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1 Opening items

1.1 Module introduction
What happens when a substance is heated? Its temperature may rise; it may melt or evaporate; it may expand
and do work1—1the net effect of the heating depends on the conditions under which the heating takes place.
In this module we discuss the heating of solids, liquids and gases under a variety of conditions. We also look
more generally at the problem of converting heat into useful work, and the related issue of the irreversibility of
many natural processes.

We begin, in Section 2, by defining important some important terms, using them to discuss the heating of solids
and liquids, and seeing how the temperature rise of a heated body is related, via the specific heat capacity, to the
heat transferred. Next we discuss fusion, vaporization, sublimation and latent heats. We finish the section by
outlining some techniques for measuring specific heats and latent heats.

In Section 3 attention turns to gases, where different constraints are readily applied during heating. We deal first
with constant volume and constant pressure processes and derive expressions for the corresponding principal
specific heats of a monatomic ideal gas. We also investigate the related ratio of specific heats for an ideal gas,
and investigate its dependence on the number of atoms in each molecule of a gas, and its role in describing
adiabatic processes.
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In Section 4 we take a look at phase changes represented on a PVT-surface, and identify the triple point and the
critical point.

In Section 5 we introduce the second law of thermodynamics, and show how processes ranging from bench-top
experiments to the evolution of the universe can be described in terms of entropy changes.

Study comment Having read the introduction you may feel that you are already familiar with the material covered by this
module and that you do not need to study it. If so, try the Fast track questions given in Subsection 1.2.  If not, proceed
directly to Ready to study? in Subsection 1.3.
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1.2 Fast track questions

Study comment Can you answer the following Fast track questions?. If you answer the questions successfully you need
only glance through the module before looking at the Module summary (Subsection 6.1) and the Achievements  listed in
Subsection 6.2. If you are sure that you can meet each of these achievements, try the Exit test in Subsection 6.3. If you have
difficulty with only one or two of the questions you should follow the guidance given in the answers and read the relevant
parts of the module. However, if you have difficulty with more than two of the Exit questions you are strongly advised to
study the whole module.

Question F1

(a) What mass of iron at 171°C, if dropped into liquid oxygen at its boiling point of −1831°C, will cause 31g of
liquid oxygen to evaporate?

Specific heat of iron = 40011J1kg−11K−1

Specific latent heat of vaporization of liquid oxygen = 2.1 × 1051J1kg−1.



FLAP P7.4 Specific heat, latent heat and entropy
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

Question F2

A sample of n moles of an ideal monatomic gas initially at pressure P1, volume V1 and temperature T1,
undergoes a change to a final state with pressure 2P1 and volume 2V1. Show the initial and final states, and their
temperatures, on a P–V diagram. Suppose you calculated the entropy change involved in this process when the
change is brought about (a) by first doubling the volume at constant temperature and then raising the temperature
at constant volume, and (b) by an adiabatic rise in pressure from P1 to 2P1 followed by a change of temperature
at constant pressure. Why should your answer be the same in both cases?

Study comment Having seen the Fast track questions  you may feel that it would be wiser to follow the normal route
through the module and to proceed directly to Ready to study? in Subsection 1.3.

Alternatively, you may still be sufficiently comfortable with the material covered by the module to proceed directly to the
Closing items.
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1.3 Ready to study?

Study comment

To begin the study of this module you will need to be familiar with the following terms: energy, kelvin, mole, power,
pressure,  ☞temperature, volume and work. It would also be helpful if you have some understanding of the following terms
equation of state (of an ideal gas), first law of thermodynamics, function of state, heat, ideal gas, internal energy,
quasistatic process and thermal equilibrium. The terms in this second list are introduced in this module, but they are also
introduced elsewhere in FLAP, and the treatment here is deliberately brief. If you are uncertain about any of these terms,
particularly those in the first list, then you can review them now by referring to the Glossary, which will also indicate where
in FLAP they are developed. As well as requiring algebraic manipulation, this module uses the notation of differentiation and
integration. You will not be required to evaluate integrals yourself but you will encounter results expressed in terms of
integrals and you will be shown (and asked to use) examples in which integrals are evaluated for you. Obviously, the more
familiar you are with integration, the easier you will find this material. You will also need to be familiar with the
exponential function and with the properties of logarithmic functions. The following Ready to study questions will allow you
to establish whether you need to review some of the topics before embarking on this module.
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Question R1

Express a temperature of −201°C as an absolute temperature in kelvin.

Question R2

Simplify the expression loge1(a/b) − loge1(c/a).
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2 Heating solids and liquids

2.1 Heat, work and internal energy

Study comment All of the topics introduced in this subsection are discussed in more detail elsewhere in FLAP. See the
Glossary for references to those fuller discussions if you need them.

Solids and liquids are composed of atoms and molecules. These microscopic constituents of matter interact with
one another electrically and have some freedom to move, though the movements are very restricted in the case
of a solid. As a result of these internal interactions and movements, macroscopic bodies have an internal energy
U that can be distinguished from any kinetic or potential energy they may have arising from their overall motion
or their interaction with other macroscopic bodies.

The internal energy of a body is a function of state. That is to say, if the body in question is kept under well
controlled conditions of temperature and pressure, then its internal energy will be determined by the current
values of those conditions.
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Figure 14The variation with temperature and pressure of the internal energy U of a fixed quantity of a typical substance.
Note that there are vertical regions on the UPT surface (corresponding to changes of phase) in which a change in internal
energy is not necessarily accompanied by a change in temperature.

This is indicated in Figure 1, which shows the variation of internal
energy with temperature and pressure for a fixed quantity of a typical
pure substance. Each point on the two-dimensional internal energy
surface relates a value of U to particular values of the pressure P and
the temperature T. As you can see, as T increases the surface generally
slopes upwards, so there is an overall tendency for internal energy to
increase with increasing temperature. However, the relationship is not
a simple one, because there are also vertical regions of the UPT
surface where the internal energy increases without any corresponding
increase in the temperature. These regions correspond to
phase transitions, such as melting or boiling, in which the substance
changes from one phase of matter (solid, liquid or gas) to another.
On the whole, the internal energy of a solid is low, that of a liquid is
higher, and that of a gas higher still. If the pressure is held constant
during a phase transition there will be no change in temperature while
the transition takes place, but the proportion of the more energetic
phase will increase as the internal energy increases.
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Since energy is a conserved quantity, the only way to alter the internal energy of a body is to transfer some
energy to or from that body. There are two ways in which this can be done, the first is to put the body in
thermal contact with some other body (or bodies) at a different temperature so that heat can flow from the
hotter to the cooler body. Heat is defined as energy transferred due to temperature differences, so the emission or
absorption of heat by a body will certainly change its internal energy. The second way of changing the internal
energy is to do some work on the body or allow it to do some work. Work is generally defined as energy transfer
by any means that does not directly involve temperature differences so it includes processes such as stirring and
rubbing which are well known ways of raising the temperature of a body (and hence increasing its internal
energy) without having to supply any heat to that body.

The possibility of the internal energy of a body being changed by means of heat or work may be summarized by
the equation

∆U = ∆Q − ∆W (1) ☞

where ∆U is the change in internal energy, ∆Q is the heat transferred to the body, and ∆W is the work done by
the body. You may be surprised that we allow ∆W to represent the work done by the body, which will tend to
reduce its internal energy, rather than the work done on the body which would increase it.
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However, this is a purely conventional choice; the important thing to remember is that any of these quantities
may be positive or negative, but with the particular choices we have made

A positive value of ∆U implies an increase in internal energy.

A positive value of ∆Q implies heat transfers energy to the body.

A positive value of ∆W implies work transfers energy from the body.

The equation ∆U  = ∆Q  −  ∆W  is the mathematical essence of the first law of thermodynamics, the full
implications of which are explored elsewhere in FLAP.
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2.2 Changes of temperature: specific heat
When you heat something 1—1some soup, for example1—1you supply it with an amount of heat ∆Q which raises
its absolute temperature T by an amount ∆T. The ratio of the heat supplied to the consequent change in
temperature is called the heat capacity of whatever is being heated.

Thus, heat capacity =
∆Q

∆T

Strictly speaking, this quantity represents the average heat capacity over the temperature range concerned, since
the heat required to raise the temperature from 3001K to 3011K may differ somewhat from that required to raise
the temperature from 3201K to 3211K, but we will ignore such variations for the moment.

The heat supplied ∆Q is a quantity of energy, so it can be measured in joules (J) and ∆T can be measured in
kelvin (K) or even °C, since a temperature change of 11°C is the same as a change of 11K. It follows that the heat
capacity ∆Q/∆T can be expressed in units of J1K−1 or J1°C−1 with the same numerical value in either case.
 In this module, we will use J1K−1.
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When dealing with bodies composed of a single uniform substance, the heat capacity is proportional to the
amount of that substance within the body. Under those circumstances it is useful to know the heat capacity per
unit mass of the substance. In SI units this quantity will have units of J1K−11kg−1 and is usually called the specific
heat of the substance, or sometimes its kilogram specific heat. ☞ We will represent this quantity by a lower
case c.

The specific heat c of a substance is its heat capacity per unit mass. It follows that the heat ∆Q required to
raise the temperature of a mass m of the substance by an amount ∆T is

∆Q = mc∆T (2)
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Sometimes, rather than dealing with a known mass of substance we need to deal with an amount defined in
terms of a (large) number of its atoms or molecules. On these occasions it is useful to know the heat capacity per
mole of the substance. This is usually referred to as the molar specific heat which has SI units J1K−11mol−1 ☞.
We will represent this by an upper case C to distinguish it from the specific heat.

The molar specific heat C of a substance is its heat capacity per mole. It follows that the heat ∆Q required
to raise the temperature of n moles of the substance by an amount ∆T is

∆Q = nC∆T (3)

thus C = ∆Q

n∆T

If we use ∆Qm = ∆Q/n to represent the heat supplied per mole ☞ (measured in units of J1mol−1), we can rewrite
the last equation as

C = ∆Qm

∆T
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As already noted in the case of heat capacity, the relationship between the heat supplied to a sample of a material
and the resulting temperature rise depends on the conditions under which it is heated. Thus both the kilogram
specific heat c and the molar specific heat C defined in Equations 2 and 3, respectively, are really averages over
specific temperature ranges. Moreover, the first law of thermodynamics written in the form

∆Q = ∆U + ∆W (4)

reminds us that the heat ∆Q  supplied to an object may enable it to do work ∆W as well as producing a
temperature change associated with a change ∆U in its internal energy. The specific heat therefore depends on
the way ∆Q is shared between ∆W and ∆U, i.e. it depends on the extent to which a sample is allowed to expand
and do work.

When solids and liquids are heated, they are almost always free to expand into their surroundings, so the most
widely used specific heats of solids and liquids are those measured at atmospheric pressure. ☞ In fact, specific
heats quoted in data books normally refer to measurements made at standard temperature and pressure, (s.t.p.),
which means a pressure of 1.001atm (= 1.01 × 1051Pa = 1.01 × 1051N1m−2) and a temperature of 273.161K
(= 0.001°C) . In this module, unless told otherwise, you may always assume that the specific heats of solids and
liquids are constant, so variations of c or C with temperature may be ignored. However, you should be aware
that investigations into the variation of specific heat with temperature have played an important part in the
development of modern physics, even though they won’t be pursued in this module.
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Question T1

The heat capacity of a copper kettle of mass 1.601kg is found to be 6061J1K−1. One mole of copper has a mass of
641g. Find the (kilogram) specific heat c and the molar specific heat C of copper. If 2001J of heat is supplied to a
0.251kg copper block, what is the final temperature of the block if it was initially at 23.01°C?4❏
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2.3 Changes of phase: latent heat
The melting (technically described as fusion ☞) of ice into water, and the vaporization of water to form steam,
are familiar examples of processes in which a substance undergoes a change of phase (known as the phase
transition). Sublimation, in which a solid is converted directly to a gas without passing through a liquid phase,
is less familiar from everyday experience although solid carbon dioxide (‘dry ice’) sublimes at room temperature
and is often used to produce theatrical special effects ☞. A striking demonstration of sublimation occurs when
the silvery, rather metallic-looking, crystals of the element iodine are heated; they do not melt but give off a
surprisingly violet-coloured vapour.

