Integration

ALGEBRAIC FRACTIONS

Graham S McDonald and Silvia C Dalla

> A self-contained Tutorial Module for practising the integration of algebraic fractions

- Table of contents
- Begin Tutorial
© 2004 g.s.mcdonald@salford.ac.uk

Table of contents

1. Theory
2. Exercises
3. Answers
4. Standard integrals
5. Polynomial division
6. Tips on using solutions Full worked solutions

1. Theory

The method of partial fractions can be used in the integration of a proper algebraic fraction. This technique allows the integration to be done as a sum of much simpler integrals

A proper algebraic fraction is a fraction of two polynomials whose top line is a polynomial of lower degree than the one in the bottom line. Recall that, for a polynomial in x, the degree is the highest power of x. For example

$$
\frac{x-1}{x^{2}+3 x+5}
$$

is a proper algebraic fraction because the top line is a polynomial of degree 1 and the bottom line is a polynomial of degree 2 .

- To integrate an improper algebraic fraction, one firstly needs to write the fraction as a sum of proper fractions. This first step can be done by using polynomial division ('P-Division')
- Look out for cases of proper algebraic fractions whose top line is a multiple k of the derivative of the bottom line. Then, the standard integral

$$
\int \frac{k g^{\prime}(x)}{g(x)} d x=k \ln |g(x)|+C
$$

can be used (instead of working out partial fractions)

- Otherwise, the bottom line of a proper algebraic fraction needs to be factorised as far as possible. This allows us to identify the form of each partial fraction needed
factor in the bottom line $\longrightarrow \quad$ form of partial fraction(s)

$$
\begin{array}{cc}
(a x+b) & \frac{A}{a x+b} \\
(a x+b)^{2} & \frac{A}{a x+b}+\frac{B}{(a x+b)^{2}} \\
\left(a x^{2}+b x+c\right) & \frac{A x+B}{a x^{2}+b x+c}
\end{array}
$$

where A and B are constants to be determined

Section 2: Exercises

2. Exercises

Click on Exercise links for full worked solutions (there are 13 exercises in total)

Perform the following integrations:
Exercise 1. $\int \frac{x^{2}+2 x+5}{x} d x$
Exercise 2. $\int \frac{x^{3}+4 x^{2}+3 x+1}{x^{2}} d x$
Exercise 3. $\int \frac{x^{2}+3 x+4}{x+1} d x$
EXERCISE 4. $\int \frac{2 x^{2}+5 x+3}{x+2} d x$

- Theory Answers - Integrals - P-Division Tips

Section 2: Exercises
Exercise $5 . \int \frac{4 x^{3}+2}{x^{4}+2 x+3} d x$
Exercise 6. $\int \frac{x}{x^{2}-5} d x$
EXERCISE 7. $\int \frac{17-x}{(x-3)(x+4)} d x$
Exercise 8. $\int \frac{11 x+18}{(2 x+5)(x-7)} d x$
Exercise 9. $\int \frac{7 x+1}{(x+1)(x-2)(x+3)} d x$
Exercise 10. $\int \frac{2 x+9}{(x+5)^{2}} d x$

Section 2: Exercises
Exercise 11. $\int \frac{13 x-4}{(3 x-2)(2 x+1)} d x$
Exercise 12. $\int \frac{27 x}{(x-2)^{2}(x+1)} d x$
Exercise 13. $\int \frac{3 x^{2}}{(x-1)\left(x^{2}+x+1\right)} d x$

