

DIRECT INTEGRATION

Graham S McDonald

A Tutorial Module introducing ordinary differential equations and the method of direct integration

Table of contentsBegin Tutorial

 $\odot 2004$ g.s.mcdonald@salford.ac.uk

Table of contents

- 1. Introduction
- 2. Theory
- **3.** Exercises
- 4. Answers
- 5. Standard integrals
- 6. Tips on using solutions Full worked solutions

Section 1: Introduction

1. Introduction

$$\left| \frac{d^2y}{dx^2} + \left(\frac{dy}{dx} \right)^3 = x^7 \right|$$
 is an example of an **ordinary** differential equa-

tion (o.d.e.) since it contains only **ordinary** derivatives such as $\frac{dy}{dx}$ and not **partial** derivatives such as $\frac{\partial y}{\partial x}$.

The dependent variable is y while the independent variable is x (an o.d.e. has only one independent variable while a partial differential equation has more than one independent variable).

The above example is a **second order** equation since the highest order of derivative involved is **two** (note the presence of the $\frac{d^2y}{dx^2}$ term).

Section 1: Introduction

An o.d.e. is **linear** when each term has y and its derivatives only appearing to the power one. The appearance of a term involving the product of y and $\frac{dy}{dx}$ would also make an o.d.e. **nonlinear**.

In the above example, the term $\left(\frac{dy}{dx}\right)^3$ makes the equation **nonlinear**.

The general solution of an n^{th} order o.d.e. has n arbitrary constants that can take any values.

In an **initial value problem**, one solves an n^{th} order o.d.e. to find the general solution and then applies n **boundary conditions** ("initial values/conditions") to find a **particular solution** that does not have any arbitrary constants.

Section 2: Theory

2. Theory

An ordinary differential equation of the following form:

$$\frac{dy}{dx} = f(x)$$

can be solved by integrating both sides with respect to x:

$$y = \int f(x) \, dx$$

This technique, called **DIRECT INTEGRATION**, can also be applied when the left hand side is a higher order derivative.

In this case, one integrates the equation a sufficient number of times until y is found.

Section 3: Exercises

3. Exercises

Click on **EXERCISE** links for full worked solutions (there are 8 exercises in total)

EXERCISE 1.

Show that $y = 2e^{2x}$ is a particular solution of the ordinary differential equation: $\frac{d^2y}{dx^2} - \frac{dy}{dx} - 2y = 0$

EXERCISE 2.

Show that $y = 7\cos 3x - 2\sin 2x$ is a particular solution of $\frac{d^2y}{dx^2} + 2y = -49\cos 3x + 4\sin 2x$

Section 3: Exercises

EXERCISE 3.

Show that $y = A \sin x + B \cos x$, where A and B are arbitrary constants, is the general solution of $\frac{d^2y}{dx^2} + y = 0$

EXERCISE 4.

Derive the general solution of $\frac{dy}{dx} = 2x + 3$

EXERCISE 5. Derive the general solution of $\frac{d^2y}{dx^2} = -\sin x$

EXERCISE 6.

Derive the general solution of $\frac{d^2y}{dt^2} = a$, where a = constant

● THEORY ● ANSWERS ● INTEGRALS ● TIPS Toc Toc Back

Section 3: Exercises

EXERCISE 7.

Derive the general solution of $\frac{d^3y}{dx^3} = 3x^2$

EXERCISE 8.

Derive the general solution of $e^{-x} \frac{d^2 y}{dx^2} = 3$

Section 4: Answers

4. Answers

- 1. HINT: Work out $\frac{d^2y}{dx^2}$ and $\frac{dy}{dx}$ and then substitute your results, along with the given form of y, into the differential equation,
- 2. HINT: Show that $\frac{d^2y}{dx^2} = -63\cos 3x + 8\sin 2x$ and substitute this, along with the given form of y, into the differential equation,
- 3. HINT: Show that $\frac{d^2y}{dx^2} = -A\sin x B\cos x$,

4.
$$y = x^2 + 3x + C$$
,

- 5. $y = \sin x + Ax + B ,$
- 6. $y = \frac{1}{2}at^2 + Ct + D$,
- 7. $y = \frac{1}{20}x^5 + C'x^2 + Dx + E$,
- 8. $y = 3e^x + Cx + D$.

