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1. Theory

The method of partial fractions can be used in the integration of a
proper algebraic fraction. This technique allows the integration to be
done as a sum of much simpler integrals

A proper algebraic fraction is a fraction of two polynomials whose
top line is a polynomial of lower degree than the one in the bottom
line. Recall that, for a polynomial in x , the degree is the highest
power of x . For example

x− 1
x2 + 3x + 5

is a proper algebraic fraction because the top line is a polynomial of
degree 1 and the bottom line is a polynomial of degree 2.

● To integrate an improper algebraic fraction, one firstly needs
to write the fraction as a sum of proper fractions. This first step can
be done by using polynomial division (‘P-Division’)
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● Look out for cases of proper algebraic fractions whose top line is a
multiple k of the derivative of the bottom line. Then, the standard
integral ∫

k g′(x)
g(x)

dx = k ln |g(x)|+ C

can be used (instead of working out partial fractions)

● Otherwise, the bottom line of a proper algebraic fraction needs to
be factorised as far as possible. This allows us to identify the form of
each partial fraction needed

factor in the bottom line −→ form of partial fraction(s)

(ax + b) A
ax+b

(ax + b)2 A
ax+b + B

(ax+b)2

(ax2 + bx + c) Ax+B
ax2+bx+c

where A and B are constants to be determined
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2. Exercises

Click on Exercise links for full worked solutions (there are 13 exer-
cises in total)

Perform the following integrations:

Exercise 1.

∫
x2 + 2x + 5

x
dx

Exercise 2.

∫
x3 + 4x2 + 3x + 1

x2
dx

Exercise 3.

∫
x2 + 3x + 4

x + 1
dx

Exercise 4.

∫
2x2 + 5x + 3

x + 2
dx

● Theory ● Answers ● Integrals ● P-Division ● Tips
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Exercise 5.

∫
4x3 + 2

x4 + 2x + 3
dx

Exercise 6.

∫
x

x2 − 5
dx

Exercise 7.

∫
17− x

(x− 3)(x + 4)
dx

Exercise 8.

∫
11x + 18

(2x + 5)(x− 7)
dx

Exercise 9.

∫
7x + 1

(x + 1)(x− 2)(x + 3)
dx

Exercise 10.

∫
2x + 9

(x + 5)2
dx

● Theory ● Answers ● Integrals ● P-Division ● Tips
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Exercise 11.

∫
13x− 4

(3x− 2)(2x + 1)
dx

Exercise 12.

∫
27x

(x− 2)2(x + 1)
dx

Exercise 13.

∫
3x2

(x− 1)(x2 + x + 1)
dx

● Theory ● Answers ● Integrals ● P-Division ● Tips
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3. Answers

1. 1
2x2 + 2x + 5 ln |x|+ C,

2. 1
2x2 + 4x + 3 ln |x| − 1

x + C,

3. 1
2x2 + 2x + 2 ln |x + 1|+ C,

4. x2 + x + ln |x + 2|+ C,

5. ln |x4 + 2x + 3|+ C,

6. 1
2 ln |x2 − 5|+ C,

7. 2 ln |x− 3| − 3 ln |x + 4|+ C,

8. 1
2 ln |2x + 5|+ 5 ln |x− 7|+ C,

9. ln |x + 1|+ ln |x− 2| − 2 ln |x + 3|+ C,

10. 2 ln |x+5|+ 1
x+5 + D,

11. 2
3 ln |3x−2|+ 3

2 ln |2x + 1|+ C,

12. 3 ln |x−2|− 18
x−2 − 3 ln |x+1|+ D,

13. ln |x−1|+ln |x2+x+1|+ D.
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4. Standard integrals

f (x)
∫

f(x)dx f (x)
∫

f(x)dx

xn xn+1

n+1 (n 6= −1) [g (x)]n g′ (x) [g(x)]n+1

n+1 (n 6= −1)
1
x ln |x| g′(x)

g(x) ln |g (x)|
ex ex ax ax

ln a (a > 0)
sinx − cos x sinhx coshx
cos x sinx coshx sinhx
tanx − ln |cos x| tanh x ln coshx
cosec x ln