Substances such as chocolate, butter and honey, which are made up of murky mixtures of this and that, may melt
over a range of temperatures, but the temperatures at which pure solids melt are extremely narrowly defined. ☞
For example, pure ice melts into water at the very well specified temperature of 0 1°C1—one microdegree below
the melting temperature and it is solid; one microdegree above and it is liquid. For the sake of simplicity we will
confine ourselves to such well behaved substances for the rest of this module.
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Figure 24A heating curve for 11kg of ice, at atmospheric pressure.

Figure 2 shows the temperature
of a fixed sample of pure water
(H2O) ☞, initially ice, as it is
heated at a constant rate ☞.
Below the melting point the
temperature of the ice rises
steadily, at a rate determined
by its heat capacity. Then, at
the melting point (01°C), the
temperature ceases to change,
even though heating continues.
When all the ice has melted the
temperature starts to rise again,
but not at the same rate as
before, since the heat capacity
of the liquid water is different from that of the solid ice. The graph flattens again at the boiling point, as the
liquid water turns to steam. Finally, the graph starts to rise again at a rate determined by the heat capacity of the
steam. Since heat is being supplied at a constant rate, the lengths of the horizontal portions of the graph are
proportional to the amounts of heat required to complete the corresponding phase changes. As you can see they
are substantial, especially that for the vaporization of water.
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By studying graphs similar to Figure 2, for fixed quantities of material under specified conditions (e.g. constant
pressure) it is possible to determine the heat required to produce a given phase transition under given conditions.
This is referred to as the latent heat of that transition.

The latent heat of a sample is the heat required to change the phase of the whole sample at constant
temperature.

As in the case of heat capacity, it is useful to know two related quantities:

The specific latent heat l of a substance is the latent heat per unit mass of the substance. It follows that the
heat ∆Q (supplied at constant temperature) required to change the phase of a mass m of the substance is

∆Q = ml (5)

The molar latent heat L of a substance is the latent heat per mole of the substance. It follows that the heat
∆Q (supplied at constant temperature) required to change the phase of n moles of the substance is

∆Q = nL (6)

✦ What are suitable SI units for latent heat, and for the specific latent heat l and molar latent heat L?
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When quoting a value for any specific latent heat it is always important to make clear which phase transition it
refers to. This is usually done by attaching appropriate subscripts to the relevant symbol, ‘fus’ for fusion, ‘vap’
for vaporization and ‘sub’ for sublimation. This is indicated in Table 1, which lists some of the thermal
properties of H2O.

Table 1 Thermal properties of H2O.

Quantity Value

specific latent heat of boiling water, lvap 2.257 × 106 1J1kg−1

specific latent heat of melting ice, lfus 3.33 × 1051J1kg−1

specific heat of water, c (at s.t.p.) 4.2174 × 1031J1kg−11K−1

As with specific heat, the values of latent
heat and the temperatures at which a
substance melts and boils can depend on
external conditions. For example, reducing
the external pressure lowers the boiling point
of a liquid (loosely speaking, because it
becomes ‘easier’ for the molecules to escape
from the liquid to the vapour) so tea brewed in an open container on a high mountain top is only lukewarm.
Values quoted in tables and data books generally refer to measurements at 1 atm.

Question T2

Some vegetables, of heat capacity 22001J1K−1, at T = 3731K, are plunged into a mixture of 11kg of ice and 11kg of
water at 2731K. How much ice melts?4❏
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Table 1 Thermal properties of H2O.

Quantity Value

specific latent heat of boiling water, lvap 2.257 × 106 1J1kg−1

specific latent heat of melting ice, lfus 3.33 × 1051J1kg−1

specific heat of water, c (at s.t.p.) 4.2174 × 1031J1kg−11K−1

Question T3

Steam at 1001°C is passed into a beaker
containing 0.0201kg of ice and 0.101kg of
water at 01°C until all the ice is just melted.
How much water is now in the beaker?4❏
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2.4 Measuring specific heats and latent heats
The measurement of heat and its effects is known as calorimetry (literally ‘heat measuring’). The basic method
for measuring specific heat is to supply a known amount of heat to a sample and to measure the resulting
temperature rise. There are many variations on this basic method; we will only touch briefly on a few
representative examples.

In the method of mixtures, the supply of heat is from (or to) a hotter (or colder) object whose heat capacity is
already known. The mixing takes place in a calorimeter (a fancy name for a container used in calorimetry);
the simplest type of calorimeter is a metal container of known heat capacity, thermally insulated from its
surroundings. Assuming that no heat is lost to the surroundings, and that any heat absorbed by the calorimeter is
taken into account, the heat supplied to the cold object is equal to that transferred from the hot object.

Example 1 A small object of mass m = 0.261kg and unknown specific heat c, initially at 1001°C, is placed into
a body of liquid with a heat capacity of 13001J1K−1, initially at 201°C. The final equilibrium temperature is 251°C.
What is the value of c? Ignore any heat that may be absorbed by the vessel containing the liquid.
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Solution4To reach thermal equilibrium, the object cools by 75 1K, and the liquid is warmed by 51K, so
(assuming there are no heat losses)

heat gained by liquid = 13001J1K−1 × 51K = 65001J

heat lost by object = mc × 751K

As these two values are equal, we can write

mc = 65001J/751K = 86.71J1K−1

Thus, c = 86.71J1K−1/0.261kg = 3331J1kg−11K−14❏

An electrical method is often used to heat the sample in a calorimetry experiment, since it is relatively
straightforward to measure and control the rate at which heat is supplied ☞. Measuring the corresponding rate
of increase of temperature provides another method of determining specific heats. If the heater has power P, and
there are no heat losses, then in a time ∆t, the heat supplied is ∆Q = P1∆0t. ☞ This will cause a sample of mass m
and specific heat c to increase its temperature by ∆T where

P1∆t = mc1∆T



FLAP P7.4 Specific heat, latent heat and entropy
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

It follows that the rate of change of temperature with time will be

dT

dt
= lim

∆t→0

∆T

∆t




 = lim

∆t→0

P

mc




 = P

mc

Where we have used the fact that P/mc is a constant and is therefore unaffected by the process of taking the limit
as ∆t becomes vanishingly small.

Hence c = P

m

dT

dt






−1

(7)

Question T4

An object with an electrical heater and thermometer attached is isolated from its surroundings. The heater power
is 241W, and the temperature of the object rises at a rate of 3 degrees per minute. What is the heat capacity of the
object?4❏
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Question T5

0.201kg of iron at 1001°C is dropped into 0.0901kg of water at 161°C inside a calorimeter of mass 0.151kg and
specific heat 8001J1kg−11K−1, also at 161°C.

Specific heat of iron: 4001J1kg−11K−1

Specific heat of water: 41851J1kg−11K−1

Find the common final temperature of the water and calorimeter.4❏
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Either of the basic methods described above can also be used for fluid ☞ samples, but an alternative is to use a
continuous flow method in which the fluid flows at a steady known rate through an insulated tube containing an
electrical heater delivering a power P. If in the steady state (not equilibrium) mass flows through the apparatus at
a constant rate dm/d0t, and shows a constant temperature increase ∆T, then we can say that, in a time ∆t, the mass
heated is (dm/d0t)1∆t, and the energy supplied to that mass is P1∆t so (using Equation 2)

P ∆t = c
dm

dt
∆t ∆T (8)

Dividing both sides by ∆t and rearranging gives the specific heat:

c = P

∆T

dm

dt






−1

(9)

In presenting these methods of measuring specific heat we have made the assumption that heat losses are
negligible. In practice this is unlikely to be the case; a great deal of time and effort is spent minimizing heat
losses and calculating those which are unavoidable. An advantage of the continuous flow method is that both the
heating rate and the flow rate can be altered in such a way that the temperature rise is unchanged. By doing this
while assuming that the heat losses are the same it is possible to go a long way towards eliminating them from
the final calculation of c. ☞
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Example 2 A liquid flows past an electric heating coil. When the mass flow rate of the liquid is
3.2 × 10−31kg1s−1 and the power supplied to the coil is 27.41W, the inlet and outlet temperatures are 10.41°C and
13.51°C respectively. The flow rate is then changed to 2.2 × 10−31kg1s−1 and, in order to maintain the same
temperatures, the power supplied is adjusted to 19.31W. 
Calculate the specific heat of the liquid and the rate of loss of heat.

Solution4We use the following notation: Q̇ = dQ dt   ☞ is the rate of heat flow from the electrical heater, Ḣ
is the rate of loss of heat to the surroundings, ṁ = dm dt  is the rate of mass flow, ∆T is the difference between
the inlet and outlet temperatures, and the required specific heat is c. We can modify Equation 8

P ∆t = c
dm

dt
∆t ∆T (Eqn 8)

to include the heat loss:

Q̇ = ṁc ∆T + Ḣ (10)

We assume that the rate of heat leak Ḣ  will be the same in both cases, so we can write down two simultaneous
equations:

Q̇1 = ṁ1c ∆T + Ḣ  4and4 Q̇2 = ṁ2c ∆T + Ḣ

If we subtract the first equation from the second to eliminate Ḣ  we obtain
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Q̇2 − Q̇1 = c ∆T(ṁ2 − ṁ1)

So,
c = Q̇2 − Q̇1

(ṁ2 − ṁ1) ∆T
= (27.4 − 19.3) W

(3.2 − 2.2) ×10−3 kgs−1 × (13.5 − 10.4) K
= 2.6 kJ kg−1 K−1

If we put c into either of the original equations, we find Ḣ . For example:

Ḣ = Q̇1 − ṁ1c ∆T

So, Ḣ  = 27.41W − (3.2 × 100−31kg1s−1 × 2.6 × 1031J1kg−11K−1 × 3.11K)

i.e. Ḣ = 1.6 W

To measure latent heat, the methods are essentially very similar to those for specific heats. The basic idea is to
supply a known amount of heat at the melting or boiling point and to measure the amount of the substance that
changes phase. If you can arrange for two different runs of an experiment to have the same heat losses, you can
write down two simultaneous equations and eliminate the heat loss from the calculation.4❏
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Figure 24A heating curve for 11kg of ice, at atmospheric pressure.

Question T6

Figure 2 refers to 11kg of H2O
electrically heated at a
constant rate of 4.01kW.
Using values from the graph,
and assuming there are no
heat losses, deduce values of
the specific latent heat of
fusion, lfus, of ice and the
specific latent heat of
vaporization, l v a p , of
water.4❏

Question T7

In measuring the specific latent heat of vaporization of ethanol, a mass of 4.21g of vapour (gas) was collected in
5.01min when 45001J was supplied by an electric heater. In a second run, the heater was adjusted to supply 90001J
in 5.01min and 9.31g of vapour was collected. Calculate the specific latent heat of vaporization for ethanol and the
heat lost from the apparatus.4❏
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3 Heating gases
In this section, we look at processes that involve the heating of gases and the constraints (e.g. maintaining
constant pressure or constant volume) that may be applied during such processes. It was noted earlier that such
constraints can have a substantial influence on the specific heats of gases. We will begin with a brief review of
some key ideas and equations.

3.1 Ideal gases

Study comment All of the topics introduced in this subsection are discussed in more detail elsewhere in FLAP. See the
Glossary for references to those fuller discussions if you need them.