Section 5: Standard integrals

Toc

5. Standard integrals

$\int f\left(x\right)$	$\int f(x)dx$	f(x)	$\int f(x)dx$
x^n	$\frac{x^{n+1}}{n+1} (n \neq -1)$	$\left[g\left(x\right)\right]^{n}g'\left(x\right)$	$\frac{[g(x)]^{n+1}}{n+1} (n \neq -1)$
$\frac{1}{x}$	$\ln x $	$\frac{g'(x)}{g(x)}$	$\ln\left g\left(x ight) ight $
e^x	e^x	a^x	$\frac{a^x}{\ln a} (a > 0)$
$\sin x$	$-\cos x$	$\sinh x$	$\cosh x$
$\cos x$	$\sin x$	$\cosh x$	$\sinh x$
$\tan x$	$-\ln \cos x $	$\tanh x$	$\ln \cosh x$
$\operatorname{cosec} x$	$\ln \left \tan \frac{x}{2} \right $	$\operatorname{cosech} x$	$\ln \tanh \frac{x}{2}$
$\sec x$	$\ln \sec x + \tan x $	$\operatorname{sech} x$	$2\tan^{-1}e^x$
$\sec^2 x$	$\tan x$	$\operatorname{sech}^2 x$	$\tanh x$
$\cot x$	$\ln \sin x $	$\coth x$	$\ln \sinh x $
$\sin^2 x$	$\frac{x}{2} - \frac{\sin 2x}{4}$	$\sinh^2 x$	$\frac{\sinh 2x}{4} - \frac{x}{2}$
$\cos^2 x$	$\frac{\frac{2}{x}}{\frac{2}{2}} + \frac{\frac{4}{\sin 2x}}{4}$	$\cosh^2 x$	$\frac{\sinh 2x}{4} + \frac{x}{2}$

Back

f(x)	$\int f(x) dx$	f(x)	$\int f(x) dx$
$\frac{1}{a^2 + x^2}$	$\frac{1}{a} \tan^{-1} \frac{x}{a}$	$\frac{1}{a^2 - x^2}$	$\frac{1}{2a} \ln \left \frac{a+x}{a-x} \right (0 < x < a)$
	(a > 0)	$\frac{1}{x^2-a^2}$	$\frac{1}{2a}\ln\left \frac{x-a}{x+a}\right (x >a>0)$
$\frac{1}{\sqrt{a^2 - x^2}}$	$\sin^{-1}\frac{x}{a}$	$\frac{1}{\sqrt{a^2 + x^2}}$	$\ln\left \frac{x+\sqrt{a^2+x^2}}{a}\right \ (a>0)$
	(-a < x < a)	$\frac{1}{\sqrt{x^2 - a^2}}$	$\ln \left \frac{x + \sqrt{x^2 - a^2}}{a} \right (x > a > 0)$
$\sqrt{a^2 - x^2}$	$\frac{a^2}{2} \left[\sin^{-1} \left(\frac{x}{a} \right) \right]$	$\sqrt{a^2 + x^2}$	$\frac{a^2}{2} \left[\sinh^{-1} \left(\frac{x}{a} \right) + \frac{x\sqrt{a^2 + x^2}}{a^2} \right]$
	$+\frac{x\sqrt{a^2-x^2}}{a^2}\Big]$	$\sqrt{x^2-a^2}$	$\frac{a^2}{2} \left[-\cosh^{-1}\left(\frac{x}{a}\right) + \frac{x\sqrt{x^2 - a^2}}{a^2} \right]$

6. Tips on using solutions

• When looking at the THEORY, ANSWERS, INTEGRALS or TIPS pages, use the Back button (at the bottom of the page) to return to the exercises.

• Use the solutions intelligently. For example, they can help you get started on an exercise, or they can allow you to check whether your intermediate results are correct.

• Try to make less use of the full solutions as you work your way through the Tutorial.

Full worked solutions

Exercise 1.

We need:

$$\frac{dy}{dx} = 2 \cdot 2e^{2x} = 4e^{2x}$$

$$\frac{d^2y}{dx^2} = 2 \cdot 4e^{2x} = 8e^{2x}.$$

$$\therefore \quad \frac{d^2y}{dx^2} - \frac{dy}{dx} - 2y = 8e^{2x} - 4e^{2x} - 2 \cdot e^{2x}$$

$$= (8 - 8)e^{2x}$$

$$= 0$$

$$= \text{RHS}$$

Exercise 2.