∣∣tan x
2

∣∣ cosechx ln
∣∣tanh x

2

∣∣
sec x ln |sec x + tanx| sech x 2 tan−1 ex

sec2 x tanx sech2 x tanh x
cot x ln |sinx| cothx ln |sinhx|
sin2 x x

2 −
sin 2x

4 sinh2 x sinh 2x
4 − x

2

cos2 x x
2 + sin 2x

4 cosh2 x sinh 2x
4 + x

2
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f (x)
∫

f (x) dx f (x)
∫

f (x) dx

1
a2+x2

1
a tan−1 x

a
1

a2−x2
1
2a ln

∣∣∣a+x
a−x

∣∣∣ (0< |x|<a)

(a > 0) 1
x2−a2

1
2a ln

∣∣∣x−a
x+a

∣∣∣ (|x| > a>0)

1√
a2−x2 sin−1 x

a
1√

a2+x2 ln
∣∣∣x+

√
a2+x2

a

∣∣∣ (a > 0)

(−a < x < a) 1√
x2−a2 ln

∣∣∣x+
√

x2−a2

a

∣∣∣ (x>a>0)

√
a2 − x2 a2

2

[
sin−1

(
x
a

) √
a2+x2 a2

2

[
sinh−1

(
x
a

)
+ x

√
a2+x2

a2

]
+x

√
a2−x2

a2

] √
x2−a2 a2

2

[
− cosh−1

(
x
a

)
+ x

√
x2−a2

a2

]
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5. Polynomial division

You can use formal long division to simplify an improper algebraic
fraction. In this Tutorial, we us another technique (that is sometimes
called ‘algebraic juggling’)

● In each step of the technique, we re-write the top line in a way that
the algebraic fraction can be broken into two separate fractions, where
a simplifying cancellation is forced to appear in the first of these two
fractions

● The technique involves re-writing the top-line term with the highest
power of x using the expression from the bottom line

The detail of how the method works is best illustrated with a long
example

One such example follows on the next page ...
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x3 + 3x2 − 2x− 1
x + 1

=
x2(x + 1)− x2 + 3x2 − 2x− 1

x + 1
{ the bottom line has been used
to write x3 as x2(x + 1)− x2 }

=
x2(x + 1) + 2x2 − 2x− 1

x + 1

=
x2(x + 1)

x + 1
+

2x2 − 2x− 1
x + 1

= x2 +
2x2 − 2x− 1

x + 1

= x2 +
2x(x + 1)− 2x − 2x− 1

x + 1
{ writing 2x2 as 2x(x + 1)− 2x }
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i.e.
x3 + 3x2 − 2x− 1

x + 1
= x2 +

2x(x + 1) − 4x− 1
x + 1

= x2 +
2x(x + 1)

x + 1
+

−4x− 1
x + 1

= x2 + 2x +
−4x− 1
x + 1

= x2 + 2x +
−4(x + 1) + 4 − 1

x + 1
{ writing −4x as −4(x + 1) + 4 }

= x2 + 2x +
−4(x + 1) + 3

x + 1

= x2 + 2x +
−4(x + 1)

x + 1
+

3
x + 1
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i.e.
x3 + 3x2 − 2x− 1

x + 1
= x2 + 2x +

−4(x + 1)
x + 1

+
3

x + 1

= x2 + 2x − 4 +
3

x + 1

We have now written the original improper algebraic fraction as a sum
of terms that do not involve any further improper fractions, and our
task is complete!
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6. Tips on using solutions

● When looking at the THEORY, ANSWERS, INTEGRALS,
P-DIVISION or TIPS pages, use the Back button (at the bottom of
the page) to return to the exercises

● Use the solutions intelligently. For example, they can help you get
started on an exercise, or they can allow you to check whether your
intermediate results are correct

● Try to make less use of the full solutions as you work your way
through the Tutorial
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Full worked solutions

Exercise 1.∫
x2 + 2x + 5

x
dx top line is quadratic in x

bottom line is linear in x

⇒ we have an improper algebraic fraction

→ we need simple polynomial division ...

i.e.
∫

x2 + 2x + 5
x

dx =
∫ (

x2

x
+

2x

x
+

5
x

)
dx

=
∫ (

x + 2 +
5
x

)
dx

=
∫

x dx +
∫

2 dx + 5
∫

1
x

dx

Toc JJ II J I Back
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i.e.
∫

x2 + 2x + 5
x

dx =
1
2
x2 + 2x + 5 ln |x|+ C,

where C is a constant of integration.