- Theory - Answers - Integrals - P-Division - Tips

3. Answers

1. $\frac{1}{2} x^{2}+2 x+5 \ln |x|+C$,
2. $\frac{1}{2} x^{2}+4 x+3 \ln |x|-\frac{1}{x}+C$,
3. $\frac{1}{2} x^{2}+2 x+2 \ln |x+1|+C$,
4. $x^{2}+x+\ln |x+2|+C$,
5. $\ln \left|x^{4}+2 x+3\right|+C$,
6. $\frac{1}{2} \ln \left|x^{2}-5\right|+C$,
7. $2 \ln |x-3|-3 \ln |x+4|+C$,
8. $\frac{1}{2} \ln |2 x+5|+5 \ln |x-7|+C$,
9. $\ln |x+1|+\ln |x-2|-2 \ln |x+3|+C$,
10. $2 \ln |x+5|+\frac{1}{x+5}+D$,
11. $\frac{2}{3} \ln |3 x-2|+\frac{3}{2} \ln |2 x+1|+C$,
12. $3 \ln |x-2|-\frac{18}{x-2}-3 \ln |x+1|+D$,
13. $\ln |x-1|+\ln \left|x^{2}+x+1\right|+D$.

Section 4: Standard integrals

4. Standard integrals

$f(x)$	$\int f(x) d x$	$f(x)$	$\int f(x) d x$
x^{n}	$\frac{x^{n+1}}{n+1} \quad(n \neq-1)$	$[g(x)]^{n} g^{\prime}(x)$	$\frac{[g(x)]^{n+1}}{n+1} \quad(n \neq-1)$
$\frac{1}{x}$	$\ln \|x\|$	$\frac{g^{\prime}(x)}{g(x)}$	$\ln \|g(x)\|$
e^{x}	e^{x}	a^{x}	$\frac{a^{x}}{\ln a} \quad(a>0)$
$\sin x$	$-\cos x$	$\sinh x$	$\cosh x$
$\cos x$	$\sin x$	$\cosh x$	$\sinh x$
$\tan x$	$-\ln \|\cos x\|$	$\tanh x$	$\ln \cosh x$
$\operatorname{cosec} x$	$\ln \left\|\tan \frac{x}{2}\right\|$	$\operatorname{cosech} x$	$\ln \left\|\tanh \frac{x}{2}\right\|$
$\sec x$	$\ln \|\sec x+\tan x\|$	$\operatorname{sech} x$	$2 \tan e^{x}$
$\sec x$	$\tan x$	$\operatorname{sech} 2 x$	$\tanh x$
$\cot ^{2} x$	$\ln \|\sin x\|$	$\operatorname{coth}^{2} x$	$\ln \|\sinh x\|$
$\sin ^{2} x$	$\frac{x}{2}-\frac{\sin 2 x}{4}$	$\sinh ^{2} x$	$\frac{\sinh 2 x}{4}-\frac{x}{2}$
$\cos ^{2} x$	$\frac{x}{2}+\frac{\sin 2 x}{4}$	$\cosh ^{2} x$	$\frac{\sinh 2 x}{4}+\frac{x}{2}$

Toc

Section 4: Standard integrals

$f(x)$	$\int f(x) d x$	$f(x)$	$\int f(x) d x$
$\frac{1}{a^{2}+x^{2}}$	$\frac{1}{a} \tan ^{-1} \frac{x}{a}$	$\frac{1}{a^{2}-x^{2}}$	$\frac{1}{2 a} \ln \left\|\frac{a+x}{a-x}\right\|(0<\|x\|<a)$
	$(a>0)$	$\frac{1}{x^{2}-a^{2}}$	$\frac{1}{2 a} \ln \left\|\frac{x-a}{x+a}\right\|(\|x\|>a>0)$
$\frac{1}{\sqrt{a^{2}-x^{2}}}$	$\sin ^{-1} \frac{x}{a}$	$\frac{1}{\sqrt{a^{2}+x^{2}}}$	$\ln \left\|\frac{x+\sqrt{a^{2}+x^{2}}}{a}\right\|(a>0)$
	$(-a<x<a)$	$\frac{1}{\sqrt{x^{2}-a^{2}}}$	$\ln \left\|\frac{x+\sqrt{x^{2}-a^{2}}}{a}\right\|(x>a>0)$
$\sqrt{a^{2}-x^{2}}$	$\frac{a^{2}}{2}\left[\sin ^{-1}\left(\frac{x}{a}\right)\right.$	$\sqrt{a^{2}+x^{2}}$	$\frac{a^{2}}{2}\left[\sinh ^{-1}\left(\frac{x}{a}\right)+\frac{x \sqrt{a^{2}+x^{2}}}{a^{2}}\right]$
	$\left.+\frac{x \sqrt{a^{2}-x^{2}}}{a^{2}}\right]$	$\sqrt{x^{2}-a^{2}}$	$\frac{a^{2}}{2}\left[-\cosh ^{-1}\left(\frac{x}{a}\right)+\frac{x \sqrt{x^{2}-a^{2}}}{a^{2}}\right]$