Real gases behave in a variety of different ways, but at low density and moderate temperature the behaviour of
all real gases approximates the behaviour of an ideal gas. A quantity of n moles of ideal gas at absolute
temperature T and pressure P, contained in a volume V satisfies the equation of state of an ideal gas

PV = nRT (11)

where R = 8.3141J1K−11mol−1 is the molar gas constant (T must be expressed in kelvin (K), not °C).
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P
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V

Figure 34The (truncated) PVT-surface of a
fixed quantity of ideal gas, representing its
possible equilibrium states. The dashed lines
drawn on the surface correspond to constant
values of P, the solid lines to constant T, and
the dotted lines to constant V.

The relationship between P, V and T given by Equation 11

PV = nRT (Eqn 11)

can be shown graphically by using a three-dimensional graph of the
sort shown in Figure 3. For a given value of n (i.e. for a fixed
quantity of gas) each set of values for P , V  and T that satisfies
Equation 11 specifies a single point on the graph and corresponds to
a unique equilibrium state of the sample. The set of all such points
(i.e. the set of all equilibrium states of the fixed quantity of gas)
constitutes a continuous two-dimensional surface in the three-
dimensional PVT space of the graph. Such a surface is called the
PVT-surface of the gas. The surface shown in Figure 3 has been
truncated for ease of display, but ignoring that, every possible
equilibrium state of the sample is represented by a point on the
equilibrium surface and, conversely, any point not on the equilibrium
surface does not represent a possible equilibrium state of the sample.
The PVT-surfaces of real gases are generally similar to this, but
somewhat more complicated.
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A process in which the temperature and pressure of the gas are changed
sufficiently slowly that the gas is always close to an equilibrium state is
called a quasistatic process. Such a process may be shown as a
continuous pathway on an appropriate PVT-surface, since the gas is
always infinitesimally close to an equilibrium state throughout the
process. The ends of the path would then correspond to the initial and
final states of the process. Any particular pathway on the PVT-surface
will correspond to a set of specific relationships between P and V, P and
T, and V and T, as can be seen by examining the projection of the PVT-
surface onto the P–V, P–T and T–V planes. The P–V and P–T graphs
corresponding to some very simple quasistatic processes are shown in
Figure 4.

Figure 44(a) P–V and (b) P–T graphs of three simple quasistatic processes in a
fixed quantity of ideal gas which is initially in an equilibrium state specified by
pressure Pa, volume Va and temperature Ta. The three processes respectively
involve (i) constant temperature (T a), (ii) constant pressure (P a) and
(iii) constant volume (Va).
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Question T8

Show the relationship between T and V  for each of the processes
described in Figure 4 on an appropriate T–V graph. (If you find it
helpful, use a pencil to draw the paths that correspond to the three
processes on the PVT-surface of Figure 3, and then consider its
projection onto the T–V plane.)4❏

Figure 44(a) P–V and (b) P–T graphs of three simple quasistatic processes in a
fixed quantity of ideal gas which is initially in an equilibrium state specified by
pressure Pa, volume Va and temperature Ta. The three processes respectively
involve (i) constant temperature (T a), (ii) constant pressure (P a) and
(iii) constant volume (Va).
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Question T9

Starting from Equation 11

PV = nRT (Eqn 11)

write down the equations that describe each of the curves you drew in
answering Question T8.4❏

Figure 44(a) P–V and (b) P–T graphs of three simple quasistatic processes in a
fixed quantity of ideal gas which is initially in an equilibrium state specified by
pressure Pa, volume Va and temperature Ta. The three processes respectively
involve (i) constant temperature (T a), (ii) constant pressure (P a) and
(iii) constant volume (Va).
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If any quasistatic process involves a change in the volume of the gas, then work will be done. If the volume
increased by an amount ∆V while the pressure remained constant, the work done would be

∆W = P1∆V (12)

This formula is sometimes of use as it stands, but an increase of volume is often associated with a change of
pressure in which case it ceases to be applicable. However, under those circumstances Equation 12 does provide
an approximate value for the work done in any small expansion ∆V in which the pressure is approximately
constant. By adding together the amounts of work done in many such small expansions, and considering what
happens to that sum in the limit as the volume increments become vanishingly small, it can be seen that the total
work done by the gas during an arbitrary quasistatic expansion from an initial volume Va to a final volume Vb is
given by the definite integral

W = P(V ) dV
Va

Vb

∫ (13) ☞

where P(V) represents the pressure of the gas when its volume is V. Equation 13 has a geometric interpretation
which it is often useful to keep in mind; given the graph of P against V for a particular expansion, the work done
by the gas during that process is represented by the area under the curve between Va and Vb. (If the gas contracts
rather than expands, so that Vb is less than Va, the same principle applies but the work done by the gas will be
negative in that case.)
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✦ The constant pressure and constant temperature processes shown in
Figure 4a involve the same change of volume. In which of them is the
work done by the gas greatest?

Figure 44(a) P–V and (b) P–T graphs of three simple quasistatic processes in a
fixed quantity of ideal gas which is initially in an equilibrium state specified by
pressure Pa, volume Va and temperature Ta. The three processes respectively
involve (i) constant temperature (T a), (ii) constant pressure (P a) and
(iii) constant volume (Va).
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The work done (positive or negative) by an ideal gas during a quasistatic process may not entirely account for
the change in its internal energy. The internal energy is a function of state, so the amount by which it changes in
any quasistatic process is entirely determined by the initial and final equilibrium states that mark the beginning
and end of the process.

The work done in the process is not a function of state, its value depends on the details of the process and hence
on the P–V diagram of the process. If the work done by the gas does not fully account for the change in its
internal energy it must mean that the process is one that requires a transfer of heat to or from the gas.
The heat transferred, like the work done, is not a function of state, so it too will depend on the details of the
process. This slightly complicated relationship between internal energy, heat and work is described by the first
law of thermodynamics that was introduced in Subsection 2.1:

∆U = ∆Q − ∆W (Eqn 1)
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3.2 Principal specific heats: monatomic ideal gases
All ideal gases satisfy the same equation of state

PV = nRT (Eqn 11)

and each ideal gas has the property that its internal energy depends only on its absolute temperature.
However, the exact relationship between the temperature and the internal energy may differ from one ideal gas
to another. An ideal gas is said to be monatomic if the internal energy of n moles at absolute temperature T is
given by:

U = 3
2 nRT (14) ☞

Such a gas provides a reasonable approximation to real gases composed of single atoms, such as helium, neon
and argon, under a range of conditions.

When a given quantity of heat is transferred to a monatomic ideal gas the state of the gas will change. If the gas
has some freedom to change its volume then it may do some work, if so the final state of the gas will be
determined by the requirement that the work done by the gas together with the change in its internal energy
should completely account for the heat transferred. The work done will depend on the constraints imposed on
the gas, so different choices of constraint will cause the same amount of heat to produce different changes in
internal energy and hence different changes in temperature. It follows that the specific heat of the gas
(the heat transfer per unit rise in temperature) will depend on the constraints imposed.
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The constraints may be quite complicated, but the two commonest and simplest ways to constrain a gas during a
process are by requiring that either:

1 the volume of the gas should remain constant (sometimes called an isochoric process); or

2 the pressure of the gas should remain constant (sometimes called as isobaric process).

The molar specific heats determined under these conditions are called the principal molar specific heats and
are labelled CV and CP, respectively. ☞

✦ For an ideal gas, which would you expect to be greater1—1CV or CP?

Monatomic ideal gases are sufficiently simple that it is not too difficult to deduce their principal specific heats
theoretically. This is what we will now do.
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The first thing to note is that if the temperature of n moles of ideal gas increases from T to T  + ∆T, then its
internal energy will increase from U to U + ∆U, where

U + ∆U = 3
2 nR(T + ∆Τ) (15)

Subtracting the left-hand and right-hand sides of Equation 14 from the corresponding sides of Equation 15, we
see that

∆U = 3
2 nR∆T (16)

At constant volume, no work is done (∆W = 0), so this change in internal energy entirely accounts for any heat
transferred to the gas. Consequently, in an isochoric (constant volume) process

∆Q = ∆U = 3
2 nR ∆T (17)

It follows that the energy transferred per mole of gas is ∆Qm = ∆Q/n = 3
2 R1∆Τ, and the molar specific heat at

constant volume is

CV = ∆Qm

∆T
= 3

2
R

The heat capacity of one mole of an ideal monatomic gas at constant volume is

CV = 3
2 R (18)
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In a constant pressure (isobaric) process the calculation is a little more complicated because the gas will expand
and do work. So the first law of thermodynamics gives

∆Q = ∆U + ∆W (Eqn 4)

In this case, after the heat has been transferred the pressure will still be P, but the final volume will be V + ∆V
and the final temperature will be T + ∆T. As before, we can use Equation 16

∆U = 3
2 nR∆T (Eqn 16)

to relate ∆U to ∆T, and, since P is constant in this case, we can use Equation 12

∆W = P1∆V (Eqn 12)

to equate ∆W to P∆V. Consequently

∆Q = 3
2 nR ∆T + P ∆V (19)
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Furthermore, it follows from the equation of state (Equation 11)

PV = nRT (Eqn 11)

that P(V + ∆V) = nR(T + ∆T) (20)

Subtracting the left-hand and right-hand sides of Equation 11 from the corresponding sides of Equation 20, we
see that

P∆V = nR∆T (21)

Substituting this into Equation 19

∆Q = 3
2 nR ∆T + P ∆V (Eqn 19)

gives us

∆Q = 3
2 nR ∆T + nR ∆T = 5

2 nR ∆T

It follows that the heat transferred per mole of gas in this case must be ∆Qm = ∆Q/n = 5
2 R1∆Τ, and the molar

specific heat at constant pressure is

CP = ∆Qm

∆T
= 5

2
R
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The heat capacity of one mole of an ideal monatomic gas at constant pressure is

CP = 5
2 R (22)

An easily memorable result concerning the difference in the principal molar specific heats follows immediately
from Equations 18 and 22:

CV = 3
2 R (Eqn 18)

CP − CV = R (23)

Question T10

Suppose n moles of an ideal monatomic gas have a total mass M. Derive an expression for the difference in
(mass) specific heats (cP − cV) in terms of the gas density ρ.4❏
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3.3 Principal specific heats: other gases
Equation 23

CP − CV = R (Eqn 23)

is actually true for any ideal gases, as the following derivation shows. For any substance undergoing an isobaric
change,

∆Q = nCP1∆T (24)

so that for an isobaric process, the first law of thermodynamics implies that
nCP1∆T = ∆U + P1∆V (25)

but in considering any ideal gas we always have
∆U = nCV1∆T (26)

and in an isobaric process the equation of state (Equation 11) always implies
P∆V = nR1∆T (27)

Substituting Equations 26 and 27 into Equation 25 and dividing throughout by n∆T we obtain
CP − CV = R
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Which is Equation 23 again, so we can say that

for any ideal gas CP − CV = R (Eqn 23)

This is more useful than a result that is restricted to monatomic gases and, fortunately, it provides quite a good
description of many real gases under conditions which are not too extreme.

Our original derivation of Equation 23 involved U = 3nRT/2, which is true only for monatomic gases, while the
more general derivation avoided using that expression. If we want expressions for CP and CV separately, rather
than CP − CV though, we need an appropriate expression for U for the gas in question. At moderate temperatures
a diatomic ideal gas (which may be used to model gases with two atoms per molecule such as hydrogen (H2),
nitrogen (N2), oxygen (O2) and carbon monoxide (CO) has U = 5nRT/2, while a triatomic ideal gas with
V-shaped molecules (used to model H2O, hydrogen sulphide (H2S), etc.) has U = 3nRT. These values are based
on microscopic considerations of the behaviour of real diatomic and triatomic molecules, particularly the way in
which such molecules can have rotational energy at moderate temperatures, over and above their translational
kinetic energy. Such molecules may also vibrate if the temperature is high enough, which is why these particular
results only apply ‘at moderate temperatures’.