Return to Exercise 1
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Exercise 2.∫
x3 + 4x2 + 3x + 1

x2
dx top line is cubic in x

bottom line is quadratic in x

⇒ an improper algebraic fraction

→ simple polynomial division ...

∫
x3 + 4x2 + 3x + 1

x2
dx =

∫ (
x3

x2
+

4x2

x2
+

3x

x2
+

1
x2

)
dx

=
∫ (

x + 4 +
3
x

+
1
x2

)
dx

=
∫

x dx +
∫

4 dx + 3
∫

1
x

dx +
∫

x−2 dx
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i.e.
∫

x3 + 4x2 + 3x + 1
x2

dx =
1
2
x2 + 4x + 3 ln |x|+ x−1

(−1)
+ C

=
1
2
x2 + 4x + 3 ln |x| − 1

x
+ C,

where C is a constant of integration.

Return to Exercise 2
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Exercise 3.∫
x2 + 3x + 4

x + 1
dx top line is quadratic in x

bottom line is linear in x

⇒ an improper algebraic fraction

→ polynomial division ...

Now we have more than just a single term in the bottom line and we
need to do full polynomial division

If you are unfamiliar with this technique, there is some extra help
within the P-Division section

Here, we will go through the polynomial division first, and we will
leave the integration until later ...
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x2 + 3x + 4
x + 1

=
x(x + 1)− x + 3x + 4

x + 1
{ the bottom line has been used
to write x2 as x(x + 1)− x }

=
x(x + 1) + 2x + 4

x + 1

=
x(x + 1)

x + 1
+

2x + 4
x + 1

= x +
2x + 4
x + 1

= x +
2(x + 1)− 2 + 4

x + 1
{ writing 2x as 2x(x + 1)− 2 }
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i.e.
x2 + 3x + 4

x + 1
= x +

2(x + 1) + 2
x + 1

= x +
2(x + 1)
x + 1

+
2

x + 1

= x + 2 +
2

x + 1
{ polynomial division is complete,
since we no longer have any
improper algebraic fractions }

∴
∫

x2 + 3x + 4
x + 1

dx =
∫ (

x + 2 +
2

x + 1

)
dx

=
1
2
x2 + 2x + 2 ln |x + 1|+ C.

Return to Exercise 3
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Exercise 4.∫
2x2 + 5x + 3

x + 2
dx top line is quadratic in x

bottom line is linear in x
⇒ an improper algebraic fraction
→ polynomial division ...

2x2 + 5x + 3
x + 2

=
2x(x + 2)− 4x + 5x + 3

x + 2
{ the bottom line has been used
to write 2x2 as 2x(x + 2)− 4x }

=
2x(x + 2) + x + 3

x + 2

=
2x(x + 2)

x + 2
+

x + 3
x + 2
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i.e.
2x2 + 5x + 3

x + 2
= 2x +

x + 3
x + 2

= 2x +
(x + 2)− 2 + 3

x + 2
{ writing x as (x + 2)− 2 }

= 2x +
(x + 2) + 1

x + 2

= 2x +
(x + 2)
x + 2

+
1

x + 2

= 2x + 1 +
1

x + 2
{ no improper algebraic fractions }

∴
∫

2x2 + 5x + 3
x + 2

dx =
∫ (

2x + 1 +
1

x + 2

)
dx

= x2 + x + ln |x + 2|+ C.

Return to Exercise 4
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Exercise 5.∫
4x3 + 2

x4 + 2x + 3
dx top line is degree 3 in x

bottom line is degree 4 in x
⇒ we have a proper algebraic fraction
→ factorise bottom line for partial fractions?

No! First, check if this is of the form
∫ k g′(x)

g(x) dx , where k =constant

If g(x) = x4 + 2x + 3 (the bottom line), g′(x) = dg
dx = 4x3 + 2 (which

exactly equals the top line). So we can use the standard integral∫
k g′(x)
g(x)

dx = k ln |g(x)|+ C, with k = 1

(or employ substitution techniques by setting u = x4 + 2x + 3)

∴
∫

4x3 + 2
x4 + 2x + 3

dx = ln |x4 + 2x + 3|+ C.

Return to Exercise 5
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Exercise 6.∫
x

x2 − 5
dx top line is degree 1 in x

bottom line is degree 2 in x
⇒ we have a proper algebraic fraction
→ consider for partial fractions?