5. Polynomial division

You can use formal long division to simplify an improper algebraic fraction. In this Tutorial, we us another technique (that is sometimes called 'algebraic juggling')

- In each step of the technique, we re-write the top line in a way that the algebraic fraction can be broken into two separate fractions, where a simplifying cancellation is forced to appear in the first of these two fractions
- The technique involves re-writing the top-line term with the highest power of x using the expression from the bottom line

The detail of how the method works is best illustrated with a long example

One such example follows on the next page ...

$$
\frac{x^{3}+3 x^{2}-2 x-1}{x+1}=\frac{x^{2}(x+1)-x^{2}+3 x^{2}-2 x-1}{x+1}
$$

$\{$ the bottom line has been used to write x^{3} as $\left.x^{2}(x+1)-x^{2}\right\}$

$$
=\frac{x^{2}(x+1)+2 x^{2}-2 x-1}{x+1}
$$

$$
=\frac{x^{2}(x+1)}{x+1}+\frac{2 x^{2}-2 x-1}{x+1}
$$

$$
=x^{2}+\frac{2 x^{2}-2 x-1}{x+1}
$$

$$
=x^{2}+\frac{2 x(x+1)-2 x-2 x-1}{x+1}
$$

$$
\left\{\text { writing } 2 x^{2} \text { as } 2 x(x+1)-2 x\right\}
$$

Section 5: Polynomial division
i.e. $\frac{x^{3}+3 x^{2}-2 x-1}{x+1}=x^{2}+\frac{2 x(x+1)-4 x-1}{x+1}$

$$
=x^{2}+\frac{2 x(x+1)}{x+1}+\frac{-4 x-1}{x+1}
$$

$$
=x^{2}+2 x+\frac{-4 x-1}{x+1}
$$

$$
=x^{2}+2 x+\frac{-4(x+1)+4-1}{x+1}
$$

$$
\{\text { writing }-4 x \text { as }-4(x+1)+4\}
$$

$$
=x^{2}+2 x+\frac{-4(x+1)+3}{x+1}
$$

$$
=x^{2}+2 x+\frac{-4(x+1)}{x+1}+\frac{3}{x+1}
$$

Section 5: Polynomial division
i.e. $\frac{x^{3}+3 x^{2}-2 x-1}{x+1}=x^{2}+2 x+\frac{-4(x+1)}{x+1}+\frac{3}{x+1}$

$$
=x^{2}+2 x-4+\frac{3}{x+1}
$$

We have now written the original improper algebraic fraction as a sum of terms that do not involve any further improper fractions, and our task is complete!

Section 6: Tips on using solutions

6. Tips on using solutions

- When looking at the THEORY, ANSWERS, INTEGRALS, P-DIVISION or TIPS pages, use the Back button (at the bottom of the page) to return to the exercises
- Use the solutions intelligently. For example, they can help you get started on an exercise, or they can allow you to check whether your intermediate results are correct
- Try to make less use of the full solutions as you work your way through the Tutorial

Solutions to exercises

Full worked solutions

Exercise 1.

$$
\int \frac{x^{2}+2 x+5}{x} d x \quad \begin{array}{ll}
\text { top line is quadratic in } x \\
& \text { bottom line is linear in } x
\end{array}
$$

\Rightarrow we have an improper algebraic fraction
\rightarrow we need simple polynomial division ...

$$
\text { i.e. } \begin{aligned}
\int \frac{x^{2}+2 x+5}{x} d x & =\int\left(\frac{x^{2}}{x}+\frac{2 x}{x}+\frac{5}{x}\right) d x \\
& =\int\left(x+2+\frac{5}{x}\right) d x \\
& =\int x d x+\int 2 d x+5 \int \frac{1}{x} d x
\end{aligned}
$$

Solutions to exercises

$$
\text { i.e. } \int \frac{x^{2}+2 x+5}{x} d x=\frac{1}{2} x^{2}+2 x+5 \ln |x|+C
$$

where C is a constant of integration.