✦ Write down expressions for the principal molar specific heats of a diatomic ideal gas at moderate
temperature.
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It is useful to characterize any gas, ideal or real, by the ratio of its principal specific heats:

ratio of specific heats γ = CP/CV = cP/cV (28) ☞

As you can see from Equations 18 and 22,

CV = 3
2 R (Eqn 18)

CP = 5
2 R (Eqn 22)

An easily memorable result concerning the difference in the principal molar specific heats follows immediately
from Equations 18 and 22:
an ideal monatomic gas has γ = 5/3 ≈ 1.67; and from the discussion above, a diatomic ideal gas has γ = 7/5 = 1.4
at moderate temperature. Gases with more complicated molecules usually have larger values of specific heats
and γ closer to 1; for example, ideal gases with V-shaped triatomic molecules have CV = 3R (hence CP = 4R) and
so γ = 4/3 ≈ 1.3 at moderate temperatures.
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Question T11

A steel pressure vessel of volume 2.20 × 10−2 1m3 contains 4.00 × 10−21kg of a gas at a pressure of 1.00 × 105 1Pa
and temperature 3001K. An explosion suddenly releases 6.48 × 1041J of energy, which raises the pressure rapidly
to 1.00 × 106 1Pa. Assuming no loss of heat to the vessel, and ideal gas behaviour, calculate

(a) the maximum temperature, and

(b) the principal specific heats of the gas.

(c) From the ratio of specific heats, what can you deduce about the nature of the gas molecules?

(Hint: look back at your answer to Question T10.)4❏
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3.4 Isothermal and adiabatic processes
We conclude this section by briefly considering processes in which the changes are not necessarily the result of
heating. Our discussion is primarily in terms of ideal gases, because the changes can readily be described
theoretically and studied practically. However, the constraints characterizing these changes can in principle be
applied to any system.

A process in which the temperature remains constant is called an isothermal process. For example, a gas at
room temperature may be placed in a syringe initially at atmospheric pressure, then compressed by pushing the
plunger. Provided the gas is in good thermal contact with the surroundings, and the compression is slow enough
(quasistatic) to allow thermal equilibrium to be continuously re-established during each small change, the net
effect will be to reduce the volume and increase the pressure of the gas with no change in its temperature. ☞

For a fixed quantity of ideal gas, PV = nRT at every stage in a quasistatic process, so if T is constant for the gas it
must satisfy

the isothermal condition PV = constant (29)
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Figure 54Isotherms for 1 g of helium, whose behaviour
approximates very closely to that of an ideal gas.

Note that the constant in Equation 29

PV = constant (Eqn 29)
is a characteristic of the isothermal process
being considered, its value for any particular
isothermal process can be determined from the
initial state of that process, or from any other
state the sample passes through during he
process. In fact if (Pa, Va) and (Pb, Vb) are two
such states, it follows from Equation 29 that

PaVa = PbVb

The relationship described by Equation 29 may
be shown on a graph of P against V, in fact such
a curve was included in Figure 4a and several
more such curves are shown in Figure 5.
Curves of this general form are described
geometrically as hyperbolae. Physically, any
curve that represents an isothermal processes is
called an isotherm. ☞
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Figure 54Isotherms for 1 g of helium, whose behaviour
approximates very closely to that of an ideal gas.

As Figure 5 indicates, for a fixed quantity of
gas, the higher the temperature at which an
isothermal process takes place, the higher the
corresponding isotherm will be on the P−V
graph.
In contrast to an isothermal process, an
adiabatic process is one in which no heat
passes in or out of the sample. If a gas expands
adiabatically, its temperature falls: the gas does
work at the expense of its own internal energy
(∆W > 0, ∆ U  < 0, ∆ Q  = 0). If a gas is
compressed adiabatically, its temperature rises:
by pushing the plunger, you do work on the
gas, i.e. you transfer energy to it (∆W < 0,
∆ U  > 0, ∆Q  = 0). Note that in either case
∆Q = 0; this is the defining characteristic of any
adiabatic process. ☞
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For a fixed quantity of ideal gas undergoing a quasistatic process, it will always be the case that PV = nRT, but if
the process is an adiabatic one the requirement that ∆Q  = 0 will impose some further restriction on the
relationship between P, V and T in any particular adiabatic process. What is this additional condition that
distinguishes an adiabatic process from any other kind of process, i.e. what is the adiabatic counterpart of the
isothermal condition of Equation 29?

PV = constant (Eqn 29)

Let us find out!

Study comment The following discussion is quite detailed and ultimately requires some knowledge of calculus. If you
have problems understanding the derivation consult your tutor about them when convenient, but for the moment go directly
to the final result, Equation 37, and make sure you understand that.

Consider a process in which the pressure, volume and temperature of N moles of ideal gas change from P, V and
T to P + ∆P, V + ∆V and T + ∆T, respectively. According to the first law of thermodynamics the heat that flows
into the gas in such a process must be:

∆Q = ∆U + ∆W (Eqn 4)

where ∆U is the change in the internal energy of the gas, which must be given by

∆U = nCV∆T (Eqn 26) ☞
and ∆W is the work done by the gas.
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If the pressure remained constant throughout the process we could write ∆W = P∆V, but P will not generally
remain constant, so we can only use P∆V to determine the approximate value for the work done, and even then
we must impose the additional requirement that the volume change ∆V should be small

Hence ∆Q ≈ nCV1∆T + P1∆V (30)

where the approximation becomes increasingly accurate as ∆V is reduced.

Now suppose that the process described by Equation 30 is an adiabatic process, so that ∆Q = 0. Equation 30 then
implies that in an adiabatic process

−P∆V

n∆T
≈ CV (31) ☞

We also know from the equation of state (PV = nRT) that at the end of the process

(P + ∆P)(V + ∆V) = nR(T + ∆T1)
i.e. PV + P∆V + V∆P ≈ nRT + nR∆T (32)

where the equation has become an approximation because we have neglected the term ∆P∆V on the grounds that
it involves the product of two small quantities. Subtracting the right- and left-hand sides of the equation of state
(PV = nRT) from the corresponding sides of Equation 32 we see that

P∆V + V1∆P ≈ nR1∆T (33)
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i.e.
P∆V

n∆T
+ V∆P

n∆T
≈ R (34)

Using Equation 31
−P∆V

n∆T
≈ CV (Eqn 31)

to eliminate P∆V/(n∆T) from Equation 34 we see that

−CV + V∆P

n∆T
≈ R4or4CV = V∆P

n∆T
− R

but we know from Equation 23

CP − CV = R (Eqn 23)

so this last equation tells us that
V∆P

n∆T
≈ CP (35)
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Dividing this expression for CP by that for CV above, and using Equation 33

P∆V + V1∆P ≈ nR1∆T (Eqn 33)

to substitute for V1∆P we see that
−V∆P

P∆V
≈ CP

CV

(36)

but CP0/CV = γ, so we can rewrite Equation 36 as
∆P

∆V
≈ −P

V
γ

In the limit, as ∆V becomes vanishingly small, the left-hand side of this relation becomes the derivative dP/dV,
and the approximation becomes an equality, so we obtain

dP

dV
= −γ P

V

This is an example of a first-order differential equation, the solution of which (by the method of
separation of variables) is fully described in the maths strand of FLAP (see the note below). The solution may
be written in the form

PV0γ = constant
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Thus a fixed quantity of ideal gas undergoing an adiabatic process must satisfy

the adiabatic condition PV0γ = constant (37)

Mathematical note4The essential mathematical steps are:

Step 14Treat dP and dV as though they are separate quantities and rewrite the differential equation as
dP

P
= −γ dV

V
Step 24Integrate both sides to obtain

dP

P
⌠
⌡

= −γ dV

V
⌠
⌡

Step 34Evaluate the integrals to obtain

loge
P

P0







= −γ loge
V

V0







= loge
V

V0







−γ

where P0 and V0 are arbitrary constants with the dimensions of pressure and volume, respectively.
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Step 44Exponentiate both sides to obtain
P/P0 = (V/V0)−γ

i.e. PV0γ = P0V0
γ = constant4❏

As in the case of the isothermal condition, the constant that appears in Equation 37

the adiabatic condition PV0γ = constant (Eqn 37)

is characteristic of the adiabatic process being considered. Its value for any particular adiabatic process can be
determined by the initial state of the process or from any other state the sample passes through during the
process, so if (Pa, Va) and (Pb, Vb) are two such states, it follows from Equation 37 that

PaVa
γ = PbVb

γ
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P
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adiabatA curve representing an adiabatic
process on a P–V  graph is called an
adiabat. Since γ is greater than 1 for all
ideal gases it is always the case that an
adiabat passing through any point will
be steeper than an isotherm at the same
point. Recalling that adiabats and
isotherms are simply projections onto
the P – V  plane of what are really
pathways on the PVT-surface makes it
clear why this is so, as Figure 6
indicates.

Figure 64Adiabats and isotherms as
projections from the PVT-surface of an ideal
gas onto the P–V plane. At any point the
adiabat is always steeper than the isotherm.
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The adiabatic condition PV0γ = constant (Eqn 37)

Equation 37 is the most commonly remembered equation describing reversible adiabatic changes in an ideal gas.
☞ However, we can derive other equivalent expressions. From the equation of state (Equation 11),

PV = nRT (Eqn 11)

P = nRT/V,

so PV γ = nRT

V
V γ = nRTV (γ −1)

Since nR is constant for a fixed quantity of gas we can say from Equation 37 that another condition that must be
obeyed in an adiabatic process is

TV(γ −11) = constant (38) ☞
Notice that the constant referred to here will generally be different from that in Equation 37. We have not
bothered to indicate that difference since its value will, in any case, differ from sample to sample and from
process to process. It has a fixed value in each particular adiabatic process, but it is not a universal constant like
R.

✦ Derive an equation relating T and P for an ideal gas undergoing an adiabatic change.
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Question T12

Helium at 3001K and 11atm pressure is compressed reversibly and adiabatically to a pressure of 5 atm.
Assuming that helium under these conditions behaves as an ideal monatomic gas, what is the final
temperature?4❏

Question T13

A fixed mass of gas is in an initial state A (P1, V1, T1). The gas expands adiabatically to a state B (P2, V2, T2).
It is then heated at constant volume until it reaches the original temperature, i.e. state C has (P3, V2, T1).
(a) On a P−V graph, sketch the isotherms for temperatures T1 and T2.
(b) On the same graph draw the path from state A, via state B, to state C.
(c) If T1 = 3001K, V2 = 4V1, and γ = 7/5 what is T2?4❏
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Figure 74(a) The generic PVT-surface for a
fixed quantity of a typical substance. The
dotted lines show paths of constant
temperature on the PVT-surface.

4 PVT-surfaces and changes of phase
Figure 7a shows the PVT-surface for a fixed quantity of a typical
substance, sometimes called the generic PVT-surface

The surface has been truncated for ease of display, but in principle it
includes all the equilibrium states of the given sample. As was the
case with the corresponding UPT surface (Figure 1), it includes
regions that correspond to the liquid and solid phases, as well as the
gas phase, and there are also regions in which different phases
coexist.
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These regions of coexistence can be
clearly seen when the generic PVT-
surface is projected onto the P–V
plane (Figure 7b), but a projection
onto the P–T plane merely shows
them as boundaries between the
single phase regions (Figure 7c). As
stated earlier, a quasistatic process
corresponds to a pathway on the
PVT-surface; if the projection of
such a pathway onto the P–T plane
crosses one of the boundaries
between different phases then that
process will involve a phase
transition such as fusion,
vaporization or sublimation.

Figure 7b/c4(b) The projection of the
PVT-surface onto the P–V plane. (c)
The projection of the PVT-surface onto
the P–T plane.
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For that reason the boundaries seen
on the P–T  plane are called the
fusion curve, the vaporization
curve and the sublimation curve.
The purpose of this section is to
introduce you to some of the special
features of the generic PVT-surface
and its projections as they relate to
phase transitions and the latent
heats that accompany them. ☞

Figure 74(a) The generic PVT-surface
for a fixed quantity of a typical
substance. The dotted lines show paths
of constant temperature on the PVT-
surface. (b) The projection of the PVT-
surface onto the P–V plane. (c) The
projection of the PVT-surface onto the
P–T plane.
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4.1 The critical point
As Figure 7a indicates, at high temperature and
moderate pressure the typical substance is a gas, with
isotherms on the P–V plane that look pretty much like
the hyperbolae that characterize an ideal gas. At
somewhat lower temperatures the behaviour is rather
different; below a certain temperature, T c,
corresponding to the constant temperature pathway
through the point marked C in Figure 7, isotherms
pass through the region corresponding to the liquid
phase as well as the gas phase.

