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1 Opening items
1.1 Module introduction
You will probably be familiar with the action of a prism in splitting white light into the colours of the rainbow,
or of a simple magnifying lens, or of the curved reflectors used in vanity mirrors, shaving mirrors and driving
mirrors. This module describes these optical elements and introduces you to the equations which govern their
operation and which can be used in their design. The operation of all these optical elements depends on the
known behaviour of light rays when reflected from mirrors or refracted at the boundary between two transparent
optical media. The magnifying glass is just one application of a thin lens and the mirrors listed above are
examples of spherical mirrors. An understanding of the action of these simple optical elements opens the way to
an understanding of more complex instruments, such as telescopes, microscopes, camera lenses and projection
systems, which are discussed in other FLAP modules.

Section 2 describes refraction by a prism, using Snell’s law, and shows how prisms can be used to produce
dispersion and total internal reflection. Section 3 describes refraction at a single spherical surface using a
Cartesian sign convention and introduces the conjugate equations for refraction at this surface and for refraction
by a thin lens. The focal length for a thin lens is introduced and the lens maker’s equation and the thin lens
equation are derived. Convex and concave lens behaviour is then discussed using this formula, ray diagrams and
principal rays. The transverse magnification and optical power of a lens are described, as is the process of
image formation in a two-lens system.
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In Section 4 we extend these ideas to convex and concave spherical mirrors using the same Cartesian sign
convention. The spherical mirror equation is derived, and this is used with ray diagrams to discuss the operation
and transverse magnification of spherical mirrors.

It is interesting to note that although the fundamental principles of reflection and refraction were discovered
nearly three hundred years ago, the subject has seen something of a renaissance recently with the advent of fast
computer systems; complex lens systems can now be designed quickly. This has led to a resurgence of interest in
optics in general and in particular to the use of optical components in advanced technology and physics research.
However, this creates plenty of scope for gettings things wrong on an impressive scale, as was shown in the case
of the Hubble space telescope. This was launched in 1990 and had a wrongly configured main mirror.
The problem has now been corrected with the help of an additional optical system, installed in orbit by NASA
astronauts.

Study comment Having read the introduction you may feel that you are already familiar with the material covered by this
module and that you do not need to study it. If so, try the Fast track questions given in Subsection 1.2.  If not, proceed
directly to Ready to study? in Subsection 1.3.
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1.2 Fast track questions

Study comment Can you answer the following Fast track questions?. If you answer the questions successfully you need
only glance through the module before looking at the Module summary (Subsection 5.1) and the Achievements  listed in
Subsection 5.2. If you are sure that you can meet each of these achievements, try the Exit test in Subsection 5.3. If you have
difficulty with only one or two of the questions you should follow the guidance given in the answers and read the relevant
parts of the module. However, if you have difficulty with more than two of the Exit questions you are strongly advised to
study the whole module.

Question F1

Sketch a ray diagram to show how a thin convex lens can be used as a magnifying glass. Use your diagram to
find the magnification if the object distance is 101cm and the image distance is 251cm?

Question F2

An extended object is placed 251cm from a converging lens of focal length 101cm. Use the thin lens equation to
calculate the position of the image. Is the image real or virtual? What is the magnification? Draw a ray diagram
to show the location of the image.
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Question F3

A concave mirror has focal length of 101cm. Draw a ray diagram to find the image position of an extended object
placed 151cm from the mirror. Confirm your result by direct calculation.

Study comment Having seen the Fast track questions  you may feel that it would be wiser to follow the normal route
through the module and to proceed directly to Ready to study? in Subsection 1.3.

Alternatively, you may still be sufficiently comfortable with the material covered by the module to proceed directly to the
Closing items.
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1.3 Ready to study?

Study comment Throughout this module we will use geometrical optics for the propagation of light
(i.e. the ray approximation, neglecting any diffraction effects). We will use the law of reflection of light at plane mirrors, and
Snell’s law for the refraction of light at an interface between two transparent materials of different refractive index.
We will assume and use total internal reflection and the relationship between refractive index and the speed of light in the
material.

Mathematical requirements are mainly elementary trigonometry and algebra, the geometry of triangles and especially the
small angle approximations for sine, cosine and tangent. You should also be familiar with the use of Cartesian coordinates
and the solution of quadratic equations.

If you are uncertain about any of these terms you can review them now by referring to the Glossary which will indicate
where in FLAP they are developed.

The following Ready to study questions will allow you to establish whether you need to review some of the topics before
embarking on this module.
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Question R1

State the law of reflection for light rays at a plane mirror.

Question R2

A light ray passes from air into glass with refractive index 1.50. The angle of incidence is 15°, calculate the
angle of refraction and the speed of the light inside the glass. (The speed of light in a vacuum is 3.0 × 108

1m1s–1).

Question R3

Show by calculation that the error is less than about 1% if we assume that tan1θ = θ and sin1θ  = θ for angles
smaller than 0.171rad (about 10°).
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Figure 13The refraction of a ray of
light through a parallel-sided glass
block.

2 Refraction by a prism

2.1 A parallel-sided glass block
We will start our discussion of how light is refracted by a glass prism by
recalling what happens to light as it travels through a block of glass as
shown in Figure 1.

When a ray of light of a single wavelength (i.e. a monochromatic ray)
enters the glass (an optically dense medium) from the air (an optically
rare medium), it is refracted towards the normal to the boundary
according to Snell’s law of refraction: ☞

µ1 sin1θ1 = µ2 sin1θ2 (1)

where µ1 and µ2 are the refractive indices of air and glass, and θ1 and θ2 are the angles of incidence and
refraction at the boundary. The refractive index of air is about 1.0003, which we approximate to 1, so that
Equation 1 becomes

sin1θ1 = µ2 sin1θ2 (2)
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After the ray has crossed the block, its angle of incidence on the second boundary is θ3, and it emerges, refracted
away from the normal, at θ4. However, since the block is parallel-sided, θ3 = θ2 so that

µ2 sin1θ2 = µ2 sin1θ3 = sin1θ4 (3)

Comparing Equations 2 and 3

sin1θ1 = µ2 sin1θ2 (Eqn 2)

shows us that θ1 = θ4, so the ray emerges in the same direction as it entered, but has suffered a lateral shift.

✦ Is it true to say that the ray always suffers a lateral shift here?
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Figure 13The refraction of a ray of
light through a parallel-sided glass
block.
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Figure 23Refraction by a prism,
showing the prism angle A and the
angle D by which the ray is deviated.

2.2 Refraction by a
prism
When the second face of the
block is not parallel to the first,
the path of a monochromatic ray
will in general be like that
through the prism of Figure 2,
and will no longer have the
symmetry of Figure 1. The ray
leaving the prism will not be
parallel to the ray entering the
prism, as it will have been
deviated by it, having turned

through the angle of deviation D.
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Figure 33Refraction of a ray whose path makes equal angles
with the two refracting faces of the prism. This is a ray of
minimum deviation.

However, there is a situation in which a different
symmetry is present; this occurs when the ray in
the glass makes equal angles with the two prism
faces, as in Figure 3. This geometry may be shown
to have the important consequence that it makes
the angle of deviation a minimum for any given
wavelength. A relationship between this angle of
minimum deviation and the prism angle A,
which is the angle between the refracting faces of
the prism, can be obtained as follows. ☞
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Figure 33Refraction of a ray whose path makes equal angles
with the two refracting faces of the prism. This is a ray of
minimum deviation.

For triangle PXY we have Dmin = 2(θ1 – θ2), and in
triangle AXY, A + 2(90° – θ2) = 180°, so that
A  = 2θ2. Combining these equations gives the
minimum deviation Dmin = 2θ1 – A. Then, using
Snell’s law,

µ = sin θ1

sin θ2
=

sin 1
2 ( Dmin + A)[ ]
sin ( 1

2 A)
(4)

This equation can be rearranged to give an
expression for Dmin:

Dmin = 2 arcsin0[µ sin(A/2)] – A (5)
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Figure 43The wavelength dependence
of the refractive index of borosilicate
crown glass. If a single value is quoted
for a refractive index, it is usually at the
sodium wavelength of 589.31nm.

