is
travelling. Any wave with this characteristic is called a transverse wave. Such a wave may be contrasted with a
longitudinal wave in which the disturbances are along the direction in which the wave is travelling. (The most
familiar example of a longitudinal wave is probably a sound wave which causes molecules to oscillate back and
forth around their mean positions.) Longitudinal waves  are discussed elsewhere in FLAP; in this module we
will almost exclusively be concerned with transverse waves.
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2.2 Mathematical description of travelling waves
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Figure 14(a) A simple wave pulse on a string at t = 0. (b) The
same pulse at a later time t = t1.

We now have a physical picture of transverse
travelling waves, but it remains purely
qualitative. In order to make it more precise, we
need to develop a mathematical description of
such waves. As a concrete example, we will look
at transverse travelling waves on a horizontal
string under tension. To start with we will
consider a simple solitary wave (or pulse) in the
vertical plane travelling along the string, as
shown in Figure 1.

At any particular time, the pulse will have a
specific shape or wave profile that can be
described mathematically by specifying the
vertical displacement y of any part of the string as
a function of its horizontal position x.
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Figure 14(a) A simple wave pulse on a string at t = 0. (b) The
same pulse at a later time t = t1.

Note that in introducing the Cartesian coordinates
x and y, we have chosen the origin in such a way
that x is measured from the left-hand end of the
string, and y is measured from the horizontal
equilibrium position. With the aid of these
coordinates the wave profile at time t = 0
(i.e. Figure 1a) can be represented by y =  f1(x),
where f1(x) is the function that relates x to y for
this particular pulse. It follows that at a specific
point on the x-axis, such as x = x1, we can say that
y1 =  f1(x1) at t = 0.

The wave shown in Figure 1 is moving in the
direction of increasing x (hereafter called the +x-
direction). This is known as the wave’s
direction of propagation and the speed v with

which it moves in that direction is its speed of propagation. In this case we will assume that v is constant and
that the wave moves without changing its shape. ☞ This combination of constant speed and unchanging shape
implies that as time passes the whole pulse moves to the right.
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Figure 14(a) A simple wave pulse on a string at t = 0. (b) The
same pulse at a later time t = t1.

Thus, as Figure 1b indicates, at time t = t1 (x > 0)
the part of the pulse with vertical displacement y1

that was initially at x = x1 will be located at some
new position x = x1′.

✦ Remembering that the speed of propagation
is v, express x1′ in terms of x1, v and t1.

We can rearrange this last relationship to give
x1 = x1′ − vt1. Thus we can write 
y1 = f1(x1) = f1(x1′ − vt1).

Now there is nothing special about the values x1
and y1 except that they are the coordinates of a
point on the wave profile at time t1, so we are
justified in saying that at time t1 the entire wave profile (i.e. Figure 1b) can be represented by y = f1(x − vt1).
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Similarly, there is nothing special about t1 either, so we can say that at any given time t the profile of the entire
rightward moving wave is given by

y = f1(x − vt) ☞

A similar line of argument, based on a pulse that has profile y = f1(x) at t = 0 but which moves to the left, in the
−x-direction, has its profile at any particular time t given by

y = f1(x + vt) ☞

We can therefore say that if a wave with profile y = f1(x) at t = 0 moves with constant speed v and unchanging
shape along the +x or −x-direction, then its profile at any time t is given by:

y = f1(x ± vt) (1)

From a purely mathematical point of view Equation 1 expresses y as a function of two independent variables,
x and t. Any mathematical description of a wave must always involve at least two variables since the wave must
vary in space as well as in time. (It is this feature that distinguishes a wave from an oscillation in which a
displacement or some other disturbance varies with time alone.) As has already been stressed, Equation 1
represents a wave travelling in the ±x-direction with constant speed and unchanging shape. In that case the
variables x and t must occur in the combination x ± vt.



FLAP P5.6 Introducing waves
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

However, we can represent more general waves that do not satisfy these assumptions (e.g. waves on a non-
uniform string) by an equation of the form y = f1(x, t). We can then regard Equation 1

y = f1(x ± vt) (Eqn 1)

as an additional condition that the general function f1(x, t) must satisfy if it is to describe waves with constant
speed and unchanging shape.

Question T1

Suppose that at t = 0 a wave pulse has the form f (x) = y0
3

x2 + a2
, where y0 and a are both constants.

If the pulse moves with unchanging shape with a speed v in the +x-direction, what will be its mathematical

description as a function of time? If v = 0.51m1s−1, y0 = 0.201m and a = 0.201m, sketch the profile of the wave at

t = 01s and t = 41s.4❏
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Figure 24A periodic wave, or wave train. (a) The wave profile at
a given time, shows the shape of the wave everywhere on the
string at the given time. The wavelength λ is the distance that
separates equivalent points on the wave profile. (b) The wave form
of the same wave train at a given position, shows the oscillation
that the wave causes at all times at the given point. The period T is
the time that separates equivalent points on the wave form.

2.3 Periodic travelling waves
A common feature of waves that we haven’t
introduced explicitly yet is the repetition of the
wave pattern. Figure 2 shows such a repeating
wave, y  = f1(x, t), made up of a sequence of
identical pulses. Since the transverse
displacement y  varies with time as well as
position, the figure shows y as a function of x at a
particular time t1 (Figure 2a, the wave profile),
and y as a function of t at a particular point x1
(Figure 2b, the wave form). Repetitive waves of
this kind are known as periodic waves or wave
trains.

If we consider the wave profile in Figure 2a, we
can see that it possesses a spatial periodicity
which we can characterize by the wavelength λ.



FLAP P5.6 Introducing waves
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

Mathematically, we can define the wavelength of a periodic wave as the smallest length λ such that:

f1(x + λ 0, t1) = f1(x, t1)4for all x (2)

This equation expresses the condition that, at a given time, any two points along the wave separated by a
distance λ will be completely equivalent. This implies that at a given time, both the transverse displacement and
the transverse velocity ☞ will be identical at any two points separated by one wavelength.

Similarly, Figure 2b shows that the wave posses a temporal periodicity which can be characterized by a
period T. Mathematically, we can define the period of a periodic wave as the smallest time T such that:

f1(x1, t + T) = f1(x1, t)4for all t (3)

This equation expresses the condition that, at a given point, the wave will cause identical disturbances at any two
moments separated by a time T. This implies that at a given point, both the transverse displacement and the
transverse velocity will be identical at any two times separated by one period.
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We would now like to specialize our description to a particular type of periodic function, namely the sine
function. A sinusoidal wave travelling with constant speed v in the +x-direction (without changing shape) is
described by

y = A1sin1[k(x − vt)] (4)

where A  and k are constants required to make the expression dimensionally consistent. A is known as the
amplitude of the wave; it represents the maximum positive displacement from the equilibrium position and has
the same dimensions as the displacement. k is the angular wavenumber; it determines the wavelength of the
wave and must have the same dimensions as x−1 to ensure that the argument of the sine function, k(x − vt), is
dimensionless. It should be noted that the argument k(x − vt) is called the phase of the wave, and that an even
more general kind of sinusoidal wave would be one in which the phase was not necessarily zero at x = 0 and
t = 0. Such a sinusoidal wave may be written y = A1sin1[k(x − vt) + φ], where the dimensionless quantity φ is
called the phase constant. Since the propagation speed v we have been describing is the speed of a point with
fixed phase it may also be referred to as the phase speed.
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Question T2

For the wave defined by Equation 4,

y = A1sin1[k(x − vt)] (Eqn 4)

sketch the wave profile at t = 0, and the wave form at x = 0. Use the fact that sin1(θ + 2π) = sin1θ to show that the
wavelength λ and the period T of this wave are related to the angular wavenumber k and the propagation speed v
by the following expressions:

k = 2π
λ

4and4
  
kv = 2π

Τ
4❏

If we examine a sinusoidal wave on a string, and concentrate our attention on any fixed point x, then we find that
at that particular point the string is exhibiting simple harmonic motion (you can see this from the wave form that
you drew in response to Question T2). The number of oscillations per second occurring at any fixed point is
called the frequency and is given by f = 1/T. A related quantity that is also of value in describing these
oscillations is the angular frequency ω = 2πf = 2π/T. ☞
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Combining these definitions with the relationships between k, v, λ and T we can see that

  v = fλ 4and4
  
v = ω

k

Using v, T, k, λ, ω and f we may represent the sinusoidal wave in a variety of equivalent ways:

y = A sin[k(x − vt)] (Eqn 4)

y = A1sin1(kx − ω1t) (5)

y = A1sin1[2π(σ1x − ft)] (6)

y = Asin 2π x

λ
− ft











(7)

y = Asin 2π x

λ
− t

T












(8) ☞
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y = A1sin1(kx − ω1t) (Eqn 5)

y = A1sin1[2π(σ1x − ft)] (Eqn 6)

y = Asin 2π x

λ
− ft











(Eqn 7)

If you examine these equations you will see that Equation 6 contains a constant σ that we have not yet defined.
Comparing Equations 6 and 7 we see that σ = 1/λ , so it can be thought of as the number of wavelengths per
metre. σ is properly called the wavenumber, but unfortunately that term is also widely used to refer to the
angular wavenumber k, so make sure you know which is being referred to in any particular situation.