Return to Exercise 1

Solutions to exercises

Exercise 2.

$$
\begin{array}{ll}
\int \frac{x^{3}+4 x^{2}+3 x+1}{x^{2}} d x & \text { top line is cubic in } x \\
& \text { bottom line is quadratic in } x
\end{array}
$$

\Rightarrow an improper algebraic fraction
\rightarrow simple polynomial division ...

$$
\begin{aligned}
\int \frac{x^{3}+4 x^{2}+3 x+1}{x^{2}} d x & =\int\left(\frac{x^{3}}{x^{2}}+\frac{4 x^{2}}{x^{2}}+\frac{3 x}{x^{2}}+\frac{1}{x^{2}}\right) d x \\
& =\int\left(x+4+\frac{3}{x}+\frac{1}{x^{2}}\right) d x \\
& =\int x d x+\int 4 d x+3 \int \frac{1}{x} d x+\int x^{-2} d x
\end{aligned}
$$

Solutions to exercises

$$
\text { i.e. } \begin{aligned}
\int \frac{x^{3}+4 x^{2}+3 x+1}{x^{2}} d x & =\frac{1}{2} x^{2}+4 x+3 \ln |x|+\frac{x^{-1}}{(-1)}+C \\
& =\frac{1}{2} x^{2}+4 x+3 \ln |x|-\frac{1}{x}+C
\end{aligned}
$$

where C is a constant of integration.

Return to Exercise 2

Exercise 3.

$$
\begin{aligned}
\int \frac{x^{2}+3 x+4}{x+1} d x & \text { top line is quadratic in } x \\
& \text { bottom line is linear in } x \\
& \Rightarrow \text { an improper algebraic fraction } \\
& \rightarrow \text { polynomial division } . .
\end{aligned}
$$

Now we have more than just a single term in the bottom line and we need to do full polynomial division

If you are unfamiliar with this technique, there is some extra help within the P-Division section

Here, we will go through the polynomial division first, and we will leave the integration until later ...

$$
\frac{x^{2}+3 x+4}{x+1}=\frac{x(x+1)-x \quad+3 x+4}{x+1}
$$

$\{$ the bottom line has been used to write x^{2} as $\left.x(x+1)-x\right\}$

$$
=\frac{x(x+1)+2 x+4}{x+1}
$$

$$
=\frac{x(x+1)}{x+1}+\frac{2 x+4}{x+1}
$$

$$
=x+\frac{2 x+4}{x+1}
$$

$$
=x+\frac{2(x+1)-2 \quad+4}{x+1}
$$

$\{$ writing $2 x$ as $2 x(x+1)-2\}$

$$
\text { i.e. } \begin{aligned}
\frac{x^{2}+3 x+4}{x+1}= & x+\frac{2(x+1)+2}{x+1} \\
= & x+\frac{2(x+1)}{x+1}+\frac{2}{x+1} \\
= & x+2+\frac{2}{x+1} \\
& \left\{\begin{array}{l}
\text { p polynomial division is complete, } \\
\\
\\
\\
\\
\\
\text { since we no noper algebraic fractions }\}
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
\therefore \int \frac{x^{2}+3 x+4}{x+1} d x & =\int\left(x+2+\frac{2}{x+1}\right) d x \\
& =\frac{1}{2} x^{2}+2 x+2 \ln |x+1|+C
\end{aligned}
$$

Return to Exercise 3

Solutions to exercises
Exercise 4.