Figure 74(a) The generic PVT-surface for a fixed quantity
of a typical substance. The dotted lines show paths of
constant temperature on the PVT-surface. (b) The projection
of the PVT-surface onto the P–V plane.
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These subcritical (T < Tc) isotherms also include a flat
segment, corresponding to their passage across the
region in which gas and liquid coexist. The point C that
marks the high temperature limit to gas/liquid
coexistence is obviously of particular interest. It is
called the critical point and the values of temperature
pressure and volume that determine its location for a
given sample are called the critical temperature, Tc,
the critical pressure, Pc, and the critical volume, Vc,
for that sample.

Figure 74(a) The generic PVT-surface for a fixed quantity
of a typical substance. The dotted lines show paths of
constant temperature on the PVT-surface. (b) The projection
of the PVT-surface onto the P–V plane.
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Table 24Critical point data for one mole samples of various substances.

Substance (11mol) Pc0/1051Pa Vc0/10−61m3 Tc0/0K

argon (Ar) 49 75 151

nitrogen (N2) 34 89 126

carbon dioxide (CO2) 74 94 304

water (H2O) 221 56 647

hydrogen (H2) 13 65 33

Critical point data for one

mole samples of various
substances are listed in
Table 2.
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As you can see from the P–T plane
in Figure 7c, the critical point C
marks the end of the vaporization
curve. This means that the
distinction between the gas phase
and the liquid phase ceases to be
very clear in the neighbourhood of
the critical point. A gas is so dense
under near-critical conditions that it
is essentially indistinguishable from
a liquid at that point.

Figure 74(a) The generic PVT-surface
for a fixed quantity of a typical
substance. The dotted lines show paths
of constant temperature on the PVT-
surface. (b) The projection of the PVT-
surface onto the P–V plane. (c) The
projection of the PVT-surface onto the
P–T plane.
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Figure 84Using the critical isotherm to
arbitrarily distinguish a liquid and a
vapour from a gas.

Indeed, the fact that the vaporization curve ends at the critical point
means that it is always possible to find a process whereby a gas can
be converted into a liquid by a combination of heating compression
and cooling, without undergoing a phase transition at all.
This inevitably means that the distinction between a liquid and a
dense gas is somewhat arbitrary. One common way of distinguishing
liquids from dense gases despite the absence of any real difference
between them is to accept the critical isotherm (T = Tc) as an arbitrary
dividing line. The region of the P–T plane between the fusion curve,
the vaporization curve and the critical isotherm then unambiguously
belongs to the liquid phase. In a similar spirit a gas below the critical
temperature is sometimes referred to as a vapour. This naming
convention is indicated in Figure 8. ☞
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Using this terminology we can say that the vaporization curve of a sample represents the range of conditions
under which a liquid and its vapour can coexist in equilibrium. A vapour that is in this state of coexistence is
said to be a saturated vapour, and, as the P–T graph shows, its pressure will be a function of temperature only
for a given substance.

The vaporization curve of a substance may therefore be said to show the variation of the saturated vapour
pressure with temperature. Any attempt to quasistatically compress or expand a saturated vapour, without
changing its temperature, simply results in more of the vapour condensing, or more of the liquid evaporating.
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Question T14

(a) Using a pencil, mark two points on Figure 7a, one clearly
belonging to the liquid phase, the other clearly corresponding to an
unsaturated vapour.

(b) Draw two separate paths on the PVT-surface, representing
quasistatic processes whereby one of the states you marked might
be reached from the other, with one process involving only a single
phase transition and the other involving no phase transition at all.

Figure 74(a) The generic PVT-surface for a fixed quantity of a typical
substance. The dotted lines show paths of constant temperature on the PVT-
surface.
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(c) Sketch the projections of your
two pathways onto the P–V and
P–T planes. (Once you have
answered this question it might be
a good idea to erase your pencil
marks from Figure 7 to avoid
future confusion.)4❏

Figure 74(a) The generic PVT-surface
for a fixed quantity of a typical
substance. The dotted lines show paths
of constant temperature on the PVT-
surface. (b) The projection of the PVT-
surface onto the P–V plane. (c) The
projection of the PVT-surface onto the
P–T plane.
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It is interesting to consider just what happens to a sample when it undergoes a process that takes it near its
critical point, and to compare that behaviour with processes that do not involve the critical point.
As an example of the latter consider heating an equilibrium mixture of liquid and vapour in a transparent
container of fixed volume. The initial state of such a mixture will be represented by a point on the liquid/gas
coexistence region and the heating will cause the state to move along a path parallel to the T-axis, in the
direction of increasing temperature.

If the sample has a critical volume that is less than the volume of the container (Vc < V) the heating will not
cause the sample to pass through its critical point. All that happens is that the temperature and pressure rise
while the proportion of liquid decreases. During this process, the surface that separates the gas from the liquid
(the meniscus) falls until it disappears when all the liquid has vaporized and the container is entirely full of gas.
The meniscus is clearly visible when there is some liquid and it is absent when there is not1— 1a very
straightforward situation.

If you repeat the process, but start with an equilibrium mixture of liquid and vapour that has a critical volume
greater than the volume of the container (Vc > V0), the outcome is rather different. Heating at constant volume
will again cause the temperature and pressure to rise, but this time the proportion of liquid in the container will
increase, the meniscus will rise and the sample will become entirely liquid once all the gas has condensed.
Despite this difference, the disappearance of the gas is easy to see if one keeps one’s eye on the meniscus.



FLAP P7.4 Specific heat, latent heat and entropy
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

Now, compare the above descriptions with what happens when the critical volume of the sample exactly equals
the volume of the container. This time raising the temperature while holding the volume constant will cause the
mixture of liquid and vapour to approach its critical point. The outcome is curious and quite striking to
observe.

As the critical point is approached, the usually clear meniscus between the liquid and the gas becomes more
indistinct until at T = T c we cannot tell one phase from the other. The sample becomes cloudy
(with so-called critical opalescence), and careful measurements of a number of properties including specific
heat, compressibility, and thermal conductivity reveal anomalies which have only been properly understood in
the last 25 years.
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4.2 The triple point

The horizontal line ABD in Figure 7a marks the meeting place of
the various regions in which pairs of different phases coexist; as a
result, all three phases of matter can coexist along ABD which is
accordingly called the triple-point line.

Figure 74(a) The generic PVT-surface for a fixed quantity of a typical
substance. The dotted lines show paths of constant temperature on the PVT-
surface.
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For a given sample, the triple-point line covers a
range of volumes, but it always occurs at unique
values of pressure and temperature. Its projection
onto the P–T plane therefore consists of a single
point, called the triple point (point A in Figure
7c). As explained elsewhere in FLAP the triple-
point temperature of H2O (defined as 273.16 1K =
0.001°C) is so accurately reproducible that it is
used as one of the fundamental calibration
temperatures in modern thermometry.

Figure 74(a) The generic PVT-surface for a fixed
quantity of a typical substance. The dotted lines show
paths of constant temperature on the PVT-surface. (c)
The projection of the PVT-surface onto the P–T plane.
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Some data concerning triple-point pressure, triple-point temperature and triple-point volume for one mole
samples of various substances are given in Table 3.

Table 3 Triple-point data for one mole samples of various substances.

Substance (11mol) Ptr0/1051Pa Vtr0/10−61m3 Ttr0/K

argon (Ar) 0.68 28 84

nitrogen (N2) 0.12 17 63

carbon dioxide (CO2) 5.10 42 216

water (H2O) 0.006 18 273.16

hydrogen (H2) 0.072 25 14

The triple point volumes quoted are for the liquid phase. There are different values for

the solid and gas phases.

✦ For a given sample, how
do P , V  and T change from
one end of the triple-point
line to the other?
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The triple-point line on a PVT-surface may be visualized as being
like a horizontal ridge on a mountain, where two distinct ski-slopes
from higher up the mountain combine to form one which leads down
to the foothills. There are three different ski-slope gradients but the
edge of the ridge is strictly a straight line. You can model the
geometry by folding a piece of cardboard like a Christmas card, then
making a cut on one side running down perpendicularly to the fold,
cutting shapes corresponding to the solid-plus-liquid and liquid-plus-
vapour phase mixtures, and finally adjusting the angles of the three
planes relative to the fold so as to imitate the shapes shown in Figure
7.

Figure 74(a) The generic PVT-surface for a fixed quantity of a typical
substance. The dotted lines show paths of constant temperature on the PVT-
surface.
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If you look along the fold you see it as a point:
when it is represented as a two-dimensional P–T
projection such as the one shown in Figure 7c, it is
the point where areas representing solid, liquid
and vapour phases converge.

Throughout this section we have based all of our
discussions on the generic PVT-surface of Figure
7, but it is important to realise that many forms of
matter show exceptional behaviour of one kind or
another. A good case in point is H2O which can
exist as ice, water or steam. H2O is a common
material, but its behaviour is not simple.

Figure 74(a) The generic PVT-surface for a fixed quantity of a typical substance. The dotted lines show paths of constant
temperature on the PVT-surface. (c) The projection of the PVT-surface onto the P–T plane.
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Compare its PVT-surface, as shown in Figure 9,
with the generic surface of Figure 7. Notice the
odd behaviour to the left of the triple-point line
for H2O: the ice-and-water surface slopes ‘the
wrong way’. This is because water expands when
it freezes, whereas more typical substances
contract when they freeze. This quirk in the
behaviour of water enables ice to float on water
and thereby permits aquatic pond life to survive
freezing conditions that might otherwise be
lethal.

Figure 94A PVT-surface for H2O. (For a sample

containing 11mole.)
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In addition to the familiar liquid and
vapour phases, H2O also has a whole
portfolio of high pressure solid phases,
which all have different crystal
structures and densities.

Figure 10 shows some of these phases.
Figure 9 represents a small part of this
larger scale surface.

Figure 104Part of the PVT-surface for H2O.
Note that the range of pressures is much
greater than in Figure 9.
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4.3 The Clausius–Clapeyron equation
An isothermal process that crosses any of the boundary curves seen in the P–T plane1—1the vaporization curve,
the fusion curve, or the sublimation curve1—involves the absorption or emission of latent heat, while a change
of volume takes place. The volume change cannot be seen from the P–T graph, but it can be gauged from the
corresponding P–V graph or from the PVT-surface itself. The Clausius–Clapeyron equation provides an
interesting and useful link between the slope of the interphase boundary at any relevant point in the P–T plane
and the latent heat ml and volume change ∆V involved in crossing it ☞. The equation may be written in the
form

Clausius–Clapeyron equation4 dP

dT
= ml

T ∆V
(40)

where m is the mass of the sample, l the relevant specific latent heat absorbed by the sample, ∆V  the increase
in volume of the sample and T the absolute temperature at which the process takes place. Note that in the case
of ice, where melting involves a decrease in volume (and hence a negative ∆V) but an absorption of latent heat
(and hence a positive l) the Clausius–Clapeyron equation predicts a negative value for the gradient of the
fusion curve,
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in agreement with the behaviour shown in
Figure 9. The Clausius–Clapeyron equation
is considered in the maths strand of FLAP,
where it is shown that if m 0l = nL is treated as
a constant, and if we suppose ∆V  = nRT/P
(which is equivalent to assuming that we are
dealing with the process of vaporization and
treating the volume of the liquid as negligible
compared with the volume of the vapour,
which is itself treated as an ideal gas) then
the saturated vapour pressure is related to the
temperature by the expression

P = C1e−0L0/0R0T

In view of the crudity of the assumptions,
this expression provides a surprisingly good
description of the vaporization curve of
various substances.
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5 Entropy and the second law of thermodynamics
We end this module with a discussion of the second law of thermodynamics which will lead us to introduce a
function of state called entropy. The entropy of a sample is in some ways comparable to the sample’s internal
energy; that too is a function of state introduced in response to a law of thermodynamics (the first law in that
case). However, as you will see there are also very great differences between entropy and internal energy.