2.3 Prisms in optical instruments
There are two principal applications of prisms in optical instruments;
they are dealt with in detail elsewhere in FLAP and so we will discuss
them here only very briefly. They involve dispersion and total internal
reflection1—1topics which are themselves introduced more fully
elsewhere in FLAP.

Dispersion is the splitting up of a beam of light of mixed wavelengths
into its constituent wavelengths. The reason why a prism can perform
this task is that the refractive index µ varies with the wavelength of the
light being refracted, as is shown for a common type of borosilicate
glass in Figure 4.  Now referring to Equation 2,

sin1θ1 = µ2 sin1θ2 (Eqn 2)

we see that for incidence at a given angle θ1, the angle of refraction θ2 depends on the refractive index µ2, which
in turn depends on the wavelength. Tables which summarize the physical properties of materials often quote a
single value of µ for a particular type of glass; this single value is then usually for sodium light, with a mean
wavelength of 589.31nm. ☞

Mike Tinker
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Figure 53The dispersion of white light by a prism.
Only three of the spectrum colours are shown and the
dispersion is greatly exaggerated. Note that the red
light suffers less deviation than the green. This does
not conflict with the fact the symmetric path is the
path of minimum deviation for any given wavelength.
The red light would suffer even less deviation if it
was in the symmetric position.

If we have a beam of light which contains a range of
different wavelengths (e.g. white light) incident at angle θ1

then there will be a range of refracted angles θ2, with shorter
wavelengths (e.g. violet) being refracted or deviated through
larger angles than the longer wavelengths (e.g. red).
If the surface where this refraction occurs is the first surface
of a prism, then further dispersion of the different constituent
wavelengths takes place at the second surface, as shown in
Figure 5 (in which the angles of dispersion are exaggerated).
A prism being used for dispersion is usually orientated so
that it is in a position of minimum deviation for the middle of
the range of wavelengths present in the beam.
This arrangement produces the minimum dispersion, but it
also causes the graph of angle of deviation against
wavelength to be nearly linear, i.e. it corresponds to linear
dispersion.



FLAP P6.3 Optical elements: prisms, lenses and spherical mirrors
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

Question T1 Table 13Angles of minimum deviation.

Colour Wavelength /nm µ Dmin /°

blue 450 1.519

green 550 1.515

yellow 590 1.508

red 650 1.502

Calculate the angle of minimum deviation at
various wavelengths for a 60° prism made of
crown glass and hence complete Table 1.3❏
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Figure 63(a) A ray making a critical angle of incidence θc to the
second face of the prism; (b) a ray which is totally reflected,
having θ > θc.

The second important application of prisms is
their use as reflectors. If we restrict our discussion
to a single wavelength, then we see that as the
angle of incidence of a light ray on the second
face of a prism is increased, an angle will be
reached when the refracted ray travels along the
surface of the prism (Figure 6a) corresponding to
an angle of refraction θ2 = 90°. The angle of
incidence within the glass at which this happens is
the critical angle θc and, if this angle is exceeded,
then total internal reflection occurs (Figure 6b).
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The type of prism usually employed for its ability to produce
such internal reflections is the 45°/90°/45° prism, which may be
used in the two orientations shown in Figure 7.

Figure 73Two ways in which a 45°/90°/45° prism may be used as a
reflector.
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3 Refraction at a single spherical boundary
Our objective in this section of the module is to derive and apply equations governing the passage of rays of
light through lenses, which are usually discs of glass or other transparent material, with one or both surfaces
curved symmetrically about the optical axis of the lens. The optical axis is the line drawn normal to the disc and
through its centre. We restrict our discussion to lenses having surfaces of a constant radius of curvature and
therefore described as spherical lenses, and also to thin lenses, where the maximum distance between the faces
is very small compared with the radius of curvature of either face. We include the possibility of one of the
surfaces being flat, i.e. of having an infinite radius of curvature.

The first stage of our discussion is to establish the conjugate equation which describes the refraction of light at
a single spherical surface, by which we mean the spherical boundary between regions of uniform refractive
index µ and µ0′. This is a system which has only limited practical application, although as we shall see, it does
have important image-forming properties. However, when we have obtained an equation which describes what
happens to light at a single spherical surface, then we can apply it again at a second spherical surface: two such
surfaces in close succession, with appropriate changes of index, are what we mean by a lens.
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3.1 The conjugate equation for a single spherical surface
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Figure 83Refraction at a spherical boundary of a ray of light from a point source.

We start by considering the refraction of a monochromatic light ray OA which leaves a point source of light O in
Figure 8, situated on the optical axis at a distance l to the left of the vertex or pole C of the curved boundary
(which is the point where the optical axis intersects that boundary).
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Figure 83Refraction at a spherical boundary of a ray of light from a point source.

We will assume that the refractive index µ′ of the medium to the right of the boundary is greater than the index µ
to the left. The ray is therefore refracted towards the normal to the boundary, and crosses the optical axis at O ′, a
distance l′  from C. Snell’s law of refraction when applied at A gives

µ sin1θ  = µ′ sin1θ0′ (6)

where θ and θ′  are the angles of incidence and refraction measured with respect to the normal AR to the
boundary at A.
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We now introduce a most important restriction to our discussion and assume that

all light rays, and normals to the boundary surface are either parallel to the optical axis or are at very small
angles (i.e. not more than 10°) to it. This is known as the paraxial approximation, and rays which conform
to it are called paraxial rays.

In any system subject to this approximation, we may write the sine or tangent of the angles made by any ray to
the axis or to any other ray or to any radius of curvature of the boundary, as equal to the angles themselves,
measured in radians.

If we now apply the paraxial approximation to Equation 6,

µ sin1θ  = µ′ sin1θ0′ (Eqn 6)

we obtain

µθ = µ0′ θ0′
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Figure 83Refraction at a spherical boundary of a ray of light from a point source.

From the triangles in Figure 8 we have θ = α + β and β = θ0′ + γ

so that µ(α + β) = µ′  (β − γ)

We now replace the angles in this equation by their tangents, writing

α = tan1α = h/l, β = tan1β = h/r, γ = tan1γ = h/l′ where

 h is the distance of A from the optical axis and we have made the approximation that C is directly below A.
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Figure 83Refraction at a spherical boundary of a ray of light from a point source.

Then, µ h

l
+ h

r




 = ′µ h

r
− h

′l






Dividing by h and rearranging then gives
µ
l

+ ′µ
′l

= ′µ − µ
r

(7)
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Figure 83Refraction at a spherical boundary of a ray of light from a point source.

µ
l

+ ′µ
′l

= ′µ − µ
r

(Eqn 7)

Equation 7 allows us to calculate the distance l′ from the boundary, of the point where the refracted ray AO′
crosses the optical axis. As explained below, points O and O′ are examples of an object and an image in an
optical system; any light ray originating from O arrives at O′.
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Figure 83Refraction at a spherical boundary of a ray of light from a point source.

µ
l

+ ′µ
′l

= ′µ − µ
r

(Eqn 7)

An important property of Equation 7 is that it does not contain h . Thus all rays from O are refracted so as to
pass through O′  (as in Figure 8), no matter how far from the optical axis they cross the boundary, provided they
may be regarded as paraxial rays. O′ is then said to be the point image of the point object O.
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Figure 83Refraction at a spherical boundary of a ray of light from a point source.

Moreover, if it were possible to place a screen at O′, then the image would be displayed on the screen and such a
‘captured’ image, where the rays converge and pass through a point, is called a real image. Note that the ray
which coincides with the optical axis remains undeviated because it is at normal incidence to the boundary. ☞
A point object placed to the left of a curved boundary, as in Figure 8, does not always result in a real point image
being formed to the right of the boundary.



FLAP P6.3 Optical elements: prisms, lenses and spherical mirrors
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

µ µ'

OO'

Figure 93A point object
close to a curved boundary.