Each of the different descriptions of the sinusoidal wave has its uses, but Equation 5 is probably the most useful.
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If you remember Equation 5

y = A1sin1(kx − ω1t) (Eqn 5)

you will generally find that you can work out the other forms if you need them, especially if you also remember
the following general relations

ω = 2π/T4and4f = 1/T 

k = 2π/λ4and4σ = 1/λ

v = λ1f

v = ω1/k (9)

It is worth noting that these relations are generally true for any periodic wave form, not just for sinusoidal
waves.
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Table 1 summarizes the correspondence between the parameters describing the spatial dependence and those
describing the temporal dependence. The space and time parameters are connected through the phase speed.

Table 14Correspondence between the space and time parameters of a wave.

Variable Space (x) Time (t)

periodicity λ T

number of linear cycles per unit variable σ f

number of angular cycles per unit variable k ω
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2.4 Visualizing sinusoidal travelling waves
We now have several equivalent mathematical descriptions of sinusoidal travelling waves. However, in order to
understand any of them fully we need to examine them from several different points of view, since they relate
the displacement y to two variables x and t. This subsection is intended to help you to visualize these waves.

Imagine a dark room with a horizontal luminescent string stretched across it, from the south wall to the north
wall. Now imagine that sinusoidal waves are made to travel along this string, from south to north, and that you
are able to see parts of these waves by looking through some rather odd windows in the east and west walls of
the room.

✦ The first window lets you see the entire string, but only for a moment — as a kind of snapshot (imagine it
has a shutter which opens and closes very quickly). What would you see?

To understand this mathematically, suppose that the north–south direction is the direction of the x-axis of a
coordinate system, and that the y-axis points vertically upwards. If t1 represents the time of observation, then

y = A1sin1(kx − ω1t) (Eqn 5)

takes the form y = A 1sin1(kx − ω1t1) which is a sine function in the x-coordinate, with amplitude A and angular
wavenumber k = 2π/λ. The constant −0ω1t1 determines the displacement y at x = 0.
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✦ The second window is vertical and very narrow, but it remains open all the time. What would you see?

In this case, you are observing at a fixed value of x, so in terms of

y = A1sin1(kx − ω1t) (Eqn 5)

y = A1sin1(kx1 − ω1t) = A 1sin1(ω1t + π − kx1) which describes a sinusoidal motion in time with amplitude A and
angular frequency ω. The constant (π − kx1) determines the displacement y at t = 0.

Question T3

Using an appropriate trigonometric identity show that the two sine functions equated above are indeed
identical.4❏
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✦ The third window is horizontal and very narrow. It allows you to see the entire length of the room at all
times, but only at a level slightly above the equilibrium level of the string. What would you see?

Each of these three different windows corresponds to holding one of the three variables t, x or y constant, and
provides a different view of a travelling wave. Each explicitly shows us one of the characteristic parameters of
the wave: frequency, wavelength or phase speed.
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Figure 34A three-dimensional graph of the function y =

A1sin 1(kx − ω1t). In this case ω1/k = 0.71m1s−1.

An entirely different way of visualizing a function
of two variables such as y = A1sin1(kx − ω1t) is in
terms of a three-dimensional graph in which the
x- and t-axes are located in a horizontal plane and
the value of y corresponding to any particular pair
of values (x, t) is plotted vertically.

Such a graph is shown in Figure 3. The wave
profile at any time is represented by a cross section
of this graph taken parallel to the (x, y) plane, at the
appropriate value of t. Similarly, the wave form at
any particular point is represented by a section
taken parallel to the (t, y) plane at the appropriate
value of x. Three-dimensional graphs can provide
great insight into functions of two variables, but
they are difficult to draw and may be even more
difficult to interpret.
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2.5 The force law for a wave on a string

Study comment This subsection involves some mathematical ideas that may be new to you and which you may find
daunting. If so, don’t be put off. If you find it difficult to follow the arguments concentrate on the physical situation that the
mathematics is describing. Once you have mastered that, the mathematical formalism should be easier to understand.

We now have a way of describing the motion of a wave on a string, in other words we have a kinematic
description of the wave, but we also would like to be able to understand the causes of the motion, that is to
describe the motion dynamically — in terms of the forces that cause it. For a wave on a string this should be
possible since we can determine the forces that act on any small segment of the string and then use
Newton’s laws to work out how the segment will move in response to those forces. By considering what
happens when we consider a smaller and smaller segment we should ultimately be able to predict the motion of
any point on the string, and hence the behaviour of the wave itself.
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Figure 44A small segment of string and the forces that act
on it due to the tension in the string. Tangents to the string,
drawn at the end points A and B of the segment, make angles
θ and φ with the positive x-axis. The angles in the figure are
positive and large enough to be clearly seen, but in principle
they might be negative and we shall assume that whatever
their sign they are actually very small.

Figure 4 shows the sort of small segment of string we
wish to consider. The segment will generally be
curved, with its ends A and B, respectively, making
angles θ and φ with the horizontal ☞. The length of
the segment is ∆l and the projection of this length
onto the x-axis is ∆x. In order to make the analysis of
the motion of this segment as simple as possible, we
will make a number of simplifying assumptions: ☞
1 We will assume that the tension in the string has

the same magnitude at all points. (This can only
be an approximation: the passage of the wave
will stretch the string slightly, which will
increase the tension. However, if the wave is of
small amplitude, this will be a small effect which
we can ignore.)

2 We will also assume that the angles φ and θ that
the string makes with the horizontal are small.
This will allow us to make various
approximations, including cos1θ = 1, cos1φ = 1 and ∆1l = ∆1x.
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Figure 44A small segment of string and the forces that act
on it due to the tension in the string. Tangents to the string,
drawn at the end points A and B of the segment, make angles
θ and φ with the positive x-axis. The angles in the figure are
positive and large enough to be clearly seen, but in principle
they might be negative and we shall assume that whatever
their sign they are actually very small.

3 We will ignore the weight of the segment, so the
only forces that act upon it are the tension forces
on its ends due to the neighbouring parts of the
string.

Referring to Figure 4, and remembering that the
angles have been exaggerated, you can see that
tension forces on the ends of the segment are of equal
magnitude, FT, but they act in different directions.
At end A the components of the tension force are

Fx(A) = −FT1cos1θ 4and4Fy(A) = −FT1sin1θ

At end B, the corresponding components are

Fx(B) = FT1cos1φ 4and4Fy(B) = FT1sin1φ

Since the angles are small and cos1θ = cos1φ = 1 it
follows that the total horizontal force on the segment
is

Fx(A) + Fx(B) = 0
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Figure 44A small segment of string and the forces that act
on it due to the tension in the string. Tangents to the string,
drawn at the end points A and B of the segment, make angles
θ and φ with the positive x-axis. The angles in the figure are
positive and large enough to be clearly seen, but in principle
they might be negative and we shall assume that whatever
their sign they are actually very small.

It follows from Newton’s second law of motion,
F  = ma, that the segment will have no tendency to
accelerate in the x-direction.

On the other hand, the y-component of the total force
on the segment is

Fy(A) + Fy(B) = −FT1sin1θ + FT1sin1φ

Now, because the angles θ and φ are small we can say
that

sin θ = sin θ
1

≈ sin θ
cosθ

= tan θ

and  sin φ = sin φ
1

≈ sin φ
cos φ

= tan φ

Hence, the y-component of the total force on the
segment is

Fy(A) + Fy(B) = FT(tan1φ − tan1θ)
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drawn at the end points A and B of the segment, make angles
θ and φ with the positive x-axis. The angles in the figure are
positive and large enough to be clearly seen, but in principle
they might be negative and we shall assume that whatever
their sign they are actually very small.

But tan1θ is the gradient of the segment at A, and

tan1φ is the gradient of the segment at B. You should
be familiar with the use of calculus notation to
represent gradients, so you might be tempted to say
that these gradients can be obtained by evaluating the

derivative 
dy

dx
, at the points A and B.

This statement captures the spirit of our next step but
it is not correct as it stands. The problem is that in this
case y depends on x and  t; it is a function of two
variables. Consequently, it has many gradients and
many derivatives at any point.
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Figure 54On the three-dimensional graph of a function of two
variables there are generally many different gradients and many
different derivatives at a single point.