In what follows it will be useful to make an especially clear distinction between the object or sample being
studied, which we will call the system, and the rest of the universe, which we will call the environment.
Throughout most of this module we have been concerned with the effect on a system (e.g. a fixed quantity of
ideal gas) of transferring a given quantity of energy to it or from it. In the rest of the module we must remember
that the energy transferred to or from a system can only come from or go to its environment.

With the environment in mind we can also introduce another important distinction, that between a reversible and
an irreversible process. Almost any process can be reversed in the sense that whatever changes are made to a
system can be undone; a compressed gas can be allowed to expand, a broken plate can be repaired.
However a process is only reversible in the technical sense if both the system and its environment can be
returned to their original states after the process has taken place. As you will see this is often not possible;
processes that involve friction, viscosity or other dissipative effects will always turn out to be irreversible when
analysed with sufficient care.



FLAP P7.4 Specific heat, latent heat and entropy
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

You might be able to repair a broken plate and literally make it as good as new, but in doing so you will
irreversibly change the environment, so the process of breaking a plate is technically irreversible, despite the
possibility of repairing the plate itself. In practice almost every real process is irreversible: that is why we have
such a clear sense of the direction of time. The second law of thermodynamics and the concept of entropy help
us understand the irreversibility of nature and thereby provide a starting point for discussions of the origin of the
physical distinction between past and future, the ‘arrow of time’ as it is known in physics.
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5.1 The second law of thermodynamics
Two objects in thermal contact, initially at the same temperature, never display a spontaneously widening
temperature difference, nor does a hot object in contact with a cold object spontaneously increase its temperature
by transferring energy from the colder object. Why not? Neither of these processes would violate the energy
conservation expressed in the first law of thermodynamics. The first law of thermodynamics does not, therefore,
tell us the complete story about processes involving heat and work. It forbids certain processes from happening,
but it does not tell us which energy conserving processes will happen spontaneously. We can formalize our
observations about spontaneously occurring processes by stating

the second law of thermodynamics (Clausius form):

No process is possible whose sole result is the transfer of heat from a colder to a hotter body.

Note the crucial term ‘sole result’ in this law; it is certainly possible to transfer heat from a colder to a hotter
body, refrigerators do that all the time, but it is certainly not their sole result; they only achieve it by consuming
electricity or gas and transferring more heat to their environment than they transfer from their interior.
(Leaving a fridge door open is a way of warming a room!)
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The Clausius form of the second law of thermodynamics may seem an innocuous statement of everyday
experience, but its implications are far reaching. The first thing to note is that it can be stated in the following
equivalent form:

the second law of thermodynamics (Kelvin form):

No process is possible whose sole result is to transfer a given quantity of heat from a body and convert it
entirely into work. ☞

Again, it is important to note the term ‘sole result’ in this law. Internal combustion engines convert the heat
transferred from a burning mixture of air and petrol into work, but that is not their sole result; they also produce
exhaust gases and warm their environment. The Kelvin form of the second law also makes it clear that the
conversion of heat to work must always be an incomplete process; since all methods of transferring energy can
be classified as either heat or work the impossibility of completely converting a given quantity of heat into work
means that some heat must always be ‘left over’ in a conversion process that has no other effect.
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heat in

heat out

work

‘process’

Figure 114A schematic representation of
the second law of thermodynamics (Kelvin
form).

This is indicated schematically in Figure 11.

The equivalence of the Clausius and Kelvin forms of the second law
can be proved by showing that the violation of either statement
implies the violation of the other. For example, suppose you knew of
a process that violated the Kelvin form of the second law, then you
could use that process to transfer a quantity of heat ∆Q from a body at
temperature T1 and convert it entirely into an equivalent amount of
work ∆W, without any other effect. You could then use all that work,
possibly in the form of frictional rubbing or stirring, to raise the
temperature of some other body initially at temperature T2.

When this two step process was complete its overall effect would be
equivalent to transferring a quantity of heat ∆Q from the body at
temperature T1 to the body at temperature T2. However, there was
nothing in the argument to prevent T2 from being greater than T1, so
you could use your Kelvin violating process to transfer heat from a
colder to a hotter body, thereby violating the Clausius form. A similar
argument shows that a violation of the Clausius form implies a
violation of the Kelvin form, so the two forms are indeed equivalent.
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Figure 124Energy flow in a heat engine.

Now in order to grasp the implications of the Kelvin form of the second
law it is useful to introduce the idea of a heat engine. This is a device
(shown schematically in Figure 12) that transfers energy, in the form of
heat Q1, from part of the environment at constant temperature T1,
converts part of that energy into work ∆W and transfers the remainder,
in the form of heat Q2, back into part of the environment at constant
temperature T2. ☞

The constant temperature parts of the environment are generally
referred to as thermal reservoirs, implying that heat may be
transferred to or from them without altering their temperature or
causing any irreversible disturbance. The conversion of heat into work

is carried out within the engine by a thermodynamic system that works in a closed cycle, by which we mean that
the system returns to its original state at the end of each cycle. The construction of such an engine is of course
consistent with the first and second laws of thermodynamics. A real steam engine that lets hot steam enter a
cylinder (thereby transferring heat from the environment), allows the steam to expand almost adiabatically
(thereby doing work while cooling the steam), vents the cooled steam (thereby transferring heat to the
environment) and then returns the cylinder to its original volume, ready for the next influx of steam, provides a
good model of a heat engine.
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Note Many of the ideas of thermodynamics were developed in the mid 19th century when there was great interest in
improving the efficiency of industrial steam engines. Don’t get the idea that steam engines are old-fashioned1—1they drive the
turbines in our most modern power stations.

Since a heat engine returns to its original state after each cycle, it follows that the net change in its internal
energy over a complete cycle is ∆U  = 0. The first law of thermodynamics (∆Q = ∆U  + ∆W) with ∆U = 0
therefore tells us that over a complete cycle

Q1 − Q2 = ∆W (41)

The efficiency η of a machine is the ratio of the useful work it performs to the energy it consumes. If we assume
that none of the work performed by the heat engine is wasted due to friction or any other dissipative effect we
can say that its efficiency will be

η = ∆W

Q1
= Q1 − Q2

Q1
= 1 − Q2

Q1
(42a) ☞

Now in the absence of friction and other dissipative effects, a heat engine will be reversible. That is to say if heat
Q2 is transferred to the engine from a thermal reservoir at temperature T2, and if the environment does work ∆W
on the heat engine, then heat Q1 can be transferred from the engine to a reservoir at temperature T1, thereby
returning both the system and its environment to their original states, and satisfying the requirement for
reversibility that was stated earlier ☞.
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Since the expression on the right-hand side of Equation 42a applies to a reversible heat engine we will
henceforth refer to it as the efficiency of a reversible heat engine and write

ηrev = 1 − Q2

Q1
(42b)

If we want to work out the efficiency of a particular reversible heat engine we obviously need to know the values
of Q2 and Q 1. One particular kind of reversible heat engine for which this is possible is the so-called
Carnot engine, which uses a cyclic process called the Carnot cycle. ☞ A Carnot cycle consists of four steps;
two of them are isothermal processes at temperatures T1 and T2, during which quantities of heat Q1 and Q2 are
transferred to and from the system, and the other two steps are adiabatic processes that bring about the
temperature changes needed to link one isothermal process to the other.
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Figure 134(a) A Carnot cycle consisting of two isothermal processes and two adiabatic
processes. Four of the states involved in the process are marked A, B, C, D. (b) The Carnot
engine procedures that correspond to the four steps of a Carnot cycle. Steps A → B and C → D

are slow, steps B → C and D → A are fast.

The whole cycle is
shown in Figure 13a.
The corresponding
operations of a Carnot
engine1—1in this case a
cylinder fitted with a
piston and filled with
ideal gas1—1are shown
in Figure 13b. Starting
with the Carnot engine
in thermal equilibrium
with a thermal reservoir
at temperature T 2
(corresponding to state
A in Figure 13a) the
Carnot cycle involves
t h e  f o l l o w i n g
operations.
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A1→1B4Quasistatically
and reversibly compress
t h e  g a s  w h i l e
maintaining equilibrium
with the reservoir at
temperature T2. This
will be an isothermal
process that will
increase the pressure of
the gas ☞ . Because
∆T = 0, and the gas is
ideal it follows that
∆U = 0. The first law of
thermodynamics then
implies that the heat
supplied t o  the gas
∆Q = ∆W, where ∆W is
the work done b y the
gas.



FLAP P7.4 Specific heat, latent heat and entropy
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

(a)

P

V

A

B

C

D

PA

PB

PC

PD

VAVBVC VD

adiabat adiabat

isotherm T1

isotherm T2

heat Q1
 absorbed

heat Q2
 rejected

(b)

A

B

insulator

C

D

reservoir at T1

reservoir at T2D → A

adiabatic 
expansion 

 A → B

isothermal 
compression 

B → C

adiabatic 
compression 

C → D

isothermal 
expansion 

insulator

Figure 134(a) A Carnot cycle consisting of two isothermal processes and two adiabatic
processes. Four of the states involved in the process are marked A, B, C, D. (b) The Carnot
engine procedures that correspond to the four steps of a Carnot cycle. Steps A → B and C → D

are slow, steps B → C and D → A are fast.

In this case ∆Q  = −Q2,
and it can be shown that
∆W = nRT21loge1(VB/VA).
It follows that Q2

=1−nRT21loge1(VB/VA).
This will be a positive
quantity since VB/VA <11.

B1→1C4Thermally
isolate the gas, and
compress it
quasistatically and
reversibly until its
temperature is T1. This
will be an adiabatic
process that will further
increase the pressure of
the gas.
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Because ∆Q  = 0, the
fi r s t  l a w  o f
thermodynamics
implies that ∆U = −∆W.
In this case ∆U will be
positive since the
temperature of the gas
increases.

C1→1D4Allow the gas
to expand
quasistatically and
r e v e r s i b l y  w h i l e
maintaining equilibrium
with the reservoir at
temperature T1. This
will be an isothermal
process that will
decrease the pressure of
the gas.
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Because ∆T = 0, and the
gas is ideal, it follows
that ∆U  = 0. The first
law of thermodynamics
then implies that the
heat supplied to the gas
∆Q = ∆W, where ∆W is
the work done b y the
gas. In this case
∆Q = Q1, and it can be
shown that
∆W1=1nRT11loge1(VD0/VC.)
I t  fo l lows  tha t
Q1 = nRT11loge1(VD0/VC).
Note that this will be a
p o s i t i v e  quantity
because VD0/VC > 1.
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D1→1A4Thermally
isolate the gas, and
allow it to expand
quasistatically and
reversibly until its
temperature is again T2.
This will  be an
adiabatic process that
will return the system to
its original state.
Because ∆Q  = 0, the
fi r s t  l a w  o f
thermodynamics
implies that ∆U = −∆W.
In this case ∆U will be
negative since the
temperature of the gas
decreases.
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It follows from the values for Q1 and Q2 given above that in this case the efficiency of the reversible engine will
be

ηrev = 1 − Q2

Q1
= 1 − −nRT2 loge (VB VA )

nRT1 loge (VD VC )











Question T15

Use the adiabatic condition in the form TV 0(γ1−11) = constant, derived in Subsection 3.4, to obtain an expression for
loge1(VB/VA)/loge1(VD0/VC) and hence show that in a Carnot cycle:

Q1

T1
= Q2

T2
(43)4❏ ☞

This relation is important in its own right and we will consider its general implications very shortly.
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For the moment, however, we will just use it to rewrite the expression for the efficiency of a Carnot engine.