If the object is brought closer to the same boundary, as in Figure 9, then again
provided that µ′ > µ, rays from the object to the boundary will be refracted
towards the normal but will not converge to a point on the optical axis1—1instead
they appear to diverge from a point to the left of the object position. Such a point
is called a virtual image. It cannot be captured on a screen as rays do not actually
pass through it but only appear to have come from that point when viewed from
the right of the boundary. You will notice that a convention has been introduced
in Figure 9 whereby the paths followed by rays of light are shown by thick lines;
projections of rays are shown by dashed lines, indicating that light does not travel
along such paths. Similar analysis to that applied to Figure 8 leads to an equation
containing identical terms to those in Equation 7,

µ
l

+ ′µ
′l

= ′µ − µ
r

(Eqn 7)

but with some differences in the signs of the terms. We will examine those differences shortly.

The boundary surfaces which we have been examining bulge towards the object position and, when seen from
that side, are called convex surfaces. We can also examine the refracting properties of spherical boundaries
which are hollow when seen from the left; these are called concave surfaces.
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Question T2

With similar reasoning to that used to establish Equation 7,
µ
l

+ ′µ
′l

= ′µ − µ
r

(Eqn 7)

show that the conjugate equation connecting object position and the apparent origin of the diverging rays for the

concave boundary system shown in Figure 10 is:3
′µ
′l

− µ
l

= ′µ − µ
r

 3❏
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Figure 103The point image of a point object formed by a concave boundary surface (see Question T2).

Return to Question T2 Return to Question T3
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Another situation which could be analysed has the object closer to the concave surface than in Question T2.
If we chose, we could also analyse four sets of object and image positions when the second medium had a lower
refractive index than the first. However, we would find that the equations resulting from all eight possibilities
differed only in the signs of the terms. We can surmise from this that if the different systems were specified
more completely, then they could all be described by the same equation. This is in fact the case, and the
additional information required is the location of object, image and centre of curvature positions with respect to
the boundary vertex.

What we have used so far are the distances of O, O′  and R from C, when we should have used their
displacements. This is easily rectified by introducing a sign convention which will enable us to attach a sign to
these distances and which, in effect, converts them into displacements (although we will continue to call them
distances because this is the normal practice in optics). There are several possible conventions and we will adopt
the one most commonly used, which is the Cartesian sign convention. ☞ Although it is being introduced here
for refraction at a single curved surface, it will be applied to lenses in Subsection 3.2 and to mirrors in Section 4.
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It is defined as follows:

The Cartesian sign convention
1 The origin of a Cartesian system of coordinates is located at the vertex of the curved boundary or mirror,

or at the centre of a thin lens, with the z-axis directed along the optical axis from left to right.
2 Object, image and centre of curvature distances (really, displacements) are defined to be the z-

coordinates of the (x, y) planes which contain them. Distances of points or planes to the right of the
vertex (or lens centre) therefore are given positive signs and those to the left, negative signs.

3 Light sources or real objects will be placed diagrammatically to the left of the first optical surface, thus
the initial paths of light rays travel from left to right in the positive z-direction, which means that the
object distance is taken as negative.
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Figure 83Refraction at a spherical boundary of a ray of light from a point source.

We can now see what effect this convention has on Equation 7.
µ
l

+ ′µ
′l

= ′µ − µ
r

(Eqn 7)

In Figure 8, the object O is to the left of C so l becomes –l; the image O′  is to the right, so l′ retains its positive
sign, as does r, since R is also to the right of C.
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Now see for yourself what changes this convention makes to the result obtained in Question T2.

Question T3

Modify the equation given in Question T2

3

′µ
′l

− µ
l

= ′µ − µ
r

(and illustrated in Figure 10)

according to the Cartesian sign convention.3❏
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You should have obtained exactly the same result as the modified Equation 7 (see Answer T2) and it would also
be obtained for the other six configurations. This new form of the equation, shown below, is called the conjugate
equation for a single spherical surface; it is an equation which links together the object and image distances and
the radius of curvature of the spherical surface at which refraction occurs.

The conjugate equation for a single spherical surface (Cartesian version)

′µ
′l

− µ
l

= ′µ − µ
r

(8)

To interpret this in the general case (convex or concave), with light moving from left to right, remember that µ is
the refractive index to the left of the interface, µ′  is the refractive index to the right of the interface, l is the object
distance, l0′ is the image distance and r is the radius of curvature. The signs of l, l′ and r are determined by the
Cartesian sign convention.

Even though we have incorporated the sign convention into Equation 8, when it is used for calculation, it is still
necessary to allot signs to distances according to the sign convention before they are entered into the equation.
Object and image points linked by the conjugate equation are called conjugate points, and planes perpendicular
to the optical axis containing conjugate points are conjugate planes.
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Figure 113The extended image of an extended object.

We can extend our discussion of point
objects to include objects of finite size
by regarding a finite object as a
continuous succession of point
objects. For example, consider the
image of the line object AA′  which is
perpendicular to the optical axis in
Figure 11. We will assume that the
end A is imaged at B by the spherical
surface with centre of curvature at R.
The line joining the end A′ to R may
be regarded as another optical axis
and, within the paraxial approximation, an image of A′ will be formed at B′ . If AA′ and BB′ are small, they may
be assumed to be perpendicular to the original optical axis, and BB′ is then the extended image of the extended
object AA′.
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3.2 Refraction by a thin convex lens
When confronted with a compound system (i.e. more than one optical component), we can apply Equation 8

′µ
′l

− µ
l

= ′µ − µ
r

(Eqn 8)

to each component in turn, treating the image produced by one lens as an object for the next one along. If we
follow this procedure, using a consistent convention of signs throughout, then the image for the final component
will be the image for the entire system.
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Figure 123A convex lens forms a point image of a point object.

With this in mind, we can now consider the refraction produced by two spherical surfaces with radii of r1 and r2,
respectively, with the second surface a distance t from the first, along the common optical axis. These surfaces
form a spherical lens, which has a refractive index µ and is surrounded by air with a refractive index of 1.
Figure 12 shows such a lens, in this case a biconvex lens, since it has both faces convex as seen from the
outside. Often a biconvex lens is simply called a convex lens.
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Figure 123A convex lens forms a point image of a point object.

An axial point object O, is at a distance l from the vertex C1 of the first surface, which, by itself would form an
image O′  at a distance l′ from C1. Equation 8

′µ
′l

− µ
l

= ′µ − µ
r

(Eqn 8)
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Figure 123A convex lens forms a point image of a point object.

now relates object and image distances for this first (left-hand) surface:

µ
′l

− 1
l

= µ − 1
r1

 ☞
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Figure 123A convex lens forms a point image of a point object.

The image O′ now acts as an object for the second surface, being at a distance (l′ − t) from it, where t is the lens
thickness. ☞ The second surface produces an image O″ of O′ at a distance l″ from the vertex C2.
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Equation 8
′µ
′l

− µ
l

= ′µ − µ
r

(Eqn 8)

applied a second time gives

1

′′l
− µ

′l − t
= 1 − µ

r2
 ☞

We see from these two equations that there is no simple relationship between object and image distances for a
finite value of t. However, simplification follows if the thickness t is much less than the object and image
distances and each of the radii of curvature and can therefore be neglected; this is our thin lens approximation.
Putting t = 0, and adding the last two equations gives: ☞

1

′′l
− 1

l
= µ − 1( ) 1

r1
− 1

r2







(9)
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We now make a change in the symbols used for object and image distances to accord with common practice and
write the object distance l = u and the final image distance l″ = v. We then obtain the conjugate equation for a
thin lens, relating object and image distances for a thin lens to the radii of curvature of its surfaces.

The conjugate equation for a thin lens

  

1
v

− 1
u

= µ − 1( ) 1
r1

− 1
r2







(10)

Remember that according to the Cartesian sign convention any of the quantities u, v, r1 and r2 may be negative
in this formula.
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3.3 Focal points of a thin convex lens

Now let us consider what happens when the object is moved further and
further away from the lens, so that u is large compared to r1 and r2.
We can take the limit as |1u1| → ∞ and 1/|1u1| → 0.☞ In this limit, all
rays from the object which are incident on the lens will be parallel to
the optical axis and will be refracted by the lens through a single image
point on the axis, as shown in Figure 13a. This image point F2 is called
the image focus or second focus or second focal point of the lens and
it is situated at a distance f from the lens. The distance from the centre
of the lens to F2 is called the focal length f of the lens and is the
parameter by which the focusing property of the lens is quantified.