You can see this in Figure 5, which you
may, if you wish, regard as an enlargement
of a small part of Figure 3. At the point
marked A there is a gradient and hence a
derivative in the x-direction, but there is also
a gradient and a derivative in the t-direction,
and in every other direction between those
two. In discussing the gradient of the string
at A (or B) what we are really interested in is
the gradient in the x-direction at a particular
time, and hence the derivative of y with
respect to x while t is held constant.

This kind of derivative is called a
partial derivative, and is represented by the

symbol 
∂ y

∂ x
 or, even more explicitly,

∂ y

∂ x





 t

. ☞
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So, using the partial derivative notation we can write the y-component of the total force on the segment at any
time t

Fy(A) + Fy(B) = FT(tan1φ − tan1θ)

as Fy (A) + Fy (B) = FT
∂ y

∂ x
(B) − ∂ y

∂ x
(A)





 t

(10)

In a moment we will substitute this expression into Newton’s second law, but first we pause for a mathematical
aside that tries to clarify the nature of these important partial derivatives.
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Mathematical aside4When dealing with a function of one variable, such as y =  g(x), we can define its
derivative (provided it exists) at any value of x by

dy

dx
= lim

h→0

g(x + h) − g(x)
h







Using this definition (or rules derived from it) we can easily find the derivative of a wide variety of simple
functions. For example, if a, b, c, A are all constants:

if y = ax3 then 
dy

dx
= 3ax2

if y = A1sin1(bx) then 
dy

dx
= Ab cos(bx) ☞

if y = A1sin1(c − bx) then 
dy

dx
= − Ab cos(c − bx)
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Since the derivative dy/dx is itself a function of x, we may take its derivative, thus defining the second derivative

d2 y

dx2
= d

dx

dy

dx






In a similar way, when dealing with a function of two variables such as y = f1(x, t) we can define the partial
derivatives

∂ y

∂ x
= lim

h→0

f (x + h, t) − f (x, t)
h







(11)

∂ y

∂ t
= lim

h→0

f (x, t + h) − f (x, t)
h







(12)

Using these definitions we can easily find the partial derivatives of a range of functions of two variables, though
in practice it is much easier to remember that in order to find a derivative such as ∂1y/∂1x all you have to do is to
treat t as a constant and then proceed as you would when dealing with a function of x alone.
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Thus, if a, b, A, k and ω are all constants:

if y = a0t03x2 then 
∂ y

∂ x
= 2at3x and 

∂ y

∂ t
= 3at2 x2

if y = A1sin1(kx − ωt) then 
∂ y

∂ x
= Ak cos(kx − ω t) and 

∂ y

∂ t
= − Aω cos(kx − ω t)

Since the partial derivatives are also functions of two variables we may define the second partial derivatives

∂ 2 y

∂ x2
= ∂

∂ x

∂ y

∂ x







,4 ∂ 2 y

∂ t2
= ∂

∂ t

∂ y

∂ t






4and4 ∂ 2 y

∂ x∂ t
= ∂

∂ x

∂ y

∂ t







h

Question T4

Work out 
∂ y

∂ x
,

∂ y

∂ t
,

∂ 2 y

∂ x2
,

∂ 2 y

∂ t2
,

∂ 2 y

∂ x∂ t
 and 

∂ 2 y

∂ t∂ x
 in the following cases: (a) y = A1sin1(btx), 

(b) y = a0t + bx2 + c0t0x2. In each case where a, b and c are constants.4❏

Mike Tinker




FLAP P5.6 Introducing waves
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

Returning to our small segment of string, now that we know the y-component of force on the string we can use
Newton’s second law to relate it to the y-component of the acceleration. Thus:

FT
∂ y

∂ x
(B) − ∂ y

∂ x
(A)







= may (13)

where m is the mass of the segment and ay is its component of acceleration in the y-direction. If we define the
mass per unit length of the string (the linear mass density) to be µ, then the mass of our string segment will be
µ0∆1l, which we will take to be approximately equal to µ0∆1x. In principle ay should be the acceleration of the
centre of mass of the string, but we will assume that the segment is sufficiently small that this acceleration is
approximately equal to the acceleration of end A, so we can write

ay ≈ ∂ 2 y

∂ t2
(A) (14)

where the approximation will become increasingly accurate as the length of the segment is reduced.
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It follows from Equations 13 and 14,

FT
∂ y

∂ x
(B) − ∂ y

∂ x
(A)







= may (Eqn 13)

ay ≈ ∂ 2 y

∂ t2
(A) (Eqn 14)

together with the relation m = µ0∆1x, that

FT
∂ y

∂ x
(B) − ∂ y

∂ x
(A)







≈ µ ∆x
∂ 2 y

∂ t2
(A)

i.e.
1

∆x

∂ y

∂ x
(B) − ∂ y

∂ x
(A)







≈ µ
FT

∂ 2 y

∂ t2
(A)

In the limit where the length of the segment becomes vanishingly small this approximation will become an
equality, so we may write

lim
∆x→0

1
∆x

∂ y

∂ x
(B) − ∂ y

∂ x
(A)















 = µ

FT

∂ 2 y

∂ t2
(A)
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Now, if we remember that both y and ∂1y/∂1x are actually functions of x and t, so that the segment ends A and B
should really be specified in terms of a position and a time, as in (x, t) for A, and (x + ∆1x, t) for B, we can
rewrite this last relation as

lim
∆x→0

1
∆x

∂ y

∂ x
(x + ∆x, t) − ∂ y

∂ x
(x, t)















 = µ

FT

∂ 2 y

∂ t2
(x, t)

The significance of this step is that it allows us to see that the term on the left-hand side is just the partial
derivative with respect to x of ∂1y/∂1x (compare with Equation 11).

∂ y

∂ x
= lim

h→0

f (x + h, t) − f (x, t)
h







(Eqn 11)

In other words the left-hand side is the second partial derivative of y  with respect to x. Thus the transverse
displacement y(x, t) must satisfy the equation

∂ 2 y

∂ x2
= µ

FT

∂ 2 y

∂ t2
(15) ☞

Mike Tinker
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Equation 15 is of great importance.

∂ 2 y

∂ x2
= µ

FT

∂ 2 y

∂ t2
(Eqn 15)

Although we have only derived it at a certain point, defined by x and t, there was nothing special about those
coordinates, so it must be true at any point x and any time t. Moreover, the same equation can be obtained even
if we relax some of the simplifying assumptions we made earlier, so it actually represents a very general
condition that the transverse displacement must satisfy. Mathematically it may be described as a linear second-
order partial differential equation, ☞ and is one form of the wave equation that will be discussed shortly.
By identifying Equation 15 as a special case of the wave equation we will soon be able to relate the phase speed
of waves on a string to µ and FT, the linear mass density and tension magnitude of the string.

The derivation of Equation 15 is typical of the derivations of the wave equations for other physical systems.
We start from the basic physics in a system, analyse the forces that result from a deviation from equilibrium,
make approximations based upon those deviations being small enough, and come up with a partial differential
equation which describes the motion in the system. If the approximations of smallness are not made, we will
generally end up with a non-linear equation, and much more complicated mathematical and physical behaviour;
we will not deal with these in FLAP.

Mike Tinker
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2.6 The speed of waves on a string
We now have an equation of motion (Equation 15)

∂ 2 y

∂ x2
= µ

FT

∂ 2 y

∂ t2
(Eqn 15)

based on the physics of a string under tension. To verify that sinusoidal periodic waves of the kind described by
Equations 4–8

y = A sin[k(x − vt)] (Eqn 4)

y = A1sin1(kx − ω1t) (Eqn 5)

y = A1sin1[2π(σ1x − ft)] (Eqn 6)

y = Asin 2π x

λ
− ft











(Eqn 7)

y = Asin 2π x

λ
− t

T












(Eqn 8)

satisfy Equation 15, we need to determine the relevant partial derivatives of the sine function and show that they
satisfy the equation of motion.
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According to Equation 5, the transverse displacement y of a sinusoidal wave is given by

y = A1sin1(kx − ω1t) (Eqn 5)

so
∂ y

∂ x
= Ak cos(kx − ω t)

and
∂ 2 y

∂ x2
= ∂

∂ x

∂ y

∂ x







= − Ak2 sin (kx − ω t)

thus
∂ 2 y

∂ x2 = −k2 y (16)

✦ Calculate the second partial derivative of y with respect to t.
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Substituting Equations 16 and 17

∂ 2 y

∂ x2 = −k2 y (Eqn 16)

∂ 2 y

∂ t2 = −ω 2 y (Eqn 17)

into the equation of motion (Equation 15),

∂ 2 y

∂ x2
= µ

FT

∂ 2 y

∂ t2
(Eqn 15)

we obtain:

−k2 y = − µ
FT

ω 2 y

i.e.
k2

ω 2
= µ

FT
(18)
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Thus, the sinusoidal waves described by Equation 5

y = A1sin1(kx − ω1t) (Eqn 5)

will satisfy Equation 15

∂ 2 y

∂ x2
= µ

FT

∂ 2 y

∂ t2
(Eqn 15)

provided k ω = µ FT . However, according to Equation 9,

v = ω1/k (Eqn 9)

ω1/k is just the speed of propagation v (i.e. the phase speed) of the sinusoidal waves. Hence, Equation 18

k2

ω 2
= µ

FT
(Eqn18)

implies:

  
v = FT

µ
(19)
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So we have found that the sine wave is a solution of the equation of motion for a string if the speed of
propagation is given by the square root of the tension magnitude divided by the mass per unit length. This is an
important result, because its general character will extend to waves on other media. Each physical system must
be considered in its own right, but it is common to find that the propagation speed is given by an expression
similar to Equation 19 with FT replaced by the magnitude of the force restoring the medium to its equilibrium
position, and µ replaced by some parameter that characterizes the inertia in the system, i.e. the tendency of the
medium to remain in a given state of motion.