To show that $y = 7\cos 3x - 2\sin 2x$ is a particular solution of $\frac{d^2y}{dx^2} + 2y = -49\cos 3x + 4\sin 2x$, work out the following:

$$\frac{dy}{dx} = -21\sin 3x - 4\cos 2x$$
$$\frac{d^2y}{dx^2} = -63\cos 3x + 8\sin 2x$$

$$\frac{d^2y}{dx^2} + 2y = -63\cos 3x + 8\sin 2x + 2(7\cos 3x - 2\sin 2x)$$

= (-63 + 14) cos 3x + (8 - 4) sin 2x
= -49 cos 3x + 4 sin 2x
= RHS

- $\underline{Notes} \bullet The equation is \underline{second} order, so the general solution would have two arbitrary (undetermined) constants.$
 - Notice how similar the particular solution is to the Right-Hand-Side of the equation. It involves the same functions but they have different coefficients i.e.

y is of the form

"
$$a\cos 3x + b\sin 2x$$
"

$$\left(\begin{array}{c}a=7\\b=-2\end{array}\right)$$

Exercise 3.

We need: $\frac{dy}{dx} = A\cos x + B \cdot (-\sin x)$ $\frac{d^2y}{dx^2} = -A\sin x - B\cos x$ $\therefore \quad \frac{d^2y}{dx^2} + y = (-A\sin x - B\cos x) + (A\sin x + B\cos x)$ = 0 = 0 = RHS

Since the differential equation is \underline{second} order and the solution has \underline{two} arbitrary constants, this solution is the general solution.

Toc

Exercise 4.

This is an equation of the form $\frac{dy}{dx} = f(x)$, and it can be solved by direct integration.

Integrate both sides with respect to x:

$$\int \frac{dy}{dx} dx = \int (2x+3)dx$$

i.e.
$$\int dy = \int (2x+3)dx$$

i.e.
$$y = 2 \cdot \frac{1}{2}x^2 + 3x + C$$

i.e.
$$y = x^2 + 3x + C,$$

where C is the (combined) arbitrary constant that results from integrating both sides of the equation. The general solution must have <u>one</u> arbitrary constant since the differential equation is <u>first</u> order.

Return to Exercise 4

Back

Exercise 5.

This is of the form $\left\lfloor \frac{d^2y}{dx^2} = f(x) \right\rfloor$, so we can solve for y by direct integration.

Integrate both sides with respect to x:

$$\frac{dy}{dx} = -\int \sin x dx = -(-\cos x) + A$$

Integrate again:

$$y = \sin x + Ax + B$$

where A, B are the <u>two</u> arbitrary constants of the general solution (the equation is <u>second</u> order).

Exercise 6.

Integrate both sides with respect to t:

$$\frac{dy}{dt} = \int a \, dt$$

i.e. $\frac{dy}{dt} = at + C$

Integrate again:

$$y = \int (at+C)dt$$

i.e. $y = \frac{1}{2}at^2 + Ct + D$,

where C and D are the <u>two</u> arbitrary constants required for the general solution of the <u>second</u> order differential equation.

Exercise 7.

Integrate both sides with respect to x:

i.e.

$$\frac{d^2y}{dx^2} = \int 3x^2 dx$$

i.e.
$$\frac{d^2y}{dx^2} = 3 \cdot \frac{1}{3}x^3 + C$$

i.e.
$$\frac{d^2y}{dx^2} = x^3 + C$$

Integrate again:

$$\frac{dy}{dx} = \int (x^3 + C)dx$$
$$\frac{dy}{dx} = \frac{x^4}{4} + Cx + D$$

Integrate again:

$$y = \int \left(\frac{x^4}{4} + Cx + D\right) dx$$
i.e.

$$y = \frac{1}{4} \cdot \frac{1}{5}x^5 + C \cdot \frac{1}{2}x^2 + Dx + E$$
i.e.

$$y = \frac{1}{20}x^5 + C'x^2 + Dx + E$$

where $C' = \frac{C}{2}$, D and E are the required <u>three</u> arbitrary constants of the general solution of the <u>third</u> order differential equation.

Exercise 8.

Multiplying both sides of the equation by e^x gives:

1

$$e^{x} \cdot e^{-x} \frac{d^{2}y}{dx^{2}} = e^{x} \cdot 3$$

i.e.
$$\frac{d^{2}y}{dx^{2}} = 3e^{x}$$

This is now of the form $\frac{d^2y}{dx^2} = f(x)$, where $f(x) = 3e^x$, and the solution y can be found by direct integration.

Integrating both sides with respect to x:

$$\frac{dy}{dx} = \int 3e^x dx$$

i.e.
$$\frac{dy}{dx} = 3e^x + C.$$
$$y = \int (3e^x + C) dx$$

Integrate again:

i.e.
$$y = 3e^x + Cx + D$$
,

where C and D are the <u>two</u> arbitrary constants of the general solution of the original <u>second</u> order differential equation.