Figure 133(a) Parallel rays from an object at infinity are brought to a focus at
the second focal point, F2. (b) Paraxial rays diverging from a point object at the
first focal point, F1, are made parallel by the lens. Note that for a thin lens, F1
and F2 are at equal distances from the centre of the lens, irrespective of the
values of r1 and r2.
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The focal length of a convex lens is the distance from the centre of the lens at which parallel rays from an
object at infinity are brought to a focus.

This formal definition of focal length provides the basis of a simple method by which the focal length of a
convex lens may be found. If the image of a distant object, such as a far window, tree, or house is focused on to
a screen, then the distance from the lens centre to the screen will be slightly greater than the focal length.
The further the object is from the lens, the closer the image distance will be to the focal length.

Equation 11 shows an expression for f obtained by putting 1/u = 0 in Equation 10.

  

1
v

− 1
u

= µ − 1( ) 1
r1

− 1
r2







(Eqn 10)

This is called the lens maker’s equation because it relates the surface radii required to produce a lens of a given
focal length from a particular type of glass.

The lens maker’s equation
1
f

= µ − 1( ) 1
r1

− 1
r2







(11)
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Within the Cartesian sign convention, with light travelling from left to right, a positive value for f indicates a
converging lens that will form a real image of an infinitely distant object. A negative value of f indicates a
diverging lens that can only produce a virtual image of such an object. Converging and diverging lens are also
referred to as positive and negative lenses respectively.

Table 23See Question T4.

Lens First
radius/cm

Second
radius/cm

A +25 +15

B –10 –5

C ∞ –20

D +20 +20

Question T4

Determine the focal lengths of the lenses in Table 2. They are all
made of glass with refractive index 1.50. In each case make a
sketch of the lens cross-section.4❏
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The combination of Equations 10 and 11 (for a given lens)

  

1
v

− 1
u

= µ − 1( ) 1
r1

− 1
r2







(Eqn 10)

The lens maker’s equation
1
f

= µ − 1( ) 1
r1

− 1
r2







(Eqn 11)

gives the thin lens equation (Equation 12) which relates object distance, image distance and the focal length of
the lens.

The thin lens equation
  

1
v

− 1
u

= 1
f

(12)

This is probably the most important equation in elementary geometrical optics for it shows that if the focal
length of a thin lens is known (and it has just been noted how easily that may be measured), then the image
position resulting from any object position may readily be calculated.

✦ An object 201cm to the left of a converging lens produces a real image 101cm to the right of the lens. What is
the focal length of the lens?
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An object position may be found from which all paraxial rays are
refracted by the lens to become parallel to the optical axis, as in
Figure 13b. The corresponding image position will be where these
parallel rays meet (!) i.e. at infinity, so that 1/v = 0. The object will then
be at the object focus F1, or first focus or first focal point of the lens.
The distance of this point from the centre of the lens, obtained by
putting 1/v = 0 in Equation 12,

The thin lens equation
  

1
v

− 1
u

= 1
f

(Eqn 12)

is shown to be equal to –f. Thus the first and second focal points are
symmetrically placed on the opposite sides of the lens.

Figure 133(a) Parallel rays from an object at infinity are brought to a focus at
the second focal point, F2. (b) Paraxial rays diverging from a point object at the
first focal point, F1, are made parallel by the lens. Note that for a thin lens, F1
and F2 are at equal distances from the centre of the lens, irrespective of the
values of r1 and r2.
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Figure 143Three types of
converging lens:
(a) planoconvex,
(b) convex meniscus,
(c) biconvex.

Figure 133(a) Parallel rays from an object at infinity are brought to a focus at
the second focal point, F2. (b) Paraxial rays diverging from a point object at the
first focal point, F1, are made parallel by the lens. Note that for a thin lens, F1
and F2 are at equal distances from the centre of the lens, irrespective of the
values of r1 and r2.

The converging lenses of Figures 12 and 13
are biconvex and may have radii of
curvature which are the same for each face
or which may differ. It is however not
essential for each face to be convex in
order for a lens to be converging: the
essential requirement is that it should be
thicker at the centre than at the edges.
This also occurs with two other forms of
lens: the planoconvex lens and the 
convex meniscus lens1—1see Figure 14.
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(a) (b) (c)

Figure 153Three types of
concave lens: (a) biconcave,
(b) planoconcave,
(c) concave meniscus.

3.4 Concave lenses
There are three forms of concave lens, namely biconcave, planoconcave and
concave meniscus (see Figure 15). Equations 10, 11 and 12, which were derived
for convex lenses,

  

1
v

− 1
u

= µ − 1( ) 1
r1

− 1
r2







(Eqn 10)

The lens maker’s equation
1
f

= µ − 1( ) 1
r1

− 1
r2







(Eqn 11)

The thin lens equation
  

1
v

− 1
u

= 1
f

(Eqn 12)

also apply to concave lenses provided that the correct (negative) sign for focal
length is used. Once again the focal length is defined as the distance from the centre
of the lens to the second focal point which is generated when incident rays are
parallel to the optical axis.
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Figure 163(a) Rays parallel to the optical axis of a concave lens
diverge as if from the second focal point F2. (b) Rays converging
towards the first focal point of a concave lens are refracted parallel
to the optical axis.

However, a concave lens produces a very
different ray pattern to that of a convex lens.
As shown in Figure 16a, a concave lens causes
rays to diverge away from the optical axis and
the second focal point F2 is now the point from
which the rays appear to diverge.
For a convex lens the first focus is the location
at which a point source will generate rays
which are refracted by the lens so as to emerge
parallel to the optical axis. For a concave lens,
the first focus F1 is that point towards which
rays must be directed in order that, after
refraction at the lens, they follow paths parallel
to the optical axis1— 1see Figure 16b. This is
another (compare Subsection 3.2) example of a
virtual (point) object1— 1the rays do not
actually meet at F11—1

only their projections. ☞
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3.5 Constructing ray diagrams for lenses
We have seen how rays which are parallel to the optical axis pass through, or appear to pass through the first or
second focal points of both convex and concave lenses. These rays, together with a third ray through the centre
of the lens, are usually called the principal rays and are employed in drawing ray diagrams which enable the
relative positions of object, lens and image to be found. If ray diagrams are drawn to scale then they may be used
instead of Equation 12

The thin lens equation
  

1
v

− 1
u

= 1
f

(Eqn 12)

to find the precise position of the image of a particular object. Alternatively, an approximately scaled free-hand
sketch provides a quick and easy source of information about the image, as we shall see shortly. Principal rays
may be used for both convex and concave lens ray diagrams and, in a modified form, for convex and concave
mirrors1—1as is shown in Subsection 4.4.
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Figure 173The lateral
displacement of a ray through the
centre of a thick symmetrical
biconvex lens.

The third principal ray is drawn passing through the centre of a lens without
deviation or lateral displacement. What actually happens for a biconvex lens,
with equal radii of curvature, is shown in Figure 17. In order to show the effect
more clearly the thickness of the lens is exaggerated. Tangents XX′ and YY′
have been drawn at the points on the surface of the lens where the ray enters
and leaves. Since the ray PQ must pass through the centre of the lens C and the
lens is symmetric, the tangents are parallel and the refraction of the ray is the
same as if it were passing through a parallel-sided block of glass, i.e. it
experiences a small lateral shift but the emergent ray is parallel to the incident
ray. For paraxial rays and thin lenses (which may even be asymmetric), this
shift is negligible and a ray through the centre of a lens can be represented by a
straight line.
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Principal rays used in lens ray diagrams:

1 An incident ray, parallel to the optical axis, emerges from a lens so as to pass directly or by projection
through the second focal point.

2 An incident ray which passes directly or by projection through the first focal point, emerges from the 
lens in a direction parallel to the optical axis.