Question T5

Determine the units of the expression FT µ .4❏

Question T6

A wire has a linear mass density of 5.51g1m−1, and is under a tension of 5001N. What is the phase speed of
transverse sinusoidal waves in this wire?4❏
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2.7 The energy of waves on a string
It was stated earlier that waves often involve the transfer of energy from place to place. This subsection is
devoted to a discussion of the energy transferred by a wave on a string, but, as in the last subsection, some of the
results are indicative of the behaviour of a wide variety of physical systems. As is usual for a mechanical system,
the total energy of a wave on a string comprises kinetic energy and potential energy. The kinetic energy arises
from the motion of the various parts of the string, while the potential energy arises from the work done by the
restoring force acting on each element that departs from equilibrium. Up to this point, we have considered parts
of the wave that are far enough away from the ends of the string that the length of the string is irrelevant.
In order to continue doing this it is convenient to characterize the energy associated with the waves in terms of a
linear energy density DE(x, t). This can be determined by measuring the total energy E associated with a short
segment of string of length ∆l, centred on x at time t, and then determining the ratio E/∆l as ∆ l becomes
vanishingly small. In this way we can define DE(x, t) as the energy per unit length of the string at x and t, and we
see that it can be measured in units of joules per metre (J1m−1). ☞
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Figure 44A small segment of string and the forces that act
on it due to the tension in the string. Tangents to the string,
drawn at the end points A and B of the segment, make angles
θ and φ with the positive x-axis. The angles in the figure are
positive and large enough to be clearly seen, but in principle
they might be negative and we shall assume that whatever
their sign they are actually very small.

The kinetic energy contribution to DE(x, t) is fairly

straightforward; the mass of the segment is µ1∆x, and

the velocity is ∂y/∂0t, so the kinetic energy term is

1
2

µ ∆x
∂ y

∂ t







2

.

The potential energy contribution is more difficult to
derive; here we will just quote the value, which is

1
2

FT
∂ y

∂ x







2

∆x .

To see that this is at least plausible, remember the
discussion in Subsection 2.5 of the forces acting on a
small segment, as shown in Figure 4. When y is at a
maximum value, there are no forces acting on the
segment, so it is not stretched, and the potential
energy is zero. On the other hand, when y = 0, the slope of the curve is steepest, and the potential energy is a
maximum.
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Then this linear energy density can be expressed as

DE (x, t) = 1
2

µ ∂ y

∂ t







2

+ FT
∂ y

∂ x







2











(20)

The first term corresponds to the kinetic energy per unit length, or the linear kinetic energy density. The second
term corresponds to the linear potential energy density.

This general expression is not very informative, so we will restrict our discussion to the case of sinusoidal
waves. We calculated the required first derivatives in the preceding subsection, so we can substitute these
directly into the energy density equation:

DE (x, t) = 1
2

µ[− Aω cos(kx − ω t)]2 + FT[Ak cos(kx − ω t)]2{ }

so DE (x, t) = 1
2

A2 (µω 2 + FTk2 ) cos2 (kx − ω t) (21)



FLAP P5.6 Introducing waves
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

It is interesting to compare the linear energy density at a point on the string with the energy of a simple harmonic
oscillator. In the latter case the total energy of the oscillator is constant, but its form fluctuates between kinetic
energy and potential energy. In the case of the wave on a string, the linear energy density is itself a travelling
wave, so energy is being carried along the string and the energy density at any fixed point (i.e. at any fixed value
of x) oscillates with time. The kinetic and potential energy densities have the same functional dependence on x
and t, so their maxima and minima occur simultaneously at any given point.

Using Equation 18

k2

ω 2
= µ

FT
(Eqn 18)

we can see that µω12 = FTk2, so we can rewrite Equation 21

DE (x, t) = 1
2

A2 (µω 2 + FTk2 ) cos2 (kx − ω t) (Eqn 21)

more compactly as:

DE(x, t) = µ0ω12A21cos21(kx − ω1t) (22)
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DE(x, t) = µ0ω12A21cos21(kx − ω1t) (Eqn 22)

We now see that the magnitude of the linear energy density is proportional to the square of both the amplitude
and the frequency of the wave. This makes good physical sense: if you were generating the waves by shaking
one end of the string you would have to shake more vigorously and supply more energy if you wanted to
increase either the amplitude or the frequency, or both. ☞

The energy density of Equation 22 is clearly a periodic wave, but the presence of the square of the cosine
function makes it difficult to determine its wave parameters. However, if we use the following trigonometric
identity ☞:

cos2 θ = 1 + cos(2θ )
2

we can rewrite the energy density as:

DE (x, t) = µω 2 A2

2
[1 + cos(2kx − 2ω t)]
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We can now introduce some new constants, D0 = µω 2 A2

2
, kE = 2k and ωE = 2ω, and use them to write

DE (x, t) = D0[1 + cos(kE x − ω Et)] (23) ☞

This equation shows that the linear energy density has a constant average value, D0, about which it fluctuates in
a wave-like way, though it never becomes negative. This wave-like fluctuation in the energy density has an
angular wavenumber kE which is twice that of the original displacement wave, and an angular frequency ωE
which is twice that of the original. This leads to a wavelength λE and a period TE which are half the original
values, resulting from the fact that the energy density does not depend on the signs of the transverse velocity and
transverse displacement. At a fixed value of x , the linear energy density wave passes through a maximum
whenever the displacement is zero, and the instantaneous energy density minima occur when the displacement is
at the extreme in the positive or negative direction. This is another fundamental characteristic of sinusoidal
waves.
Question T7
Sketch the profile of the linear energy density wave at a fixed time t1, along with the profile of the corresponding
displacement wave at the same time. Show explicitly the relationships between the wavelengths of these two
waves.4❏
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2.8 The generalized wave equation
In Subsection 2.5 we obtained the equation of motion for waves on a string; the linear second-order partial
differential equation

∂ 2 y

∂ x2
= µ

FT

∂ 2 y

∂ t2
(Eqn 15)

and in Subsection 2.6 we showed that sinusoidal functions y(x, t) = sin1(kx − ω1t) satisfying this equation
described waves that propagated with phase speed

  
v = FT

µ
(Eqn 19)

Combining these two results we obtain the equation

  

∂ 2 y

∂ x2
= 1

v2

∂ 2 y

∂ t2
(24)

Now, although we have arrived at Equation 24 by considering the special case of sinusoidal waves, it is in fact a
more general condition, the validity of which extends far beyond the sinusoidal waves we have emphasized.
Equation 24 is known as the (simple) wave equation for waves on a string. ☞) Any wave that travels with
constant speed and unchanging shape, will be described by a function of the form y = f1(kx ± ω1t), and will satisfy
the wave equation.
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Wave equations are not restricted to waves on strings. Similar equations may be obtained for other physical
systems that support transverse waves travelling with constant speed and unchanging shape. In the general case,
the dependent variable that is the subject of the equation will not necessarily be a transverse displacement y,
though it will describe some kind of ‘transverse’ departure from equilibrium. If we represent this generalized
disturbance by the quantity Ψ(x, t), ☞ then it must satisfy the generalized one-dimensional (motion along x)
wave equation:

  

∂ 2Ψ
∂ x2

− 1
v2

∂ 2Ψ
∂ t2

= 0 (25)

In any particular case the speed of wave propagation v will always be determined by the physics of the system,
but in the case of mechanical systems it will generally be given by the square root of the ratio of a restoring
force parameter to the inertial parameter, just as it was in Equation 19

  
v = FT

µ
(Eqn 19)

for waves on a string.
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2.9 Summary of Section 2
We have covered a great deal of material in this section on transverse travelling waves, and it is worth reviewing
the basic ideas at this point. We first considered the physical description of transverse travelling waves.
We saw that it is the disturbance, a departure from equilibrium that propagates, not some part of the medium that
carries that disturbance. Having that as our basis, we found a general mathematical description of a wave on a
string propagating in either direction in one dimension [y = f1(x ± vt)]. We then introduced the idea of a periodic
wave characterized by a wavelength and a period, and chose to concentrate on the particularly important case of
a sinusoidal wave (y = A1sin1(kx − ω1t)). Here we explained the significance of, and relationship between the
fundamental parameters v, T, f, ω, λ, σ and k. We next looked in greater detail at the physics of transverse waves
on a string, and saw how the restoring force of the unbalanced tension led to a second-order linear partial
differential equation which described the motion of the system. We then showed that the sinusoidal waves we
had previously looked at were solutions of this equation, provided that locations of fixed transverse displacement
y (and hence fixed phase (kx − ω1t)) propagated with a unique (phase) speed that was simply related to the
tension and linear mass density of the string. We also developed the concept of the linear energy density of the
wave on a string, and showed for the standard case of sinusoidal waves, the energy density was also a wave,
with the same phase speed, but half the wavelength and twice the frequency of the original transverse
displacement wave. Finally, we considered the (simple) wave equation for waves on a string and its
generalization to cover a wide class of transverse waves that travel in one dimension with constant speed and
unchanging shape.