$$
\begin{aligned}
\int \frac{2 x^{2}+5 x+3}{x+2} d x & \text { top line is quadratic in } x \\
& \text { bottom line is linear in } x \\
& \Rightarrow \text { an improper algebraic fraction } \\
& \rightarrow \text { polynomial division ... }
\end{aligned}
$$

$$
\begin{aligned}
\frac{2 x^{2}+5 x+3}{x+2}= & \frac{2 x(x+2)-4 x+5 x+3}{x+2} \\
& \{\text { the bottom line has been used } \\
& \text { to write } \left.2 x^{2} \text { as } 2 x(x+2)-4 x\right\} \\
= & \frac{2 x(x+2)+x+3}{x+2} \\
= & \frac{2 x(x+2)}{x+2}+\frac{x+3}{x+2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { i.e. } \begin{aligned}
\frac{2 x^{2}+5 x+3}{x+2}= & 2 x+\frac{x+3}{x+2} \\
= & 2 x+\frac{(x+2)-2+3}{x+2} \\
& \{\text { writing } x \text { as }(x+2)-2\} \\
= & 2 x+\frac{(x+2)+1}{x+2} \\
= & 2 x+\frac{(x+2)}{x+2}+\frac{1}{x+2} \\
= & 2 x+1+\frac{1}{x+2} \\
& \{\text { no improper algebraic fractions }\} \\
\therefore \int \frac{2 x^{2}+5 x+3}{x+2} d x= & \int\left(2 x+1+\frac{1}{x+2}\right) d x \\
= & x^{2}+x+\ln |x+2|+C .
\end{aligned} \\
& \begin{aligned}
\text { Return to Exercise } 4
\end{aligned}
\end{aligned}
$$

Exercise 5.

$$
\begin{aligned}
\int \frac{4 x^{3}+2}{x^{4}+2 x+3} d x & \text { top line is degree } 3 \text { in } x \\
& \text { bottom line is degree } 4 \text { in } x \\
& \Rightarrow \text { we have a proper algebraic fraction } \\
& \rightarrow \text { factorise bottom line for partial fractions? }
\end{aligned}
$$

No! First, check if this is of the form $\int \frac{k g^{\prime}(x)}{g(x)} d x$, where $k=$ constant If $g(x)=x^{4}+2 x+3$ (the bottom line), $g^{\prime}(x)=\frac{d g}{d x}=4 x^{3}+2$ (which exactly equals the top line). So we can use the standard integral

$$
\int \frac{k g^{\prime}(x)}{g(x)} d x=k \ln |g(x)|+C, \quad \text { with } k=1
$$

(or employ substitution techniques by setting $u=x^{4}+2 x+3$)

$$
\therefore \int \frac{4 x^{3}+2}{x^{4}+2 x+3} d x=\ln \left|x^{4}+2 x+3\right|+C .
$$

Return to Exercise 5

Exercise 6.

$$
\begin{aligned}
\int \frac{x}{x^{2}-5} d x & \text { top line is degree } 1 \text { in } x \\
& \text { bottom line is degree } 2 \text { in } x \\
& \Rightarrow \text { we have a proper algebraic fraction } \\
& \rightarrow \text { consider for partial fractions? }
\end{aligned}
$$

No! First, check if this is of the form $\int \frac{k g^{\prime}(x)}{g(x)} d x$, where $k=$ constant If $g(x)=x^{2}-5$ (the bottom line), $g^{\prime}(x)=\frac{d g}{d x}=2 x$ (which is proportional to the top line). So we can use the standard integral

$$
\int \frac{k g^{\prime}(x)}{g(x)} d x=k \ln |g(x)|+C, \quad \text { with } k=\frac{1}{2}
$$

(or employ substitution techniques by setting $u=x^{2}-5$)

$$
\text { i.e. } \int \frac{x}{x^{2}-5} d x=\int \frac{\frac{1}{2} \cdot 2 x}{x^{2}-5} d x=\frac{1}{2} \ln \left|x^{2}-5\right|+C \text {. }
$$