3 A ray passes straight through the centre of a thin lens without deviation or lateral displacement.
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Examples of principal rays for converging and
diverging lenses are shown in Figure 18.

Figure 183Principal rays used in ray diagrams.
Incident rays parallel to the optical axis pass through the
second focal point.

F1

(b)

F1

(c)
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We are now equipped to find the position of images produced by thin convex and concave lenses for any object
position. We have two methods for doing this: we can use either the thin lens equation (Equation 12)

The thin lens equation
  

1
v

− 1
u

= 1
f

(Eqn 12)

or a ray diagram. If we use the latter, then we will also obtain information about image size and orientation.
Practice is required in order to use both methods with confidence, so we start with some examples and follow
with some questions.
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Example 1 An image formed by a convex lens
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Figure 193Ray diagram for a convex lens with f = 101cm and u = –151cm. Note that the zero on the scale bar does not
correspond to the origin of Cartesian coordinates which is at C.
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Figure 193Ray diagram for a convex lens with f = 101cm and u = –151cm. Note that the zero on the scale bar does not
correspond to the origin of Cartesian coordinates which is at C.

The first example, drawn to scale in Figure 19, is a convex lens with a focal length of 101cm with a real object
placed 151cm from the lens. Being a real object, and therefore the source of light through the system, it is placed
to the left of the lens and the object distance is negative, i.e. u = –151cm. Question T6



FLAP P6.3 Optical elements: prisms, lenses and spherical mirrors
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

The lens is convex and therefore positive so that f = +101cm. Substituting these values in the thin lens equation
(Equation 12) gives:

  

1
v

= 1
10 cm

+ 1
−15 cm

= 3 − 2
30 cm

= 1
30 cm

so v = +30 cm
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Figure 193Ray diagram for a convex lens with f = 101cm and u = –151cm. Note that the zero on the scale bar does not
correspond to the origin of Cartesian coordinates which is at C.

In the ray diagram of Figure 19, the usual practice has been adopted of showing the object as an upright arrow
with its base on the optical axis, and it is then described as being erect. For clarity and accuracy of drawing, the
vertical scale has been much exaggerated1—1in reality all rays would be paraxial, making angles of not more than
about 10° to the optical axis.



FLAP P6.3 Optical elements: prisms, lenses and spherical mirrors
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

imageh'

O

h

X

Y

F1

F2

u v

object

B

I

0 5 cm

C

M

Figure 193Ray diagram for a convex lens with f = 101cm and u = –151cm. Note that the zero on the scale bar does not
correspond to the origin of Cartesian coordinates which is at C.

Three principal rays are drawn from the point B at the top of the object: BX, a ray parallel to the optical axis is
refracted through the second focal point F2; BC, through the centre C of the lens, continues undeviated; BY, an
incident ray through the first focal point F1, is refracted to become parallel to the optical axis. All three rays meet
at M, which is the image of the point B.
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There is no need for further construction to find the position of the remainder of the image as it will be
perpendicular to the optical axis, for a perpendicular object.

There are three attributes which may be used to describe an image. These are

(i) its accessibility, i.e. whether it is real or virtual,

(ii) its orientation, i.e. whether it is erect or inverted,

(iii) its magnification, i.e. whether it is enlarged or diminished ( having a dimension perpendicular to the
optical axis which is larger or smaller than that of the object).
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Figure 193Ray diagram for a convex lens with f = 101cm and u = –151cm. Note that the zero on the scale bar does not
correspond to the origin of Cartesian coordinates which is at C.

In Figure 19 we see that IM represents a real image1—1it could be captured on a screen because the rays we have
drawn all come together and pass through M. Secondly, it is upside down so it is inverted, and finally, it is
bigger (by a factor of two) than the object, so it is enlarged. We return to this latter point in the next subsection.
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Question T6
Figure 193Ray diagram for a convex lens with f = 101cm and u = –151cm. Note that the zero on the scale bar does not
correspond to the origin of Cartesian coordinates which is at C.

As all three principal rays from a point on the object intersect at the corresponding image point, it is only
necessary to draw two of them in order to define the image position. It is however instructive to construct all
three rays, as this will show how precisely they must be drawn to locate an image position with precision.
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Example 2 An image formed by a concave lens

Our second example considers what happens when we replace the convex lens of the first example with a
concave lens having the same numerical value of focal length and again with a real object 151cm from the lens.
We insert the values f = –101cm, u = –151cm in Equation 12.

The thin lens equation
  

1
v

− 1
u

= 1
f

(Eqn 12)

Then

  

1
v

= 1
−10 cm

+ 1
−15 cm

= −5
30 cm

3so v = –61cm

Question T6
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Figure 203Ray diagram for a concave lens with f = –101cm and u = –151cm.

All three principal rays are shown in Figure 20. BX is refracted so as to appear to come from F2 and BY is
refracted parallel to the optical axis; the back projections of these two rays intersect at M through which BC also
passes. The image IM is erect and diminished. It can be seen by looking through the lens but cannot be obtained
on a screen and so is virtual.
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Example 3 An image of a virtual object formed by a concave lens
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Figure 213Image formation from a virtual object using a concave lens.

Our third example is shown in Figure 21, in which the rays PX, QC and RY would all have met at the point B
and so would have defined the top of a real image OB.
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Figure 213Image formation from a virtual object using a concave lens.

When the concave lens is placed 801cm in front of OB, the outer rays are made to diverge and appear to come
from M. OB therefore serves as a virtual object for the lens, which produces a virtual, inverted and magnified
image, IM. The scale of the diagram is such that f = −501cm, u = +801cm. Question T6
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The calculation of the image position is then

  

1
v

= 1
−50 cm

+ 1
80 cm

= −8 + 5
400 cm

= −3
400 cm

3so4v = −1331cm

Now see if you can use these methods to answer the following question. ☞

Question T5

Use both ray diagrams and calculations to find the type and position of the images formed in these systems:

(a) A convex lens of focal length 101cm with a real object placed 61cm from the lens, i.e. between F1 and the lens.

(b) A virtual object located 161cm from a convex lens of 201cm focal length.3❏
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3.6 Transverse magnification by a lens
In the ray diagrams of the previous subsection we saw how the image and object sizes could be very different.
Clearly such changes of scale can be of practical importance1—1the action of many optical instruments such as
cinema projectors and microscopes is to create enlarged images; that of the camera is usually to create
diminished images.

The transverse dimensions of an image created by a single thin lens are simply related to the transverse object
dimensions by the image and object distances.
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Figure 193Ray diagram for a convex lens with f = 101cm and u = –151cm. Note that the zero on the scale bar does not
correspond to the origin of Cartesian coordinates which is at C.

This may be seen in the simple ray diagram of Figure 19 where the heights of object and image are shown as h
and h′ , respectively. From the similar triangles OBC and IMC we have h/u = h′/v. Defining the lens transverse
magnification m as the ratio of image height to object height we obtain
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lens transverse magnification3
  
m = ′h

h
= v

u
(13)

This expression is applicable to concave and convex lenses, and for both real and imaginary objects and images.
If the signs of v and u are included when calculating m, then it conveys more information than the numerical
value of the transverse magnification. Conventionally the object is taken as erect and so if m is positive the
image is erect; if m is negative the image is inverted. ☞

Question T6

Use the scale drawings of Figures 19, 20 and 21 to estimate the transverse magnifications produced by the three
lenses in the example calculations (Example 1, Example 2, and Example 3) in Subsection 3.5.