FLAP P5.6 Introducing waves
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

3 Superposition and interference

3.1 The superposition principle
The property of linearity possessed by the simple wave equation means that if Ψ1(x, t) and Ψ2(x, t) are solutions
of the equation then a linear combination of those solutions, i.e. any expression of the form
Ψ(x,  t) = aΨ 1(x,  t) + bΨ 2(x,  t), where a  and b are any numerical constants, will also be a solution.
A consequence of this is the following principle:

The superposition principle

If two or more waves meet in a region of space, then at each instant of time the net disturbance they cause at
any point is equal to the sum of the disturbances caused by each of the waves individually.

This principle may be applied to any system in which the waves of interest are described by linear equations.
In those cases where it can be applied, the superposition principle enormously simplifies the study of waves,
since it allows us to treat complicated waves as a superposition (i.e. a sum) of simple waves that are easier to
analyse. Ultimately, it allows us to describe any periodic wave in terms of the familiar sinusoidal waves.
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What does the superposition principle mean physically? It implies, for
example, that when two separate pulses travelling in opposite directions on
a single string meet in some shared region of the string, as shown in Figure
6, then we can find their combined effect at any place and time by simply
adding the separate contributions (displacements) from the two pulses at
that place and time. What happens after the pulses pass through the shared
region? They regain their original shapes and continue moving as before,
being individually unchanged by the passage through the shared region.

Another way of regarding the superposition principle is as a requirement
that the presence of a wave at a point in a medium should not change the
physical properties of the medium at that point. If the passage of a wave
along a string caused an appreciable change in the tension, then a second
wave on the same string would experience a ‘different’ medium (with a
different phase speed), and the two waves could be not simply added
together.

Figure 64The superposition principle applied to two pulses moving toward each
other, shown at seven successive times (moving from top to bottom). Where the
pulses overlap, the dashed lines indicate the shape of the individual pulses, while
the solid line is the actual displacement profile of the string.
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Question T8

Two wave pulses travelling in opposite directions along a string are described by the following functions:

y1(x, t) = A

bx − ct

2






2

+ 1










4and4 y2 (x, t) = A

bx + ct

2






2

+ 1










If A = 501mm, b = 0.11mm−1 and c = 21s−1, sketch the profile of the resultant pulse at t = 11s.
 (You will probably find it convenient to consider values of x in the range −201cm to +201cm.)4❏
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Figure 74Wave forms at a point arising from the interference of two waves of equal amplitude
and frequency passing through that point. (a) Fully constructive interference, showing the
doubling of the amplitude. (b) Fully destructive interference, showing the cancellation of
amplitudes. (c) The intermediate case where partial addition of the amplitude occurs.

3.2 Interference
One of the most
important consequences
of the superposition
pr inciple  is  the
phenomenon of
interference, ☞which
allows periodic waves
travelling along a line
to combine and produce
some other wave along
that line, as shown in
Figure 7. If the waves
Ψ1(x,  t) and Ψ2(x,  t)
that are being combined

have the property that at a certain point they both cause the maximum disturbance at the same time (Figure 7a)
then they are said to be in phase at that point and they will cause totally constructive interference at that point.
As a result the waves will reinforce one another at the point in question and the amplitude of the resulting
disturbance will be equal to the sum of the individual amplitudes at that point.
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Figure 74Wave forms at a point arising from the interference of two waves of equal amplitude
and frequency passing through that point. (a) Fully constructive interference, showing the
doubling of the amplitude. (b) Fully destructive interference, showing the cancellation of
amplitudes. (c) The intermediate case where partial addition of the amplitude occurs.

In contrast, if the waves
are completely 
out of phase (i.e. in
antiphase) at a point
their effects will cancel
at that point and the
result will be totally
destructive
interference, as shown
in Figure 7b.

More generally, waves
arriving at a single
point will not be
completely in phase,
nor completely out of
phase, and the resulting disturbance will then be somewhere between the extremes, as shown in Figure 7c.

✦ If the sinusoidal wave forms shown in Figure 7b had different amplitudes A1 and A2 (with A1 greater than
A2), how would the superposed waveform be changed?
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Recalling that the instantaneous energy density carried by a wave (Equation 22)

DE(x, t) = µ0ω12A21cos21(kx − ω1t) (Eqn 22)

is proportional to the square of the amplitude, destructive superposition has an amazing consequence.
Two waves, each of which individually carries energy at a point in space and time, can add together to produce a
resultant wave which carries no energy at that point.☞

The superposition principle is a fundamental characteristic of systems that obey a linear differential equation.
On the other hand, if a system is non-linear, then the superposition principle will break down, and the analysis
becomes much more complicated and specialized.
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3.3 Wave groups and group speed
An important case of superposition is that which arises when two or more travelling waves moving in the same
direction with closely similar frequencies are combined.

Question T9

Use the trigonometric identity

sin (α ) + sin (β ) = 2sin
α + β

2






cos
α − β

2






to find the wave that results from the superposition of

y1 = A1sin1(kx − ω1t)4and4y2 = A1sin1[(k + ∆k)x − (ω + ∆ω)t]

where ∆ω and ∆k are small positive quantities. Assuming ∆k is about one-tenth of k, sketch the profile of the
combined wave at t = 0, over the range from x = 0 to x  = 20(2π/k), i.e. over about 20 ‘wavelengths’.
(Hint: don’t try plotting this profile point by point — it will take far too long. Treat it as a product of two factors,
sketch their graphs very roughly, then think about what the graph of their product must look like before
sketching it equally roughly.)4❏
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Figure 204See Answer T9.

If the waves described in this question satisfy
the simple wave equation (Equation 25)

  

∂ 2Ψ
∂ x2

− 1
v2

∂ 2Ψ
∂ t2

= 0 (Eqn 25)

then they must both travel with the same speed
☞, hence

v = ω/k = (2ω + ∆ω)/(2k + ∆k)

and the profile shown in the answer (Figure 20)

will also travel at that speed. However, in many important situations, such as that of waves on the surface of a
pond, or even waves on a string if we admit that the passage of a wave really does affect the tension to some
extent, waves of different (angular) frequency actually travel at different speeds. This phenomenon, the
frequency dependence of the propagation speed, is known as dispersion. Amongst other things it means that
travelling waves of slightly different frequency that are initially in phase at some point will become
progressively out of phase at that point as time passes.
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The superposition of waves described in Question T9 and illustrated in Figure 20 has the form

y = 2A cos
∆k

2




 x − ∆ω

2




 t















× sin
2k + ∆k

2




 x − 2ω + ∆ω

2




 t















x
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10π
k

30π
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Figure 204See Answer T9.

Each of the bracketed expressions represents a
wave. The first, with a very much longer
wavelength than the second, moves with a speed
vg = ∆ω1/∆k, while the second, with a
wavelength much the same as the two original
components, has a different speed 
vp = (2ω  + ∆ω)/(2k  + ∆k). The difference
between the wavelengths of the two terms is so
marked that it is better to regard the first term as
providing the overall shape, or ‘envelope’ of the
second at any particular place and time.

In Figure 20 the envelope is shown as the dashed line, which controls or ‘modulates’ the amplitude of the short
wavelength wave. The overall disturbance is called a wave group; it moves at a speed vg, which is called the
group speed, and the waves appearing to move within the envelope move with the phase speed vp.
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4 Standing waves on a string

4.1 Reflection of travelling waves at a boundary
So far, we have considered travelling waves far away from any boundaries that might affect their motion.
We now want to look at what happens when one of these waves is incident on a boundary. The physical situation
we want to consider first is a wave pulse propagating along a string which reaches a position at which the string
is attached to something else. The resulting behaviour of the wave depends on what happens physically at that
point of attachment. This is characterized mathematically by the boundary conditions, which are the
requirements imposed on the values of the wave y(x, t), and, possibly, its derivatives, at the boundary. ☞
We will start by examining the case in which the string is attached to a fixed object, such as a wall.
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(a)

before

after

(b)

Figure 84(a) A wave pulse travels in the +x-direction toward a

wall. (b) After reflection, a wave pulse travels back in the −x-
direction, with the same shape and amplitude, but opposite
displacement.