No! First, check if this is of the form
∫ k g′(x)

g(x) dx , where k =constant

If g(x) = x2 − 5 (the bottom line), g′(x) = dg
dx = 2x (which is propor-

tional to the top line). So we can use the standard integral∫
k g′(x)
g(x)

dx = k ln |g(x)|+ C, with k =
1
2

(or employ substitution techniques by setting u = x2 − 5)

i.e.
∫

x

x2 − 5
dx =

∫ 1
2 · 2x

x2 − 5
dx =

1
2

ln |x2 − 5|+ C.

Return to Exercise 6
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Exercise 7.∫
17− x

(x− 3)(x + 4)
dx is a proper algebraic fraction,

and the top line is not a multiple
of the derivative of bottom line

Try partial fractions
17− x

(x− 3)(x + 4)
=

A

x− 3
+

B

x + 4

=
A(x + 4) + B(x− 3)

(x− 3)(x + 4)

∴ 17− x = A(x + 4) + B(x− 3) [ if true then true for all x ]

x = −4 gives 17 + 4 = 0 + (−4− 3)B i.e. 21 = −7B, B = −3

x = 3 gives 17− 3 = (3 + 4)A + 0 i.e. 14 = 7A, A = 2
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∴
∫

17− x

(x− 3)(x + 4)
dx =

∫
2

x− 3
+

(−3)
x + 4

dx

= 2
∫

dx

x− 3
− 3

∫
dx

x + 4

= 2 ln |x− 3| − 3 ln |x + 4|+ C.

Note.

In the above we have used
∫

dx

ax + b
=

1
a

ln |ax + b|+ D

Return to Exercise 7
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Exercise 8.∫
11x + 18

(2x + 5)(x− 7)
dx is a proper algebraic fraction,

and the top line is not a multiple
of the derivative of bottom line

Try partial fractions
11x + 18

(2x + 5)(x− 7)
=

A

2x + 5
+

B

x− 7

=
A(x− 7) + B(2x + 5)

(2x + 5)(x− 7)

∴ 11x + 18 = A(x− 7) + B(2x + 5)

x = 7 gives 77 + 18 = (14 + 5)B i.e. 95 = 19B, B = 5

x = − 5
2 gives − 55

2 + 18 = (− 5
2 − 7)A i.e. 19

2 = 19
2 A, A = 1
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∴
∫

11x + 18
(2x + 5)(x− 7)

dx =
∫

1
2x + 5

+
5

x− 7
dx

=
∫

dx

2x + 5
+ 5

∫
dx

x− 7

=
1
2

ln |2x + 5|+ 5 ln |x− 7|+ C.

Note.

In the above we have used
∫

dx

ax + b
=

1
a

ln |ax + b|+ D

Return to Exercise 8
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Exercise 9.∫
7x + 1

(x + 1)(x− 2)(x + 3)
dx is a proper algebraic fraction,

and the top line is not a multiple
of the derivative of bottom line

Try partial fractions

7x+1
(x+1)(x−2)(x+3)

=
A

x+1
+

B

x−2
+

C

x+3

=
A(x−2)(x+3)+B(x+1)(x+3)+C(x+1)(x−2)

(x+1)(x−2)(x+3)

∴ 7x + 1 = A(x− 2)(x + 3) + B(x + 1)(x + 3) + C(x + 1)(x− 2)
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7x + 1 = A(x− 2)(x + 3) + B(x + 1)(x + 3) + C(x + 1)(x− 2)

x = −1 gives −6 = A(−3)(2) i.e. −6 = −6A i.e. A = 1

x = 2 gives 15 = B(3)(5) i.e. 15 = 15B i.e. B = 1

x = −3 gives −20 = C(−2)(−5) i.e. −20 = 10C i.e. C = −2

∴
∫

7x + 1
(x + 1)(x− 2)(x + 3)

dx =
∫

1
x+1

+
1

x−2
−2

1
x+3

dx

= ln |x + 1|+ ln |x− 2| − 2 ln |x + 3|+ C.

Return to Exercise 9
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Exercise 10.