Confirm your results by calculation. 3❏
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3.7 Optical power
The function of a simple spherical lens is to cause light to converge or diverge, and the shorter the focal length
of a lens, the greater its ability to cause this convergence or divergence. Consequently we speak of strong or
weak lenses, depending on whether they have short or long focal lengths. The optical power of a lens is defined
as the reciprocal of its focal length, and so gives us a quantitative measure which increases with greater
converging or diverging ability.

optical power of a lens P = 1
f

(14)

If the focal length is measured in metres, then the unit of optical power is the dioptre. Thus a converging lens
with a focal length of (+)20 1cm has an optical power of +51dioptres: a diverging lens with a focal length of
(–)2.51m has a power of –0.41dioptres. The importance of specifying a lens by its optical power will become
apparent in the next subsection, when we deal with two lenses in combination.
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3.8 Image formation in a two-lens system
Whenever we see an object through some optical system, the final image is formed on the retina of the eye.
This means that even for something as simple as a magnifying glass, at least two lenses are involved1
—1the magnifier and your eye lens. To examine the basic concepts involved in analysing multi-lens systems we
will consider the simple case of two converging lenses, with the second one placed a distance d along the
common optical axis from the first. If the same method of analysis were applied to other lens combinations,
identical general expressions would be obtained. The procedure can be extended to systems of more than two
lenses.
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Figure 223A two-lens system using converging lenses. Notice that the rays drawn as thick lines are
drawn for constructional purposes.

A double lens system is illustrated in Figure 22. The focal length of the first lens is f1 and that of the second lens
is f2; the lens separation is d. ☞  As usual, we place an extended object on the left of the first lens at a distance
u1 and the light rays go from left to right.
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Figure 223A two-lens system using converging lenses. Notice that the rays drawn as thick lines are
drawn for constructional purposes.

The first image is formed at a distance v1 from the first lens. This image is then taken to be the object for the
second lens for which we use a second Cartesian coordinate system with its origin at the centre of the second
lens. The object distance for the second lens is u2 = –(d −  v1). Figure 22 shows that the overall linear
magnification of this two-lens system is the product of the magnifications produced by each of the two lenses,
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Figure 223A two-lens system using converging lenses. Notice that the rays drawn as thick lines are
drawn for constructional purposes.

since 
  
overall magnification = final image size

initial object size
= I2M2

OB
= I2M2

I1M1

× I1M1

OB
= v2

u2







v1

u1
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Applying the thin lens equation (Equation 12) to each lens

  

1
v

− 1
u

= 1
f

(Eqn 12)

we obtain:
  

1
v1

= 1
f1

+ 1
u1

 and 
  

1
v2

= 1
f 2

+ 1
u2

We can eliminate v1 and u2 by combining these equations, using v1 = u2 + d

to obtain:
  

1
f1

+ 1
u1







−1

− 1
d







−1

= 1
v2

− 1
f 2







−1

(15)

This is a clumsy equation to use and generally it is better to solve two-lens problems by calculating the position
of the first image and then using that as the object position for the second lens calculation, which has been done
in the example shown below. The reason that Equation 15 has been quoted here is because, by letting
d tend to 0 and rearranging, we obtain a relationship between the initial object and final image distances and the
focal lengths of two thin lenses when they are in contact:

  

1
v2

− 1
u1

= 1
f1

+ 1
f 2

(16)
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1
v2

− 1
u1

= 1
f1

+ 1
f 2

(Eqn 16)

This equation shows that they behave like a single thin lens which has a focal length f given by

1
f

= 1
f1

+ 1
f 2

(17)

If we now represent the lenses by their optical powers rather than by their focal lengths, then Equation 17 takes
an even simpler form to become:

Presultant = P1 + P2 (18)

which states that the resultant optical power of two thin lenses in contact is the sum of their individual powers.
This equation can be extended to include several lenses. ☞
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Figure 223A two-lens system using converging lenses. Notice that the rays drawn as thick lines are
drawn for constructional purposes.

Notice in Figure 22 that the principal rays (labelled 1 and 2) used in locating the image produced by the first lens
are not useful for locating the position of the final image. Two further principal rays (3 and 4) are used for this
purpose. These rays can be retraced back through the first lens to the tip of the object, as the figure shows.

The following is an example of a two stage calculation for a two-lens system, similar to that of Figure 22.
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Treat it as a question if you feel able to do so.

✦ Find the position and magnification of the final image formed by a two-lens system, using the following
parameters: f1 = +101cm, f2 = +7.51cm, u1 = –151cm, d = 451cm.

Question T7

A two-lens system is set up as follows: f1 = +101cm, f2 = +101cm, u1 = –51cm, lens separation = 351cm.
Sketch a ray diagram for the system and show that the first image is virtual. Apply the thin lens equation twice to
calculate the position of the final image, and then find the overall magnification.3❏
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4 Reflection at spherical mirrors
The positions of the real or virtual images of extended objects formed by mirrors with surfaces of spherical form
(i.e. spherical mirrors) may be studied using methods similar to those developed for thin lenses, keeping to the
paraxial (small angle) approximation. However, it should be noted that it is relatively easy to make large mirrors
with a parabolic shape (i.e. non-spherical) which make sharp images of point objects on the axis even when
large angle rays are included. This is why very large parabolic mirrors are used in optical telescopes where a
large light collecting area is desirable. The trigonometry of parabolic mirrors is more complicated than that for
spherical mirrors so we will stay with the latter to learn the basic physics of curved mirrors.

The behaviour of light rays at curved mirrors can be summarized as:

1 A ray incident on a curved mirror surface is reflected as if there were a plane mirror, tangential to the
surface, at the point of incidence.

2 Consequently, incident and reflected rays obey the laws of reflection for plane surfaces, and make 
equal angles to the normal at the point of incidence. The incident ray, the normal to the surface, and 
the reflected ray all lie in the same plane.

3 A normal to a curved surface passes through the centre of curvature for that part of the surface; all 
normals to a spherical surface pass through the same common centre of curvature.
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Figure 233A spherical convex mirror makes a virtual, erect image IM of a real object OB.

4.1 A spherical
convex mirror
Figure 23 shows a
spherical c o n v e x
mirror. The convex
surface bulges out at
the centre towards the
object, which is
conventionally placed
to the left of the
mirror. As usual, we
use the paraxial
approximation, which
means that all rays
considered are either
parallel to or make
small angles to the
optical axis.
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Figure 233A spherical convex mirror makes a virtual, erect image IM of a real object OB.

This in turn implies
that the outward
bulge of the mirror is
much less than its
diameter so that rays
at small angles to the
optical axis still make
small angles to the
optical axis after
reflection. The radius
of curvature of the
mirror is r  and the
centre of curvature is
at R.
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Figure 233A spherical convex mirror makes a virtual, erect image IM of a real object OB.

The position of an
image point is fully
determined by the
intersection of any
two rays from an
object point. Consider
ray BP which is
parallel to the axis
from the tip B of the
arrow which forms
the extended object.
This ray strikes the
mirror at P where RP
is the normal to the
surface at the point of
incidence. It  is
reflected away at
angle β on the other
side of the normal, as
though from a point F
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Figure 233A spherical convex mirror makes a virtual, erect image IM of a real object OB.

on the axis. From the
triangles PCF and
PCR, putting angles
equal to their tangents
we then have
2β = tan 2β = h/CF
and β = tan β = h/CR
where h = CP. Putting
CF = f and CR = r,
then gives f = r/2.

This is an important
result, for it shows
that the ray parallel to
the axis and reflected
at P appears to come
from a point halfway
between the vertex of
the mirror and its
centre of curvature.
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Figure 233A spherical convex mirror makes a virtual, erect image IM of a real object OB.

In addition, the
expression for f does
not involve h , so in
the paraxial
approximation any ray
parallel to the axis is
reflected so as to
appear to originate at
F. We therefore define
f as the focal length of
the mirror and the
point F as the mirror’s
focal point.
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Figure 233A spherical convex mirror makes a virtual, erect image IM of a real object OB.

Ray BC, which is
directed towards the
vertex C of the mirror
at an angle α  to the
axis, is reflected at the
same angle below the
optical axis, since the
axis is normal to the
mirror surface at C.
Rays BP and BC
appear to diverge
from the virtual
image  point at M.
Similar ray diagrams
and analysis would
apply for any object
point between B and
O
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Figure 233A spherical convex mirror makes a virtual, erect image IM of a real object OB.

and therefore an
extended, erect virtual
i m a g e  IM of the
extended object OB is
formed.