Consider the pulse shown in Figure 8a. In this
particular case the boundary condition implies that
the transverse displacement at the wall must be
zero. When the pulse reaches the wall, the moving
string will exert an upward force on the wall.
However, the wall is rigid and immovable, so it
remains motionless. Consequently no mechanical
energy will be transferred to the wall. In accordance
with Newton’s third law, the wall will exert a
downward reaction force on the string and this will
cause a reflected pulse to travel away from the wall
in the −x-direction. This reflected pulse will carry
away all the incident energy, so it must have the
same amplitude as the incident pulse, but its
displacement will be negative where that of the
original pulse was positive. This is indicated in
Figure 8b.
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Question T10

A wave pulse travelling towards a rigid wall at x = 0 starts its journey at t = −T and is described by 
yincident = A1exp1[−0(bx + a 0t)2],where a and b are positive constants. The pulse arrives at the wall at t = 0 and is
then reflected.  Write down an expression representing the reflected pulse at any (positive) time t.4❏

(a)

before

after

(b)

Figure 94(a) A wave pulse travelling toward a freely moving
boundary. (b) The reflected pulse.

If in place of a rigid wall the string was attached to a
massless, frictionless ring on a pole, it would have a
free end at the boundary rather than a fixed end.
Under these conditions there will still be a reflected
wave but its nature will be quite different from that
of a reflection from a wall. This is indicated in
Figure 9, where you can see that the transverse
displacement of the reflected pulse does not suffer
the sign reversal that occurred in the case of a rigid
wall.
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In the more general case in which we consider the boundary to be between two different media (such as strings
with different mass densities), the boundary conditions can be more general. The behaviour of the wave will be
more complicated, with part of the wave being reflected (either with or without inversion, depending on the
physical conditions) and part being transmitted.

4.2 Production of standing waves by superposition
We now consider the combined effect of two periodic sinusoidal waves, travelling in opposite directions along a
string. We will assume that the two travelling waves have equal amplitude and the same frequency (and hence
the same wavelength). We will write the travelling waves as

y+ = A1sin1(kx − ω1t)4and4y− = A1sin1(kx + ω1t) (26)

The total wave, by the principle of superposition, will be just the sum:

y = y+ + y− = A1sin1(kx − ω1t) + A1sin1(kx + ω1t) (27)

By making use of the trigonometric identity sin1(α  + β0) = sin1(α)1cos1(β1) + cos1(α)1sin1(β1) and the symmetry
relations sin1(−α) = −sin1(α) and cos1(−α) = cos1(α) we can rewrite Equation 27 as:

y = A1sin1(kx)1cos1(ω1t) − A1cos1(kx)1sin1(ω1t) + A1sin1(kx)1cos1(ω1t) + A1cos1(kx)1sin1(ω1t)

i.e. y = 2A1cos1(ω1t)1sin1(kx) (28)
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Figure 104A standing wave on a string can be represented as a superposition of
oppositely moving travelling waves, but the standing wave itself shows no tendency to
move to the right or to the left. Consequently, such waves do not transfer energy from place
to place. t1 < t2 < t3 < t4.

This function is a product
of a cosine function
involving time and a sine
function involving position,
rather than a single
function of the combination
of position and time
(kx ± ω1t).

This change means that the
combined disturbance is
not a travelling wave.

Such a disturbance is called
a standing wave, or a
stationary wave.

The profile of the standing
wave changes with time as
Figure 10 indicates, but the wave has no tendency to move to the right or to the left. ☞
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Question T11

Suppose our original waves in the above passage were described by cosine functions, i.e. y+ = A 1cos1(kx − ω1t)
and y− = A 1cos1(kx + ω1t). What would be the resulting form for y = y + + y−? Would it be a standing wave?
 (Note that cos1(α + β1) = cos1(α)1cos1(β1) − sin1(α)1sin1(β1).)4❏
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Figure 104A standing wave on a string can be represented as a superposition of
oppositely moving travelling waves, but the standing wave itself shows no tendency to
move to the right or to the left. Consequently, such waves do not transfer energy from place
to place. t1 < t2 < t3 < t4.

4.3 Nodes and
antinodes
As shown in Figure 10, the
characteristic feature of
standing waves is the
development of a changing
but non-progressing (or
stationary) wave profile.
One prominent feature of
this is the existence of
positions where no motion
occurs at any time. Unlike
travelling s i n u s o i d a l
waves ,  where  the
displacement at each
position undergoes simple
harmonic oscillations of a
uniform amplitude, in standing waves there are positions of complete rest at regular intervals. These positions
are called nodes.
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Figure 104A standing wave on a string can be represented as a superposition of
oppositely moving travelling waves, but the standing wave itself shows no tendency to
move to the right or to the left. Consequently, such waves do not transfer energy from place
to place. t1 < t2 < t3 < t4.

In the standing wave
described above

y = 2A1cos(ω1t)1sin1(kx)

(Eqn 28)

we can see that the sine
function, and hence the
transverse displacement,
will vanish at all times at
any position x = xnodal
where the argument of the
sine function is a multiple
of π, i.e. where kxnodal = 0,
±0π, ± 02π, ±03π, … = nπ
with n = 0, ±01, ± 02, … .
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Figure 104A standing wave on a string can be represented as a superposition of
oppositely moving travelling waves, but the standing wave itself shows no tendency to
move to the right or to the left. Consequently, such waves do not transfer energy from place
to place. t1 < t2 < t3 < t4.

Equivalently, since 
k  = 2π/λ , these nodal
positions are given by

xnodal = λ
2π

nπ = nλ
2

(29)

This shows that the spacing
of the nodes is just (λ 0/2).
Note in Figure 10 that the
string has displacements of
opposite sign on opposite
sides of each node. This is a
fundamental characteristic
of nodes and standing
waves.

Halfway between these
nodes, the oscillations in time produce the maximum amplitude variation. These points at which the maximum
amplitude oscillations take place are called the antinodes.
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The positions of the antinodes can be found by requiring the sine function to have its maximum values of ±1,
and are given by:

xantinodal = n + 1
2







λ
2
4with n = 0, ±01, ± 02, … (30)

Question T12

Confirm that the above condition gives the correct positions for the antinodes.4❏
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If we consider standing waves produced on a string of a given length l, which is rigidly fixed at its two ends,
then we know that the boundary conditions at the ends of the string require that the displacement should be zero
at those points. We will label the end positions as x = 0 and x = l. Then we must have:

y(0) = 04and4y(l) = 0

and so sin1(k0) = sin1(kl) = 0

Thus, remembering that k = 2π/λ, we have here the condition that l = nλ 0/2, or that

λ = 2l/n (31)

(with n any non-zero whole number). In the general case of standing waves on an infinite string, the spacing of
the nodes depended on the wavelength, but any wavelength was possible. For a string of finite length, the
additional condition that both ends must be nodes produces a constraint on the wavelengths that can be sustained
on the string. We will examine the consequences of this further in the next subsection.
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4.4 Stringed musical instruments
Stringed musical instruments such as guitars, violins or pianos provide everyday examples of transverse standing
waves. In all these cases, a mechanical impulse (a finger, pick, bow or hammer) creates a wave on the string, and
the only components of the wave that last are those which represent possible standing waves on the string.
Since the instruments to which these strings are attached are not perfectly rigid, these standing waves transfer
energy to the body of the instrument (usually a wooden resonator of some sort), which produces the actual
sounds which we associate with the musical instrument.