ηrev = 1 − T2

T1
(44) ☞

As you can see, the efficiency of the reversible Carnot engine we have been considering is entirely determined
by the absolute temperatures between which it operates. The smaller the value of T2/T1 the more efficient the
engine. But the engine cannot be totally efficient unless T2 = 01K, and attaining absolute zero is impossible both
in practice and in principle. ☞

The result we have just derived is pleasingly simple, but if it were limited to a Carnot engine filled with ideal gas
it would hardly have been worth the effort we have put into deriving it. Fortunately that is not the case due to the
following results which we state without proof:

1 No heat engine operating between two fixed temperatures can have greater efficiency than a reversible heat
engine operating between those same two temperatures.

2 All reversible heat engines operating between two thermal reservoirs at fixed temperatures have the same
efficiency.
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It follows from these results that although we obtained Equation 44

ηrev = 1 − T2

T1
(Eqn 44)

by considering a Carnot engine filled with ideal gas, the result holds true for any reversible heat engine,
irrespective of the system it contains. (The same may also be shown to be true of Equation 43.)

Q1

T1
= Q2

T2
(Eqn 43)

Furthermore, no other heat engine could be more efficient, so Equation 44 represents the efficiency of the ideal
reversible heat engine. It thus gives a quantitative insight into the extent to which heat can be converted into
useful work.

Question T16

Compare the efficiency of a modern steam generating plant operating between temperatures of 6501°C and 401°C
with that of an early steam engine operating between 1201°C and 801°C. Why, in practice, would the efficiency of
each engine be less than the values you have calculated?4❏
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5.2 Entropy: a function of state
The second law of thermodynamics points out the impossibility of completely converting a given amount of heat
into work without any other effect. The discussion of reversible heat engines puts a quantitative limit on that
conversion. From Equation 43 we can say that in the case of a reversible heat engine operating between fixed
temperatures T1 and T2 the amount of heat that cannot be converted into work, Q2, must be sufficiently great that

Q1

T1
= Q2

T2
(Eqn 43)

This view suggests that the quantities Q1/T1 and Q2/T2 might have some special significance in the context of
reversible energy conversions. This is indeed the case, as Clausius was the first to recognize. In fact Q1/T1 and
Q2/T2 represent equal amounts of a quantity Clausius named entropy being transferred to and from the system.
☞ Entropy, unlike energy, is not generally conserved. However, it does happen to be conserved in reversible
processes; that is what distinguishes reversible processes from irreversible ones.
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Figure 144The SPT-surface for a fixed
quantity of a given substance. This may be
compared with the UPT surface of Figure 1.

Figure 14The variation with temperature and pressure of the internal energy U of a fixed quantity of a typical substance.
Note that there are vertical regions on the UPT surface (corresponding to changes of phase) in which a change in internal
energy is not necessarily accompanied by a change in temperature.

The entropy S of a system
is a function of state, like
the internal energy. Like
the internal energy, the
entropy of a given system
involves an arbitrary
constant, but once a value
has been assigned to this
the entropy of every state
has a unique value ☞.
A highly schematic SPT-
surface for a fixed quantity
of a typical substance is
shown in Figure 14. This is
comparable to the UPT-
surface of Figure 1.
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Even without assigning a value to the arbitrary constant is still possible to discuss the difference in entropy
between any two states of a system, since it is these differences in entropy that are physically significant and the
arbitrary constant will not affect them.

What is the difference in entropy between any two given states? This question has a straightforward general
answer, but it is a little complicated, so let us first consider a special case in which the answer is particularly
simple. Suppose we have two equilibrium states, a and b, and that state b can be reached from state a by an
isothermal process in which a quantity of heat ∆Qrev is reversibly transferred to the system at fixed temperature
T. The difference in entropy between the two states, ∆S = Sb − Sa will then be given by

∆S = ∆Qrev

T
(isothermal case) (45)

Note that we have specified that the heat must be transferred reversibly. This is necessary because heat is not a
function of state and the heat transfer involved in a process will depend on the details of that process.
By specifying that the process should be reversible, (as well as quasistatic and isothermal) we ensure that the
heat transfer is uniquely specified.
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In the general case it may not be possible to find an isothermal process linking two given states, and Equation 45

∆S = ∆Qrev

T
(isothermal case) (Eqn 45)

cannot then be applied because there will be no unique value of T associated with any reversible process that
leads from one state to the other. Under such circumstances we may find an approximate value for the entropy
difference by identifying any convenient reversible process from one state to the other; dividing it into n small
steps each involving the reversible transfer of heat ∆Qi at an approximately constant temperature Ti; and then
adding together all of those small contributions. Thus

∆S ≈ ∆Qi

Ti





i=1

n

∑
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In the limit as the largest ∆Qi becomes vanishingly small the approximation becomes an equality and we write
the limit of the sum as a line integral   ☞ giving

This approximation will become more accurate as the increments ∆Qi are made smaller and their number
correspondingly increased.

∆S = Sb − Sa = dQ

T
a

b

⌠
⌡

(general case) (46)

where the integral is evaluated along any reversible process that leads from state a to state b. Note that whatever
processes may lead from state a to state b, whether they are reversible or not, the difference in entropy may still
be determined by evaluating the integral in Equation 46 over a reversible process, any reversible process will do,
they must all lead to the same value for Sb − Sa because S is a function of state.

Question T17

Calculate the entropy change of a 301kg block of ice as it melts at a constant temperature of 01°C. 
What are the units of entropy? ☞4❏
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quantity of ideal gas.

Using Equation 46 (and Equation 19),

∆S = Sb − Sa = dQ

T
a

b

⌠
⌡

(general case) (Eqn 46)

∆Q = 3
2 nR ∆T + P ∆V (Eqn 19)

we can see that the entropy of n moles of monatomic ideal gas occupying
volume V at temperature T is given by

S = 3nR

2
loge

T

T0







+ nR loge
V

V0







+ S0 (47)

where S0 is a constant amount of entropy assigned arbitrarily to a state
with volume V0 and temperature T0. The SVT surface for an ideal gas that
corresponds to Equation 47 is shown in Figure 15. Different choices for
the arbitrary constant S0, or for the reference state (V0, T0) to which it is
assigned would raise or lower the whole surface, but would not distort
one part relative to another.
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✦ Using Equation 47,

S = 3nR

2
loge

T

T0







+ nR loge
V

V0







+ S0 (Eqn 47)

derive an expression for the difference in entropy between the equilibrium state of a n moles of ideal gas at
temperature T1 and volume V1, and another state of the same gas, with temperature 2T1 and volume 2V1.
Show that your answer does not depend on the values of V0, T0 or S0.



FLAP P7.4 Specific heat, latent heat and entropy
COPYRIGHT  © 1998 THE OPEN UNIVERSITY S570  V1.1

5.3 The principle of entropy increase
In Subsection 5.1 we saw that in the context of a heat engine that absorbs heat Q1 at temperature T1, and rejects
heat Q2 at temperature T2, a closed reversible cycle☞  occurs when

Q1

T1
= Q2

T2
(Eqn 43)

Since these heat transfers are isothermal processes we can use Equation 45

∆S = ∆Qrev

T
(isothermal case) (Eqn 45)

to say that the first of them increases the entropy of the system by an amount ∆S1 = Q1/T1 and the second
decreases the entropy of the system by an amount ∆S2 = −Q2/T2. Note that we are using the symbol ∆S to
represent a change in entropy, subject to the convention that a positive value of ∆S corresponds to an increase,
and a negative value to a decrease.

It follows from Equation 43, that in a closed reversible cycle the total change in the entropy of the system is

∆S1 + ∆S2 = Q1

T1
− Q2

T2
= 0 (48)
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In addition, we can carry out a similar analysis of the entropy changes in the environment. In particular, the first
transfer will decrease the entropy of the environment so we can represent it by the negative quantity
∆S3 = −Q1/T1, while the second transfer will increase the entropy of the environment, so we can represent it by
the positive quantity ∆S4 = Q2/T2. It then follows from Equation 43

Q1

T1
= Q2

T2
(Eqn 43)

that the total change in the entropy of the environment is

∆S3 + ∆S4 = −Q1

T1
+ Q2

T2
= 0 (49)

It is clear from Equations 48 and 49,

∆S1 + ∆S2 = Q1

T1
− Q2

T2
= 0 (Eqn 48)

that the total change in the entropy of the universe (i.e. the system plus its environment) as a result of the full
reversible cycle is zero. Moreover, because any change in the entropy of the system is always compensated by
an opposite change in the entropy of the environment (e.g. ∆S1 + ∆S3 = 0), it is also true to say that over any part
of a reversible cycle, even an infinitesimally small part, the total change in the entropy of the universe is zero.
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This result is not confined to heat engines, in fact we can say generally that

Over any reversible process the entropy of the universe is unchanged

∆Si = 0
i

∑ (50)

However what if a process is not reversible? The following example shows that in one case at least, an
irreversible process leads to an increase in the entropy of the universe.

Example 3 A mass, m, of hot water at temperature TH is mixed in an insulating container with an equal mass
of cold water at temperature TC. As a result of the mixing (an irreversible process) heat is transferred from the
hot water to the cold water. Show that the overall effect of the process is to increase the entropy of the universe.
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Solution4The heat lost from the hot water is equal to the heat gained by the cold water, both bodies of water
have the same specific heat cP, and the same mass, so the final temperature of all the water will be

Tf = TH + TC 2

The heat exchanges occurring in the irreversible mixing may be quite complicated, but entropy is a function of
state so the overall effect of those exchanges on the entropy can be determined by considering the effect of any
reversible process that leads to the same final state. In this case a thermodynamically equivalent reversible
process consists of placing each body of water into contact with a succession of thermal reservoirs of
progressively higher (or lower) temperatures and at each stage allowing a small quantity of heat ∆Q to be
transferred, causing a temperature change of ∆T, until the temperature Tf is reached. If the spacing ∆T between
the temperatures of the thermal reservoirs is small enough each transfer of heat will be approximately isothermal
and reversible, becoming exactly so in the infinitesimal limit.
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The heat that must be reversibly transferred to cause an infinitesimal temperature change ∆T must then be
mcP1∆T and we can use Equation 46 (which applies to reversible processes in general)

∆S = Sb − Sa = dQ

T
a

b

⌠
⌡

(general case) (Eqn 46)

to determine the total entropy change of the system;

∆S = ∆SC + ∆SH = mcP dT

T
TC

Tf
⌠
⌡

+ mcP dT

T
TH

Tf
⌠
⌡

= mcP loge
Tf

TC





 + loge

Tf

TH





















     = mcP loge
Tf

2

TCTH







= 2mcP loge
Tf

TCTH







= 2mcP loge
(TH + TC) 2

TCTH







You can see that ∆S > 0 for the system by choosing any values you like for TH and TC1—1the argument of the
logarithmic function is always greater than 1 so the log is always positive ☞. There is no heat flow in or out of
the system so the entropy of the environment does not change. Hence the increase in the entropy of the system
also implies an increase in the entropy of the universe in this case.4❏
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Now, we have only considered one example of an irreversible process, but it illustrates a general result.
A general analysis of irreversible processes, based on the second law of thermodynamics shows that

Over any irreversible process the entropy of the universe is increased

∆Si > 0
i

∑ (51)

Notice that entropy, unlike energy, is not generally a conserved quantity. Reversible processes conserve
universal entropy but irreversible processes generate entropy, adding to the universal stock of that quantity.
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Bringing Equations 50 and 51 together

reversible process ∆Si = 0
i

∑ (Eqn 50)

irreversible process ∆Si > 0
i

∑ (Eqn 51)

we have the statement known as

the principle of entropy increase

In any process, the entropy of the universe never decreases

So ∆Suniverse ≥ 0 (52)

where the equality holds for reversible processes and the inequality for irreversible processes

This is an extremely powerful and wide-ranging statement. It is really just another way of stating the second law
of thermodynamics, so it may be used to derive the Clausius and Kelvin forms of the second law, and all of their
consequences. This is a sufficiently important point that it merits an example.
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Question T18

A thermal reservoir at a temperature of −201°C is placed in thermal contact with another reservoir at 501°C in
such a way that 1031J of energy is transferred as heat from one reservoir to the other. Both reservoirs are totally
isolated from the rest of the universe. Use the principle of entropy increase to show that the heat will flow from
the hotter to the cooler body, in accordance with the Clausius form of the second law.4❏

Question T19

101g of steam at 1001°C condenses to water on a cold kitchen wall. Calculate the entropy change of the steam
during the condensation. ☞

Does your answer contradict the second law of thermodynamics?4❏
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The second law of thermodynamics predicts the direction of spontaneous change. This is especially clear when it
is expressed in terms of the principle of entropy increase. The second law is quite unlike most other physical
laws, which describe the relationships between quantities in a reversible process, without giving information
about which must be ‘before’ and which ‘after’.