Solutions to exercises

Exercise 7.

$$
\int \frac{17-x}{(x-3)(x+4)} d x \quad \begin{aligned}
& \text { is a proper algebraic fraction, } \\
& \\
& \begin{array}{l}
\text { and the top line is not a multiple } \\
\text { of the derivative of bottom line }
\end{array}
\end{aligned}
$$

Try partial fractions

$$
\begin{aligned}
\frac{17-x}{(x-3)(x+4)} & =\frac{A}{x-3}+\frac{B}{x+4} \\
& =\frac{A(x+4)+B(x-3)}{(x-3)(x+4)}
\end{aligned}
$$

$\therefore \quad 17-x=A(x+4)+B(x-3) \quad[$ if true then true for all x]

$$
\begin{aligned}
& \underline{x=-4} \quad \text { gives } \quad 17+4=0+(-4-3) B \quad \text { i.e. } 21=-7 B, \quad B=-3 \\
& \underline{x=3} \quad \text { gives } \quad 17-3=(3+4) A+0 \quad \text { i.e. } 14=7 A, \quad A=2
\end{aligned}
$$

Solutions to exercises

$$
\begin{aligned}
\therefore \int \frac{17-x}{(x-3)(x+4)} d x & =\int \frac{2}{x-3}+\frac{(-3)}{x+4} d x \\
& =2 \int \frac{d x}{x-3}-3 \int \frac{d x}{x+4} \\
& =2 \ln |x-3|-3 \ln |x+4|+C
\end{aligned}
$$

Note.
In the above we have used $\int \frac{d x}{a x+b}=\frac{1}{a} \ln |a x+b|+D$
Return to Exercise 7

Solutions to exercises
Exercise 8.

$$
\int \frac{11 x+18}{(2 x+5)(x-7)} d x \quad \begin{array}{ll}
\text { is a proper algebraic fraction, } \\
& \begin{array}{l}
\text { and the top line is not a multiple } \\
\text { of the derivative of bottom line }
\end{array}
\end{array}
$$

Try partial fractions

$$
\begin{aligned}
\frac{11 x+18}{(2 x+5)(x-7)} & =\frac{A}{2 x+5}+\frac{B}{x-7} \\
& =\frac{A(x-7)+B(2 x+5)}{(2 x+5)(x-7)}
\end{aligned}
$$

$\therefore \quad 11 x+18=A(x-7)+B(2 x+5)$

$$
\begin{array}{lllll}
x=7 & \text { gives } & 77+18=(14+5) B & \text { i.e. } 95=19 B, & B=5 \\
x=-\frac{5}{2} & \text { gives } & -\frac{55}{2}+18=\left(-\frac{5}{2}-7\right) A & \text { i.e. } & \frac{19}{2}=\frac{19}{2} A,
\end{array} \quad A=1
$$

Solutions to exercises

$$
\begin{aligned}
\therefore \int \frac{11 x+18}{(2 x+5)(x-7)} d x & =\int \frac{1}{2 x+5}+\frac{5}{x-7} d x \\
& =\int \frac{d x}{2 x+5}+5 \int \frac{d x}{x-7} \\
& =\frac{1}{2} \ln |2 x+5|+5 \ln |x-7|+C
\end{aligned}
$$

Note.
In the above we have used $\int \frac{d x}{a x+b}=\frac{1}{a} \ln |a x+b|+D$
Return to Exercise 8

Solutions to exercises

Exercise 9.

$$
\int \frac{7 x+1}{(x+1)(x-2)(x+3)} d x \quad \begin{array}{ll}
\text { is a proper algebraic fraction, } \\
& \begin{array}{l}
\text { and the top line is not a multiple } \\
\text { of the derivative of bottom line }
\end{array}
\end{array}
$$