In the case of standing waves on these strings, as seen in the last subsection, we have the requirement that the
strings cannot move at the points where they are attached. This lack of movement at the ends during the general
vibration of the string leads to the condition on allowed wavelengths that λ  = 2l0/n, where n is any positive
integer. Now, standing waves are not travelling waves, but their frequency is still related to their wavelength by
v = f0λ , where v is the phase speed of transverse travelling waves. For perfectly flexible strings, the phase speed
of transverse waves depends only on the tension and the linear mass density, so provided these quantities remain
fixed the condition that limits the allowed wavelengths also limits the allowed frequencies. These allowed
frequencies are f = v/λ = nv/2l.
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Since the phase speed is of less significance in the case of standing waves, it is useful to express the frequency
as:

f n = n

2l

FT

µ
= nf1 (32)

where we have explicitly indicated the relationship between the higher frequencies and the smallest using the
index n. The smallest allowed frequency f1 is given by

f1 = 1
2l

FT

µ
(33)

In a similar way, we can explicitly write

λn = λ1

n
(34)

to indicate the relationship between the wavelengths, where the largest wavelength λ1 = 2l.
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Thus the allowed values of the wavelength and frequency form sequences:

λ = 2l, l,
2l

3
,

l

2
,

2l

5
,

l

3
, … (35)

f = 1
2l

FT

µ
,

1
l

FT

µ
,

3
2l

FT

µ
,

2
l

FT

µ
,

5
2l

FT

µ
,
3
l

FT

µ
, … (36)

For n = 1, the value of the wavelength is the largest, while the frequency is the smallest. This smallest frequency
is called the fundamental, while the higher frequencies are called harmonics. We can also characterize each
allowed frequency by the number of nodes between the ends, ignoring those at each end. If we use the index n to
characterize the frequency as above, then there will be (n − 1) nodes associated with the nth allowed frequency.
So the fundamental exhibits zero nodes, while the first harmonic (n = 2) exhibits 1 node, and so on. Note that the
nth frequency represents the (n − 1)th harmonic.
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(a)

(b)

(c)

The fundamental and first two harmonics of a string are shown in
Figure 11. When a string is set into motion, or excited, the only
frequencies which will be of substantial intensity or duration will be the
allowed frequencies described above. This means that all the frequencies
present will bear a simple relationship to each other. This relationship of
all the frequencies is generally pleasant to the ear, and is responsible for
the musicality of stringed instruments.

Note that the fundamental frequency depends on the length of the string,
the linear mass density, and the tension. The length and the linear mass
density are normally fixed by the construction of a musical instrument, but
the tension can be adjusted, and this is precisely how a stringed musical
instrument is tuned to produce the right notes.

Figure 114The three figures represent (a) the fundamental (no nodes except at
the end of the string), (b) the first harmonic (one node in the middle), and
(c) the second harmonic (two nodes) of standing waves on a string.
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Question T13

The E string on a violin has a length of 0.321m, a linear mass density of 0.381g1m−1, and is under a tension of
681N. What are the wavelength and frequency of the fundamental and first harmonic?4❏

4.5 Summary of Section 4
In this section, we have seen how the fundamental principle of superposition leads to interference effects and,
when boundary conditions are imposed, to the general idea of standing or stationary waves. These are no longer
travelling waves, even though their profile does change with time. Standing waves may be characterized as
stationary sinusoidal waves with fixed nodes and antinodes. The presence of the fixed nodes in a standing wave
leads to a unique relationship between the length of a string with fixed ends and the allowed frequencies and
wavelengths that can be sustained by that string. This allows for the production of uniquely related fundamentals
and harmonics, and is ultimately responsible for the musicality of stringed instruments such as the guitar and
piano.
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5 Waves in two or three dimensions

5.1 The wave vector
In the case of the simple one-dimensional motion we have considered so far, the direction of propagation was
limited to ±0x. In the case of two-dimensional waves, such as the surface waves on the ocean, or three-
dimensional waves, such as the electromagnetic waves used to represent light, more information is needed to
characterize the direction of propagation. In these cases this information is usually provided in the form of a
wave vector k , (more properly called the angular wave vector) ☞  which lies along the direction of
propagation and has magnitude 2π/λ, where λ  is the relevant wavelength.

As an example, let us consider some surface waves propagating in a horizontal (x, y) plane. These are transverse
waves composed of disturbances in the (vertical) z-direction. The position of any point in the (x, y) plane can be
specified by a two-dimensional vector r = (x, y), and the direction in which the waves are propagating at any
point can be specified by a wave vector k = (kx, ky). For the sake of simplicity we will assume that the waves are
travelling in the same direction at all points, so they are more like ocean waves in an area of open sea than the
waves that spread out from a stone thrown into a pond. Under this assumption the value of k will be the same at
all points, and if we look down on the (x, y) plane from above the wave crests will be seen as straight lines, at
right angles to k, that are separated by one wavelength λ 0.
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k

Figure 124Parallel wave crests (more properly plane wavefronts) in a
two-dimensional medium. The wave vector k is perpendicular to the
wavefront, pointing in the direction of propagation, with magnitude
k = 2π/λ.

Bearing in mind that the magnitude of k is

k = kx
2 + ky

2 = 2π λ , we may if we

wish say that the wave crests are separated
by a distance 2π/k,  and thus avoid
mentioning λ  altogether.
This arrangement is indicated in
Figure 12. If the waves are sinusoidal, the
two-dimensional generalization of the
one-dimensional sinusoids we discussed
earlier, we can represent them
mathematically by the function

z = A1sin1(k1·1r − ω1t) (37)
where the term k 1·1r represents the
scalar product of the position vector r and the wave vector k. In the two-dimensional case we are considering,
the value of this scalar product at a point with position coordinates (x, y) will be

k1·1r = kxx + kyy (38) ☞
It should be apparent that Equation 37 is a generalization of Equation 5 (y = A1sin1(kx − ω1t)) since in the one-
dimensional case kx = k and hence kÊ·Êr = kx in that case.
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Thanks to the power of vector notation, it should also be fairly obvious how we describe three-dimensional
waves. In that case the wave vector will have three components so k = (kx, ky, kz), its magnitude will be

  
k = | k | = kx

2 + ky
2 + kz

2 = 2π
λ

and sinusoidal waves of amplitude A involving some kind of (scalar) disturbance ☞ Ψ can be represented by

Ψ(r, t) = A1sin1(k1·1r − ω1t)

where k1·1r = kxx + kyy + kzz

The waves described by Equation 37

z = A1sin1(k1·1r − ω1t) (Eqn 37)

and its three-dimensional extension are certainly not the most general kinds of two- and three-dimensional
waves, but they do represent an important class of waves that you are certain to meet again in your subsequent
studies. Technically they are known as plane waves since at any given time (in the three-dimensional case) all
the points on any plane perpendicular to k will correspond to the same value of the phase (k1·1r − ω1t). ☞
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k

Figure 124Parallel wave crests (more properly plane wavefronts) in a
two-dimensional medium. The wave vector k is perpendicular to the
wavefront, pointing in the direction of propagation, with magnitude
k = 2π/λ.

In the two-dimensional case the ‘planes’
of constant phase will just be lines and the
wave crests we spoke of in Figure 12 are
examples of such lines. Indeed, if we
wanted to be more general we could say
that the lines drawn at right angles to k in
Figure 12 represent points of equal phase,
irrespective of its value. Surfaces (or
lines) of equal phase are generally referred
to as wavefronts. It is a characteristic
property of plane waves that their
wavefronts are parallel planes in three
dimensions and parallel straight lines in
two dimensions.
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Question T14

A wave-making machine causes plane waves to travel across the surface of a rectangular swimming pool.
The waves have an amplitude of 301cm, a speed of 901cm1s−1, and are produced at a frequency of 0.301Hz.
If the waves propagate at an angle of 30° to the long sides of the pool, write down a mathematical description of
the waves assuming that one of the long sides of the pool is chosen to represent the x-axis.4❏
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5.2 Waves on a membrane
The hard (and somewhat idealized) maths is now behind us. We will conclude our discussion of waves by
considering the qualitative reality of waves in two familiar contexts. First, waves on a two-dimensional elastic
membrane, such as a drum membrane. ☞  Then, in the next subsection, waves in a real (three-dimensional)
ocean. In this case the waves are two-dimensional in extent, so that we are dealing with transverse motions
involving two dimensions, with the propagation direction in a third.

On an elastic membrane, the boundaries are usually sufficiently close that they cannot be neglected, so we will
consider finite membranes with enclosing boundaries. The drum is one of the simplest examples of this kind. In
this case, the most important waves are the standing waves since they are the ones that persist and account for
much of the sound that the drum produces. In one respect, the properties of standing waves on a two-
dimensional membrane are similar to those of standing waves on a string with fixed ends, in that there are nodal
and antinodal positions, but the description of these is more complicated. Whereas in one-dimensional systems,
the nodes and antinodes are isolated points, in the case of two-dimensional standing waves, the nodes will
generally be lines on the surface.
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(a) (b)1,0 2,0 (c) 3,0

(d) (e)1,1 1,2 (f) 2,1

Figure 134Six of the possible standing waves on a drum membrane. The continuous

lines shown1 1including that around the circumference1 1are the nodal positions. Just as
in the one-dimensional string, displacements on the opposite side of these nodes are in
opposite directions.

As in the one-dimensional
example, the standing waves
are again determined by the
boundary conditions, which
in this case require that the
edge of the membrane
should be a nodal line.
Figure 13 shows typical
standing wave profiles on
the surface of a drumhead.