From the trigonometry
of triangles OBC and
IMC we can obtain
the image distance v
in terms of the object
distance u ,  the
distance CF = f, and
the height of the
object OB.
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Note that in doing so we will, for the moment, treat u, v and f as positive quantities since we have not yet
introduced the appropriate sign convention for mirrors.

We will eventually reintroduce the Cartesian sign convention, but not until it can be properly justified, in
Subsection 4.3.

For now, note that



FLAP P6.3 Optical elements: prisms, lenses and spherical mirrors
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

B

O
β2βα

I R

M

β

F

P

C

β
β

α
α

f

r

v

u

h

Figure 233A spherical convex mirror makes a virtual, erect image IM of a real object OB.

  
α = OB

u
= IM

v
3

so that

  
IM = OB × v

u

Also, from above we

have

2β = CP
CF

= OB
f

and, from triangle

IMF

  
2β = IM

f − v
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Combining these two expressions for IM, 
  

OB × v
u

= OB × ( f − v)
f

which, on dividing by OB × v, then gives 
  

1
u

− 1
v

= − 1
f

(19) ☞

Question T8

Calculate the object position if a virtual image appears 151cm behind a convex mirror with 201cm focal
length.3❏
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Figure 243A spherical concave mirror forming a real inverted
image of an extended object.

4.2 A spherical concave mirror
A spherical concave mirror is shown in
Figure 24 with its reflecting surface curving
inwards at the centre away from the extended
object OB. We can analyse such a system in
much the same way as we did for the convex
mirror. The two principal paraxial rays BP and
BC are shown originating from the tip of the
extended object at B. Ray BP starts parallel to
the optical axis, is reflected at P towards the
axis and passes through the focal point F.
Ray BC strikes the mirror at C, making an
angle α  to the optical axis, and is then
reflected at α  below the axis. The point of
intersection of the two rays defines M as the
tip of the image, so that an extended, real,
inverted image IM is formed at distance v
from the mirror.
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Figure 243A spherical concave mirror forming a real inverted
image of an extended object.

Referring to Figure 24 we can find the image
distance v = IC in terms of the object distance
u = OC, f = FC and h = OB.

Thus in triangles OBC and IMC (treating h, u,
v, f and IM as positive)

  
α = h

u
= IM

v
333so that333

  
IM = hv

u

In triangles PCF and IMF, 

  
2β = h

f
= IM

v − f
33giving33

  
IM =

h v − f( )
f

Equating expressions for IM,

  

hv
u

= h(v − f )
f
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Then dividing by hv gives us 
  

1
v

+ 1
u

= 1
f

(20) ☞

Again we can use the equations β = h r  and 2β = h f  to show that the length f is half the radius of curvature.

For paraxial rays, because f is independent of h, it is defined as the focal length and F as the focal point of the
concave mirror.
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4.3 The sign convention and mirror calculations
For lenses, it was possible to develop a single formula relating object and image distances for both convex and
concave lenses by using a particular sign convention. The same is true for mirrors and we will adopt the same
convention as before, which is to use Cartesian coordinates with origin at the mirror’s vertex. Distance of
objects, images, focal points or centres of curvature to the right of the vertex are then taken as positive and those
to the left as negative.

Equations 19 and 20

  

1
u

− 1
v

= − 1
f

(Eqn 19)

  

1
v

+ 1
u

= 1
f

(Eqn 20)

may now be written in accordance with this convention.
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Figure 233A spherical convex mirror makes a virtual, erect image IM of a real object OB.

Thus for the convex
mirror of Figure 23, u
is negative whereas
both v  and f are
positive. This
modifies Equation 19

  

1
u

− 1
v

= − 1
f

(Eqn 19)

so that it becomes

  

1
v

+ 1
u

= 1
f

(21a)
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image of an extended object.

For a concave mirror, with object and image
positions as in Figure 24, u, v  and f are all
negative so that Equation 20

  

1
v

+ 1
u

= 1
f

(Eqn 20)

is unchanged and is identical to Equation 21a.

  

1
v

+ 1
u

= 1
f

(Eqn 21a)

There are other possible conjugate object and
image positions for a concave mirror (e.g. with
a virtual object or image) which have not been
discussed here. However, analysis of all the
possible arrangements will yield equations
which, when modified by the Cartesian sign
convention, are identical to Equation 21a.
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This becomes the spherical mirror equation, the general equation for convex or concave spherical mirrors for
paraxial object/image locations.

spherical mirror equation
  

1
v

+ 1
u

= 1
f

= 2
r

(21b) ☞

We need to note carefully that this mirror equation is not identical to the thin lens equation (Equation 12)

The thin lens equation
  

1
v

− 1
u

= 1
f

(Eqn 12)

because of a difference in signs.

Question T9
Calculate the position of the image in a concave mirror of focal length 201cm in the following cases:
(a) u = –301cm, (b) u = –151cm, (c) u = −0∞. In each case state if the image is real or virtual.3❏
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4.4 Constructing ray diagrams for mirrors
As with lenses, there are three principal rays which can be used in the construction of ray diagrams for spherical
mirrors, and these are summarized below. Only two of the three are needed to relate object, mirror and image
positions in a ray diagram.

Principal rays for mirror ray diagrams:

1 A ray parallel to the optical axis is reflected through, or appears after reflection, to be coming from, 
the focal point of the mirror.

2 A ray which is incident at the vertex of the mirror at a given angle to the optical axis, is reflected at 
the same angle on the other side of the optical axis.

3 A ray directed through the centre of curvature of the mirror is perpendicular to the mirror at the point
of incidence and is reflected back along itself.
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Figure 233A spherical convex mirror makes a virtual, erect image IM of a real object OB.

4.5 Transverse
magnification by
a mirror
The transverse
magnification m
produced in the
paraxial
approximation was
defined for lens
systems as the ratio
of image height to
object height. 

With this same
definition and
referring to the
mirror diagrams of
Figures 23
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or Figure 24 we see that 
  

IM
OB

= v
u

 so that

mirror transverse magnification 

  
M = v

u
 (22)

If the signs of u and v are included, then M is
negative for erect images and positive for
inverted images; note that this is opposite to
that for lenses.
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4.6 Examples of image formation by spherical mirrors

eye

F object image

Figure 253A vanity mirror produces a virtual, erect, magnified
image of a nearby extended object (usually your face!)

Two examples will illustrate some practical
applications of spherical mirrors. The first is
the concave ‘vanity’ mirror, frequently used
for putting on make-up or for shaving. This has
a typical radius of curvature of about 11m and
the object (i.e. your face) is placed between the
focal point and the mirror, as shown in the ray
diagram of Figure 25.
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Inserting the values r = –11m, u = –301cm and focal length f = r/2 = −501cm into Equation 21

spherical mirror equation
  

1
v

+ 1
u

= 1
f

= 2
r

(Eqn 21b)

then we obtain the image distance:

  

1
v

= 1
f

− 1
u

= 1
−50 cm

− 1
−30 cm

= −3 + 5
150 cm

= 2
150 cm

4so v = 751cm

From Equation 22

mirror transverse magnification    
  
M = v

u
 (Eqn 22)

the transverse magnification is:

M = 
  

v
u

= +75 cm
−30 cm

= −2. 5

The virtual image is located 751cm behind the mirror, it is erect and magnified by a factor of 2.5. ☞
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eye

F object image

Figure 253A vanity mirror produces a virtual, erect, magnified
image of a nearby extended object (usually your face!)

Figure 25 also shows how the virtual image
can be seen by your eye. Two additional rays
from the tip of the object are reflected into the
eye and form a real image on the retina.
The virtual image in the mirror acts as a real
object for the eye lens. In the real world the
vanity mirror is often quite large and our strict
requirements for paraxial rays are violated.
This is not too serious but results in a rather
distorted image being produced, particularly at
the edges. ☞
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Figure 233A spherical convex mirror makes a virtual, erect image IM of a real object OB.