Proper algebraic fraction and we can use partial fractions∫
2x + 9

(x + 5)2
dx =

∫
A

(x + 5)
+

B

(x + 5)2
dx

where
2x + 9

(x + 5)2
=

A(x + 5) + B

(x + 5)2
i.e. 2x + 9 = A(x + 5) + B

x = −5 gives −10 + 9 = B i.e. B = −1

x = 0 gives 9 = 5A + B = 5A− 1 i.e. 10 = 5A i.e. A = 2

∴
∫

2x + 9
(x + 5)2

dx =
∫

2
x+5

+
(−1)

(x+5)2
dx

= 2
∫

dx

x+5
−

∫
dx

(x+5)2
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i.e.
∫

2x + 9
(x + 5)2

dx = 2 ln |x+5|−
∫

(x + 5)−2dx + C

= 2 ln |x+5|− (x + 5)−1

(−1)
+ C

= 2 ln |x+5|+ 1
x + 5

+ C,

where, in the last integral, we have used

∫
(ax + b)n =

(ax + b)n+1

n + 1
+ C, (n 6= −1).

Return to Exercise 10
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Exercise 11.

Proper algebraic fraction and we need to use partial fractions∫
13x− 4

(3x− 2)(2x + 1)
dx =

∫
A

(3x− 2)
+

B

(2x + 1)
dx

where
13x− 4

(3x− 2)(2x + 1)
=

A(2x + 1) + B(3x− 2)
(3x− 2)(2x + 1)

13x− 4 = A(2x + 1) + B(3x− 2)

and

x = − 1
2 gives − 13

2 − 4 = B
(
− 3

2 − 2
)

i.e. − 21
2 = − 7

2B, i.e. B = 3

x = 2
3 gives 26

3 − 12
3 = A

(
4
3 + 3

3

)
i.e. 14

3 = 7
3A i.e. A = 2
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∴
∫

13x− 4
(3x− 2)(2x + 1)

dx =
∫

2
3x−2

+
3

2x+1
dx

= 2
∫

dx

3x−2
+ 3

∫
dx

2x+1

= 2
(

1
3

)
ln |3x−2|+3

(
1
2

)
ln |2x + 1|+ C

=
2
3

ln |3x−2|+ 3
2

ln |2x + 1|+ C,

where
∫

dx

ax + b
=

1
a

ln |ax + b|+ C has been used.

Return to Exercise 11
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Exercise 12.

Use Partial fractions

∫
27x

(x− 2)2(x + 1)
dx =

∫
A

(x− 2)
+

B

(x− 2)2
+

C

x + 1
dx

where

27x = A(x− 2)(x + 1) + B(x + 1) + C(x− 2)2

x = 2 gives 54 = 3B i.e. B = 18

x = −1 gives −27 = C(−3)2 i.e. C = −3

x = 0 gives 0 = A(−2) + 18 + (−3)(4) i.e. A = 3
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∴
∫

27x

(x− 2)2(x + 1)
dx =

∫
3

x− 2
+

18
(x− 2)2

− 3
x + 1

dx

= 3 ln |x−2|+18
∫

(x− 2)−2dx− 3 ln |x+1|+D

= 3 ln |x−2|+ 18
(−1)

(x− 2)−1 − 3 ln |x+1|+ D

= 3 ln |x−2|− 18
x− 2

− 3 ln |x+1|+ D.

Return to Exercise 12
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Exercise 13.∫
3x2

(x− 1)(x2 + x + 1)
dx =

∫
A

x− 1
+

Bx + C

x2 + x + 1
dx

Note that x2 + x + 1 does not give real linear factors
One thus uses the partial fraction Bx+C

x2+x+1

We then have

3x2 = A
(
x2 + x + 1

)
+ (Bx + C)(x− 1)

x = 1 gives 3 = 3A i.e. A = 1

x = 0 gives 0 = A− C i.e. C = A = 1

x = −1 gives 3 = A(1− 1 + 1) + (−B + C)(−2)
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i.e. 3 = A + 2B − 2C

i.e. 3 = 1 + 2B − 2

i.e. 4 = 2B i.e. B = 2

∴
∫

3x2

(x− 1)(x2 + x + 1)
dx =

∫
A

x− 1
+

∫
Bx + C

(x2 + x + 1)
dx

=
∫

dx

x− 1
+

∫
2x + 1

x2 + x + 1
dx

= ln |x−1|+ln |x2+x+1|+ D,

and we note that the second integral is of the form∫
g′(x)
g(x)

dx = ln |g(x)|+ D.

Return to Exercise 13
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