You can see from Figure 13
that the characteristic nodal
lines consist of two types,
those lying along diameters
of the circular membrane
and those forming circles of
fixed radius.
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(a) (b)1,0 2,0 (c) 3,0

(d) (e)1,1 1,2 (f) 2,1

Figure 134Six of the possible standing waves on a drum membrane. The continuous

lines shown1 1including that around the circumference1 1are the nodal positions. Just as
in the one-dimensional string, displacements on the opposite side of these nodes are in
opposite directions.

In the case of the finite one-
dimensional string, we could
characterize the allowed
standing waves by the
number of nodal points that
occurred, but in the case of
the drum we need to
characterize both the number
of nodal diameters, and the
number of nodal circles in
each standing wave.
In general, these two-
dimensional standing waves
are not harmonics of the
fundamental frequency, and
no simple numerical
relationship will exist
between their frequencies
and the fundamental frequency. This is probably the reason for the perceived lack of musicality of a drum.
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5.3 Waves on water
We return finally to the case of water waves which is actually one of the most complex examples of mechanical
waves, because of the physical nature of the system. Surface waves on water cannot be purely transverse
because the water is essentially incompressible on the length scales of the surface waves with which we are
familiar. This means that if we try to produce a displacement that is perpendicular to the surface of the water,
other water must either enter or leave the positions vertically below the displaced surface water. (Waves that are
purely longitudinal in nature depend on the compressibility of water, and these are actually what we normally
call sound waves.) So although we talk about transverse waves in water, the actual motion must be a complex
mixture of transverse and longitudinal movements.
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Figure 144The motion of individual water particles involved in a transverse shallow water wave.
The wave illustrated is propagating to the right.

Figure 14 indicates the nature of this motion. The motion of the surface of the water is approximately sinusoidal,
although the actual motion of individual particles is more complex. Clearly, the general kinematic description of
transverse waves in water is quite complicated. Each particle of water undergoes an ellipsoidal motion, moving
in the direction of propagation of the wave when it is at the crest, and in the opposite direction when it is in the
trough.
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6 Closing items

6.1 Module summary
1 Travelling waves are disturbances that move from place to place, if they involve a medium at all they do not

generally involve bulk motion of the material of that medium. In a transverse wave the disturbances that
constitute the wave are at right angles to the direction of propagation.

2 A transverse wave that propagates in the 70x-direction with constant phase speed v and without changing its
shape may be described by a function of two variables of the form

y = f1(x ± vt) (Eqn 1)

A more specialized but common example of this is the sinusoidal wave

y = A1sin1(kx ± ω1t) (Eqn 5)

expressed using the angular wavenumber k and the angular frequency ω. This can be rewritten in equivalent
forms using other parameters such as the (linear) frequency f, the period T, the wavelength λ, and the
wavenumber σ.
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These quantities are related in the following ways

ω = 2π
T

f = 1
T

k = 2π
λ

σ = 1
λ

  
v = λ f = ω

k
= λ

T
3 Newton’s laws applied to the transverse motion of a string produce the equation:

∂ 2 y

∂ x2
= µ

FT

∂ 2 y

∂ t2
(Eqn 15)

where µ is the mass per unit length of the string and FT is the magnitude of the tension in the string.
Comparing this with the general one-dimensional wave equation

  

∂ 2Ψ
∂ x2

− 1
v2

∂ 2Ψ
∂ t2

= 0 (Eqn 25)

shows that the phase speed of waves on a string is   v = FT µ .
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4 The linear energy density of a string which carries transverse sinusoidal displacement waves is also a wave,
with the same phase speed but half the wavelength and double the frequency of the displacement wave:

DE (x, t) = 1
2

µω 2 A2[1 + cos(2kx − 2ω t)]

The rate at which energy is transferred by such waves is proportional to the square of the amplitude and the
square of the angular frequency.

5 The superposition principle allows us to construct new solutions of the (linear) wave equation out of
linear combinations of known solutions. This leads to the phenomenon of interference, and also accounts
for the group velocity observed when wave groups (a superposition of waves with closely similar
frequencies) travel through a medium which gives rise to dispersion.

6 The boundary conditions describing wave behaviour at the ends of strings, together with the superposition
principle, lead to standing waves on strings, which have nodes and antinodes with spacings determined by
the wavelength of the standing waves. On finite strings with fixed ends, these lead to conditions on the
possible values of wavelength and frequency for waves which can be sustained by the string. This in turn
leads to the existence of a regularly spaced sequence of sustainable frequencies, the fundamental and its
harmonics, and to the basic musicality of stringed musical instruments.
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7 In the case of waves in more than one dimension, the concept of the angular wavenumber must be
generalized to the (angular) wave vector, which allows for a compact expression of a three-dimensional
wave:

Ψ(r, t) = A1sin1(k1·1r − ω1t)

where k1·1r = kxx + kyy + kzz4and4
  
k = | k | = kx

2 + ky
2 + kz

2 = 2π
λ

8 A generalization of standing waves on strings to two dimensions has its most familiar expression in the
standing waves on a bounded membrane such as a drum. The standing waves are two-dimensional, and
there is no longer a regular spacing for the allowed sequence of frequencies.
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6.2 Achievements
Having completed this module, you should be able to:

A1 Define the terms that are emboldened and flagged in the margins of the module.

A2 Describe the mathematical form of a general travelling wave pulse.

A3 Define and use the terms (angular) frequency, period, wavelength, (angular) wavenumber displacement and
amplitude as applied to periodic travelling waves.

A4 Relate the frequency and wavelength of a sinusoidal wave to its phase speed.

A5 Describe the relationship between the force law on a string and transverse waves on a string.

A6 Understand and be able to use the relationship between v, FT and µ for transverse waves on a string.

A7 Describe the characteristics of the energy density in waves and be able to calculate energy densities for
transverse sinusoidal waves on strings.

A8 Write down the generalized one-dimensional wave equation, and explain the nature of the partial
derivatives that it contains. (You should be able to determine partial derivatives in a few simple cases, but a
general mastery of partial differentiation is not expected.)
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A9 State the principle of superposition and use it in various simple cases, including those involving
interference and wave group speed.

A10 Explain the reflection of transverse waves at a rigid boundary, and describe reflection at a free boundary.

A11 Describe the production of standing waves on a string, and interpret mathematical representations of
simple standing waves.

A12 Explain the significance of boundary conditions for the standing waves on a string with fixed ends, and
derive the relationships between nodal and antinodal positions in such cases.

A13 Describe the relationship of standing waves to stringed musical instruments.

A14 Describe the behaviour of transverse waves in two and three dimensions and be able to recognize, use and
interpret mathematical representations of sinusoidal plane waves in two and three dimensions.

Study comment  You may now wish to take the Exit test for this module which tests these Achievements.
If you prefer to study the module further before taking this test then return to the Module contents  to review some of the
topics.
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6.3 Exit test

Study comment  Having completed this module, you should be able to answer the following questions each of which tests
one or more of the Achievements.

Question E1

(A3)4A person observes water waves moving past and finds that the time taken for five crests to pass by is 8.01s
(i.e. four complete waves), with the distance between successive crests being 4.01m. What is the speed of these
water waves? What is the angular frequency?

Question E2

(A3 and A4)4A sinusoidal wave has an amplitude of 31cm, a period of 51s and a phase speed of 151cm1s−1.
Give the mathematical function y(x, t) that describes this wave. Assume that at t = 0 and x = 0, the displacement
is 31cm.
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Question E3

(A6)4A wire with a mass of 0.11kg is tautly strung between two walls 10.01m apart. If the wire is under a
tension of 1001N, how long will it take a transverse pulse to travel from one wall to the other?

Question E4

(A4  and A9)4Two sinusoidal waves with the same wavelength and amplitude are travelling in opposite
directions on a string, with the same phase speed of 201cm1s−1. If the time interval between moments when the
string is perfectly flat is 0.51s, what is the wavelength? Describe the appearance of the string 0.251s after it is flat.
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Question E5

(A3 and A7)4A travelling sinusoidal wave is described by the equation

y = (51cm)1cos1[(101m−1)x − (41s−1)0t]

where y and x are measured in centimetres and t is measured in seconds. If the wave is on a wire with a linear
mass density of 3 × 10−31kg1m−1, what are the amplitude and wavelength of the corresponding linear energy
density wave?

Question E6

(A9 and A11)4A nylon guitar string has a linear mass density of 7.01g1m−1, a length of 801cm, and is under a
tension of 2001N. Standing waves are excited on the string and there are two nodes present between the ends of
the string. Calculate the phase speed, wavelength and frequency of the waves that have been generated on the
string.
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Question E7

(A13)4Middle C on a piano has a frequency of 261.61Hz. If a person can hear sounds up to a maximum
frequency of 201kHz, what is the highest audible harmonic of middle C?

Study comment  This is the final Exit test question. When you have completed the Exit test go back to Subsection 1.2 and
try the Fast track questions if you have not already done so.

If you have completed both the Fast track questions and the Exit test, then you have finished the module and may leave it
here.
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