Our second example
is the familiar convex
‘rear view’ mirror
sometimes fitted to
cars. Figure 23 shows
the detail of the
image  pos i t i on
construction, the only
difference in our
example being that
the object is much
further away so that
angle α is smaller and
the image much
reduced in size and
very near to the focus
of the mirror.
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The mirror has a typical radius of curvature of +21m and, in this example, we take as the object a car 1001m
away. With r = +21m and u = –1001m, Equation 21

spherical mirror equation
  

1
v

+ 1
u

= 1
f

= 2
r

(Eqn 21b)

gives the focal length as

f = r0/2 = +11m

and the image distance v can then be obtained:

  

1
v

= 1
f

− 1
u

= 1
1 m

− 1
−100 m

≈ 1
1 m

33333so v = 11m
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Equation 22

mirror transverse magnification    
  
M = v

u
 (Eqn 22)

gives the magnification:

  
M = v

u
= +1 m

−100 m
= −10–2

Assuming that a car is 21m in width, the tiny 21cm wide virtual erect image is located 11m behind the mirror.
You should now think carefully why this is a good idea: we will return to this topic in the Exit test.
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5 Closing items

5.1 Module summary
1 A monochromatic ray of light passing obliquely through a parallel-sided glass block is deviated by equal but

opposite amounts at the two faces and so the entering and emerging rays are parallel. The deviations of a ray
at the faces of a prism are usually both in the same sense so that quite large overall deviations may be
produced. If a ray passes symmetrically through a prism, so that its path in the prism makes equal angles
with the two prism faces, then the deviation of the ray is a minimum. Relationships between this angle of
minimum deviation, the prism angle and its refractive index are given in Equations 4 and 5. The dependence
of the deviation on the refractive index together with the variation of refractive index of glass with
wavelength, give rise to the dispersion of white light passing through the prism.

2 Light rays leaving a point source and crossing a spherical boundary between two transparent media are
refracted, and either converge towards an image point or appear to diverge from a point, provided that all
rays are paraxial. In the paraxial approximation of geometric optics it is assumed that all rays are parallel
to, or make small angles with, the optical axis.

3 The combination of equations describing refraction at two spherical boundaries which are close to each
other, leads to a conjugate equation (Equation 10) relating object and image distances to the radii of
curvature of the surfaces of a thin lens.
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4 The image distance for an object at infinity, defines the focal length of a lens, and this, together with the
adoption of a Cartesian coordinate system, enables the lens maker’s equation to be derived. This equation
gives the focal length of a thin lens in terms of the refractive index of the material of the lens and the radii
of curvature of its surfaces:

1
f

= µ − 1( ) 1
r1

− 1
r2







(Eqn 11)

5 Rays parallel to the optical axis are deviated by a convex lens towards the axis and converge to a real image
point. Parallel rays passing through a concave lens are deviated away from the axis and appear to diverge
from a virtual image point. These image points are focal points for their respective lenses.

6 Analysis of ray paths leads to the thin lens equation, which relates object and image distances and the focal
length of a thin lens, and which is valid for both convex and concave lenses:

  

1
v

− 1
u

= 1
f

(Eqn 12)

7 The lens transverse magnification is given by

  
m = ′h

h
= v

u
(Eqn 13)

and is positive for erect images. A quantitative description of the strength of a lens is its optical power
P = 1/f, expressed in dioptres.

Mike Tinker
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8 As an alternative to calculation, ray diagrams, which are scale drawings using three principal rays, provide
a method of finding image positions and system magnifications. Images are described by three attributes:
orientation (erect or inverted), magnification (enlarged or diminished), and accessibility (real or virtual).

9 Systems consisting of two thin lenses on a common optical axis are analysed by regarding the image of the
object produced by the first lens, as an object for the second lens.

10 The paraxial approximation applied to analyse reflection from a convex mirror and a concave mirror
produces relationships between object and image distances and focal lengths which are similar, but not
identical, to those for lenses. The Cartesian sign convention leads to a paraxial spherical mirror equation

  

1
v

+ 1
u

= 1
f

= 2
r

(Eqn 21b)

The focal lengths of concave and convex mirrors are equal to half their radii of curvature.

11 Ray diagrams, using three principal rays, provide an alternative method of finding image positions and
system magnifications for spherical mirrors.

12 The mirror transverse magnification is given by

  
M = v

u
(Eqn 22)

and is negative for erect images.
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5.2 Achievements
Having completed this module, you should be able to do the following:

A1 Define the terms that are emboldened and flagged in the margins of the module.

A2 Describe and explain the behaviour of a light ray passing through a prism and show how this depends on the
wavelength of the light. Calculate the angle of minimum deviation for known values of prism angle and
refractive index.

A3 Describe: (i) the behaviour of paraxial light rays passing through spherical boundaries and through
converging and diverging lenses and (ii) the formation of real and virtual images.

A4 Recall and use the thin lens equation for any object and image position with any kind of thin lens.
Determine the position and size of extended images of extended objects using ray diagrams, and determine
the magnification of a lens system.

A5 Recall the lens maker’s equation and use it to calculate the focal length of a lens.

A6 Determine the location of the final image in a two-lens system with a common axis by calculation and by
ray diagram. Find the optical power of such a system when the lenses are in contact.

A7 Describe the behaviour of paraxial light rays reflected from convex and concave spherical surface mirrors
and the formation of images.
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A8 Recall and use the spherical mirror equation for any object and image position for convex and concave
spherical mirrors. Determine the position and size of extended images of extended objects using ray
diagrams, and determine the magnification in any single mirror system.

A9 Describe how convex and concave spherical mirrors are used in some common practical situations.

Study comment  You may now wish to take the Exit test for this module which tests these Achievements.
If you prefer to study the module further before taking this test then return to the Module contents  to review some of the
topics.
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5.3 Exit test

Study comment  Having completed this module, you should be able to answer the following questions each of which tests
one or more of the Achievements.

Question E1

(A2)3What is the refractive index of a 60° prism for which the angle of minimum deviation is 41°?

Question E2

(A2)3A prism is constructed from crown glass which has refractive index 1.520 at λ  = 4001nm (violet) and
1.500 at λ  = 7001nm (deep red). Light rays with these two colours are incident on the first face of the prism at
25° to the normal. Calculate the difference between the angles of deviation of the two rays as they enter the
prism.
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Question E3

(A3 and A4)3It is required to make a real inverted image of an extended object using a thin lens. The object is
501cm from the lens and the image must be double the size of the object. Where is the image and what must be
the focal length of the lens?

Question E4

(A4 and A5)3A planoconcave lens, of refractive index 1.50, has the radius of the concave surface equal to 51cm.
Find the focal length of the lens and also its optical power. Show that the magnification of an extended real
object is always less than 1.0. What is the magnification when the object is placed 51cm from the lens?
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Question E5

(A4)3A screen is placed a fixed distance d from an illuminated object. A thin converging lens is placed between
the object and the screen. Show that there are always two positions of the lens at which a sharp image of the
object is formed on the screen, provided the focal length is less than d/4. What happens when f is equal to d/4
and when f is greater than d/4? (Hint: Note that v − u = d and use the thin lens equation to form a quadratic
equation for u.)

Explain why these two lens positions are symmetrically placed about the centre of the system.

Question E6

(A4 and A6)3Two thin lenses, each with focal length +201cm, are placed 501cm apart. An object is placed 501cm
from one lens, which makes a real image between the two lenses. Calculate the position of the final image made
by the second lens. Is the final image real or virtual?



FLAP P6.3 Optical elements: prisms, lenses and spherical mirrors
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

Question E7

(A7, A8 and A9)3Older cars possessed wing mirrors, mounted half-way along the bonnet. Explain why it was
convenient for such a mirror to be convex, with a radius of curvature of about −21m, rather than a plane mirror.

Question E8

(A7, A8 and A9)3Why is it useful to have a concave mirror to use when shaving or putting on make-up, rather
than a plane mirror? Calculate the size of the virtual image of your face when placed 201cm in front of a concave
mirror with radius of curvature –601cm.

Study comment  This is the final Exit test question. When you have completed the Exit test go back to Subsection 1.2 and
try the Fast track questions if you have not already done so.

If you have completed both the Fast track questions and the Exit test, then you have finished the module and may leave it
here.
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