Try partial fractions

$$
\begin{aligned}
\frac{7 x+1}{(x+1)(x-2)(x+3)} & =\frac{A}{x+1}+\frac{B}{x-2}+\frac{C}{x+3} \\
& =\frac{A(x-2)(x+3)+B(x+1)(x+3)+C(x+1)(x-2)}{(x+1)(x-2)(x+3)}
\end{aligned}
$$

$$
\therefore 7 x+1=A(x-2)(x+3)+B(x+1)(x+3)+C(x+1)(x-2)
$$

$$
7 x+1=A(x-2)(x+3)+B(x+1)(x+3)+C(x+1)(x-2)
$$

$$
\underline{x=-1} \quad \text { gives } \quad-6=A(-3)(2) \quad \text { i.e. }-6=-6 A \quad \text { i.e. } A=1
$$

$$
\underline{x=2} \quad \text { gives } \quad 15=B(3)(5) \quad \text { i.e. } 15=15 B \quad \text { i.e. } B=1
$$

$$
\underline{x=-3} \quad \text { gives } \quad-20=C(-2)(-5) \quad \text { i.e. }-20=10 C \quad \text { i.e. } C=-2
$$

$$
\therefore \int \frac{7 x+1}{(x+1)(x-2)(x+3)} d x=\int \frac{1}{x+1}+\frac{1}{x-2}-2 \frac{1}{x+3} d x
$$

$$
=\ln |x+1|+\ln |x-2|-2 \ln |x+3|+C .
$$

Return to Exercise 9

Solutions to exercises

Exercise 10.

Proper algebraic fraction and we can use partial fractions

$$
\int \frac{2 x+9}{(x+5)^{2}} d x=\int \frac{A}{(x+5)}+\frac{B}{(x+5)^{2}} d x
$$

where $\frac{2 x+9}{(x+5)^{2}}=\frac{A(x+5)+B}{(x+5)^{2}}$ i.e. $\quad 2 x+9=A(x+5)+B$
$\underline{x=-5} \quad$ gives $\quad-10+9=B \quad$ i.e. $B=-1$
$\underline{x=0} \quad$ gives $9=5 A+B=5 A-1 \quad$ i.e. $10=5 A$ i.e. $A=2$

$$
\begin{aligned}
\therefore \int \frac{2 x+9}{(x+5)^{2}} d x & =\int \frac{2}{x+5}+\frac{(-1)}{(x+5)^{2}} d x \\
& =2 \int \frac{d x}{x+5}-\int \frac{d x}{(x+5)^{2}}
\end{aligned}
$$

Solutions to exercises

$$
\text { i.e. } \begin{aligned}
\int \frac{2 x+9}{(x+5)^{2}} d x & =2 \ln |x+5|-\int(x+5)^{-2} d x+C \\
& =2 \ln |x+5|-\frac{(x+5)^{-1}}{(-1)}+C \\
& =2 \ln |x+5|+\frac{1}{x+5}+C
\end{aligned}
$$

where, in the last integral, we have used

$$
\int(a x+b)^{n}=\frac{(a x+b)^{n+1}}{n+1}+C, \quad(n \neq-1) .
$$

Return to Exercise 10

Solutions to exercises

Exercise 11.

Proper algebraic fraction and we need to use partial fractions

$$
\int \frac{13 x-4}{(3 x-2)(2 x+1)} d x=\int \frac{A}{(3 x-2)}+\frac{B}{(2 x+1)} d x
$$

where $\frac{13 x-4}{(3 x-2)(2 x+1)}=\frac{A(2 x+1)+B(3 x-2)}{(3 x-2)(2 x+1)}$

$$
13 x-4=A(2 x+1)+B(3 x-2)
$$

and

$$
\begin{array}{lll}
x=-\frac{1}{2} & \text { gives } & -\frac{13}{2}-4=B\left(-\frac{3}{2}-2\right) \\
\text { i.e. }-\frac{21}{2}=-\frac{7}{2} B, \text { i.e. } B=3 \\
x=\frac{2}{3} & \text { gives } & \frac{26}{3}-\frac{12}{3}=A\left(\frac{4}{3}+\frac{3}{3}\right)
\end{array} \text { i.e. } \frac{14}{3}=\frac{7}{3} A \text { i.e. } A=2
$$