The second law also explains our intuitive feeling that systems somehow ‘lose’ energy, even though we know as
physicists that energy is conserved. Hot objects cool down; moving objects spontaneously come to a stop.
On the whole energy is not lost, but entropy is gained and the entropy of a system is a measure of the energy that
is not available to do useful work. Any spontaneous ‘running down’ process is in fact irreversible; there is an
increase in entropy and what is being ‘lost’ is not energy but the potential for further change.
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5.4 The irreversibility of nature
The impossibility of reducing the entropy of the universe explains why naturally occurring processes happen in
the way that they do, but it does not explain why such processes occur in the first place. The second law ensures
that when heat flows spontaneously between bodies at different temperatures the flow will be from the hotter to
the colder, but why should there be any flow at all? Neither the conservation of energy, nor the principle of
entropy increase would be violated if the hot body stayed hot and the cold body stayed cold. The principle of
entropy increase forbids a reduction in universal entropy, but the universe behaves as though some other
principle demanded the maximum possible increase of entropy. What is it that underlies the spontaneity of the
universe and gives it this appearance of actively striving for increased entropy? To gain some insight into this
matter let us consider another example of an irreversible process.
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gas vacuum

valve

Figure 164A vessel in which a gas
expands freely.

Example 4 An ideal gas, initially confined to a small volume Vi
within a large vessel of volume Vf, is released and allowed to expand
freely into the vacuum that fills the greater part of the vessel (Figure 16).
Supposing that the vessel has rigid walls (ensuring that ∆W = 0), and is
made of a heat insulating material (so ∆Q = 0), what is the change in
universal entropy as a result of the expansion?

Solution4In this case the first law of thermodynamics implies that
∆U = ∆Q − ∆W = 0 and therefore ∆T = 0. As far as the system itself is
concerned, the change in entropy may be deduced from Equation 47 as
was shown in Subsection 5.2.
The result is

Sf − Si = nR loge
Vf

Vi





 4❏

Due to the nature of the vessel there is no change to the entropy of the environment, so this expression which
will always be positive, also represents the change in the entropy of the universe.
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We can also interpret the irreversibility of the free expansion microscopically in terms of the movement of the
gas molecules. All of the possible arrangements of the molecules while confined, are just a small proportion of
the arrangements that are possible when the gas can occupy the full volume of the vessel. If all of these
arrangements are equally likely, it is much more probable that the gas will be found to occupy the whole vessel
rather than part of it. No thirst for entropy is required to achieve this, simply an unbiased exploration of all
possible microscopic arrangements in a situation where the overwhelming majority of those arrangements
involve filling the whole vessel.

The flow of heat from a hot body to a colder one can be explained in a similar way. The number of ways of
distributing the energy of the bodies so that one has a higher temperature than the other is much less than the
number of microscopic arrangements that correspond to both bodies having the same temperature.
Thus a pointless exploration of accessible states once again explains an apparent striving for equilibrium.
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What has this to do with the tendency of entropy to spontaneously increase rather than to remain unchanged?
In his pioneering investigations of statistical mechanics the great Austrian physicist Ludwig Boltzmann
(18440–1906) identified the entropy S of an isolated system as a measure of the number W of microscopic states
available to that system. According to Boltzmann

S = k1log1W

where k = 1.381 × 10−23 J1K−1 is now known as Boltzmann’s constant.

The condition of thermal equilibrium is that in which the number of microstates in a closed system is maximized
and is therefore also the one that maximizes the entropy. Spontaneous processes will therefore always tend to
increase the entropy of the universe bringing it ever closer to overall thermal equilibrium.
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6 Closing items

6.1 Module summary
1 Heating a substance may produce a rise in temperature or a phase transition. If there is no phase change,

then the heat ∆Q needed to bring about a rise in temperature ∆T is proportional to the mass m of the sample
and its specific heat c, with

∆Q = mc∆T (Eqn 2)

2 During a phase transition, a pure substance may absorb (or give out) heat with no change in temperature.
If a mass m changes phase when heat ∆Q is supplied at constant temperature, then ∆Q = m0l, where l is the
specific latent heatof the substance. There are different latent heats for the processes of fusion (melting),
vaporization (boiling) and sublimation (the direct conversion of a solid into a gas). Those latent heats also
depend on the precise conditions under which the phase transition takes place.

3 Measurement of specific heats and latent heats involves supplying a known amount of heat and measuring
its effect. Heat losses can be eliminated from the calculation by arranging for two different runs of an
experiment to have the same heat losses.

4 The specific and latent heats of a substance depend on the constraints applied during heating. 
The principal specific heats are those measured at constant pressure and at constant volume.
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5 For an ideal gas which satisfies

PV = nRT (Eqn 11)

the difference in principal molar specific heats is

CP − CV = R (Eqn 23)

and the ratio of specific heats

γ = CP0/CV (Eqn 28)

depends on the nature of the gas molecules.

6 Common constraints applied to changes of state are characterized as isobaric (P = constant)
isochoric (V = constant) isothermal (T = constant) and adiabatic (∆Q = 0). 
An ideal gas undergoing a quasistatic adiabatic process obeys the condition

PV0γ = constant (Eqn 37)

where the constant is characteristic of the process.
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7 Quasistatic processes may be represented as lines on a PVT-surface. On such a surface, the triple-point line
marks the unique combination of pressure and temperature at which all three phases of a given sample of
matter exist in equilibrium for a range of volumes. The critical point is the unique combination of pressure,
temperature and volume at which liquid and vapour phases of a given sample are indistinguishable.

8 The Clausius–Clapeyron equation relates the slope of the boundary curve between two phases to the latent
heat and change of volume involved in an isothermal crossing of that boundary

dP

dT
= ml

T ∆V
(Eqn 40)

9 The second law of thermodynamics states that no process is possible whose sole result is the transfer of heat
from a colder to a hotter body, or equivalently, that no process is possible in which the sole result is the
transfer of heat from a body and its complete conversion into work.
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10 The entropy of a system is a function of its state. The difference in entropy between two states a and b is
given by

∆S = Sb − Sa = dQ

T
a

b

⌠
⌡

(Eqn 46)

where the integral may be evaluated over any reversible process that leads from state a to state b. 
If the two states are joined by a reversible isothermal process involving heat transfer ∆Q at temperature T

∆S = ∆Qrev

T
(Eqn 45)

For an ideal gas

S = 3nR

2
loge

T

T0







+ nR loge
V

V0







+ S0 (Eqn 47)

The entropy transferred in a process provides a measure of the extent to which energy transferred in that
process is not available to do useful work.
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11 According to the principle of entropy increase, in any process, the entropy of the universe never decreases.
More precisely,

∆Suniverse ≥ 0 (Eqn 52)

where the equality holds for reversible processes and the inequality for irreversible processes.

12 Processes that occur spontaneously are those which lead to an increase in the entropy of the universe.
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6.2 Achievements
Having completed this module, you should be able to:
A1 Define the terms that are emboldened and flagged in the margins of the module.
A2 Calculate and use specific and latent heats.
A3 Appreciate the advantage of having the same heat losses in two different runs of a calorimetry experiment.
A4 Appreciate that the constraints applied to a system can affect the measurement of specific heat.
A5 Solve problems in which an ideal gas undergoes quasistatic isothermal, adiabatic, isochoric or isobaric

processes.
A6 Recognize and use the values of the ratio of specific heats that typify an ideal monatomic and ideal

diatomic gas.
A7 Sketch and interpret quasistatic paths on a PVT-surface and on its P−V and P−T projections.
A8 Identify the critical point, triple point, and triple-point line on a PVT-surface or its projections, and describe

their physical significance.
A9 Calculate entropy changes of a system and of its environment in sufficiently simple cases.
A10 Describe the connection between the entropy change of the universe and the reversibility or otherwise of a

process.
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Study comment  You may now wish to take the Exit test for this module which tests these Achievements.
If you prefer to study the module further before taking this test then return to the Module contents  to review some of the
topics.
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6.3 Exit test

Study comment  Having completed this module, you should be able to answer the following questions each of which tests
one or more of the Achievements.

Question E1

(A2)4Consider the mixing of hot water, cold water, and bath foam, with constant heat capacities m1c1, m2c2,
m3c3 and initial temperatures T1, T2, T3 Derive an expression for the final temperature Tf after they have come to
equilibrium (assuming no heat losses to the bathroom).

Question E2

(A2, A4 and A6)4Gas is passed at constant pressure through a thermally-insulated tube containing an electric
heater. A mass 5.41g of gas flows into the tube in 901s and, when the heater power is 0.161W, the temperature
difference between the outlet and inlet is 2.51K. Calculate a value for the specific heat of the gas at constant
pressure. Assuming this is a diatomic ideal gas, what is its specific heat at constant volume?
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Question E3

(A2 and A3)4In an experiment to determine the specific latent heat of vaporisation of benzene, it was found that
when the electrical power input to the heater was 821W, 101g of benzene was evaporated in 11min; when the
power input was reduced to 301W, the rate of evaporation was 2.01g1min−1. What is the advantage of doing two
different runs of this experiment? Calculate the specific latent heat of vaporization of benzene.

Question E4

(A7  and A8)4Sketch a P–T  plot showing the triple point and a P–V  plot showing the critical point.
Describe briefly the significance of these two points. What is the ‘triple-point line’?
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Question E5

(A2, A5 and A9)4A mass 5.0 × 10−41kg of a certain vapour just becomes saturated when compressed to a
volume V1 = 9.0 × 10−51m3 and pressure 6.0 × 1061Pa at a temperature 201°C. After isothermal compression to a
volume V2, the substance is changed completely to liquid. The specific latent heat of vaporization of the liquid at
201°C is 1.2 × 1051J1kg−1. If V2 is negligible compared with V1 , calculate:

(a) the work done during the compression from V1 to V2 and

(b) the heat supplied to, or removed from, the substance during compression.

(c) the changes in internal energy and in entropy of the fluid (i.e. a liquid + gas system).
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Question E6

(A2, A9 and A10)4(a) Calculate the entropy change of the universe when:

(i) A copper block of heat capacity 150 J1K−1 at 1001°C is placed in a large lake at 101°C. (If you are unfamiliar
with the techniques of integration you should consult Example 3 in Subsection 5.3 in answering this
question.)

(ii) Two copper blocks at 1001°C and 101°C, each of heat capacity 1501J1K−1, are placed in thermal contact with
each other and isolated from their environment.

(b) Comment on the reversibility or otherwise of these changes.
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Study comment  This is the final Exit test question. When you have completed the Exit test go back to Subsection 1.2 and
try the Fast track questions if you have not already done so.

If you have completed both the Fast track questions and the Exit test, then you have finished the module and may leave it
here.

Alternatively, you may wish to see the Section entitled Further reading.
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