Solutions to exercises

$$
\begin{aligned}
\therefore \int \frac{13 x-4}{(3 x-2)(2 x+1)} d x & =\int \frac{2}{3 x-2}+\frac{3}{2 x+1} d x \\
& =2 \int \frac{d x}{3 x-2}+3 \int \frac{d x}{2 x+1} \\
& =2\left(\frac{1}{3}\right) \ln |3 x-2|+3\left(\frac{1}{2}\right) \ln |2 x+1|+C \\
& =\frac{2}{3} \ln |3 x-2|+\frac{3}{2} \ln |2 x+1|+C,
\end{aligned}
$$

where $\int \frac{d x}{a x+b}=\frac{1}{a} \ln |a x+b|+C$ has been used.
Return to Exercise 11

Solutions to exercises

Exercise 12.

Use Partial fractions
$\int \frac{27 x}{(x-2)^{2}(x+1)} d x=\int \frac{A}{(x-2)}+\frac{B}{(x-2)^{2}}+\frac{C}{x+1} d x$
where

$$
\begin{array}{lll}
27 x=A(x-2)(x+1)+B(x+1)+C(x-2)^{2} \\
\underline{x=2} & \text { gives } \quad 54=3 B & \text { i.e. } B=18 \\
\underline{x=-1} & \text { gives }-27=C(-3)^{2} & \text { i.e. } C=-3 \\
\underline{x=0} & \text { gives } \quad 0=A(-2)+18+(-3)(4) & \text { i.e. } A=3
\end{array}
$$

Solutions to exercises

$$
\begin{aligned}
\therefore \int \frac{27 x}{(x-2)^{2}(x+1)} d x & =\int \frac{3}{x-2}+\frac{18}{(x-2)^{2}}-\frac{3}{x+1} d x \\
& =3 \ln |x-2|+18 \int(x-2)^{-2} d x-3 \ln |x+1|+D \\
& =3 \ln |x-2|+\frac{18}{(-1)}(x-2)^{-1}-3 \ln |x+1|+D \\
& =3 \ln |x-2|-\frac{18}{x-2}-3 \ln |x+1|+D
\end{aligned}
$$

Return to Exercise 12

Solutions to exercises

Exercise 13.

$$
\int \frac{3 x^{2}}{(x-1)\left(x^{2}+x+1\right)} d x=\int \frac{A}{x-1}+\frac{B x+C}{x^{2}+x+1} d x
$$

Note that $x^{2}+x+1$ does not give real linear factors One thus uses the partial fraction $\frac{B x+C}{x^{2}+x+1}$

We then have

$$
3 x^{2}=A\left(x^{2}+x+1\right)+(B x+C)(x-1)
$$

$$
\begin{array}{lll}
\underline{x=1} & \text { gives } & 3=3 A \quad \text { i.e. } A=1 \\
\underline{x=0} & \text { gives } & 0=A-C \text { i.e. } C=A=1 \\
\underline{x=-1} & \text { gives } & 3=A(1-1+1)+(-B+C)(-2)
\end{array}
$$

Solutions to exercises
i.e. $\quad 3=A+2 B-2 C$
i.e. $\quad 3=1+2 B-2$
i.e. $\quad 4=2 B$ i.e. $B=2$

$$
\begin{aligned}
\therefore \int \frac{3 x^{2}}{(x-1)\left(x^{2}+x+1\right)} d x & =\int \frac{A}{x-1}+\int \frac{B x+C}{\left(x^{2}+x+1\right)} d x \\
& =\int \frac{d x}{x-1}+\int \frac{2 x+1}{x^{2}+x+1} d x \\
& =\ln |x-1|+\ln \left|x^{2}+x+1\right|+D
\end{aligned}
$$

and we note that the second integral is of the form

$$
\int \frac{g^{\prime}(x)}{g(x)} d x=\ln |g(x)|+D
$$

Return to Exercise 13

