Differential Equations

HOMOGENEOUS FUNCTIONS

Graham S McDonald

A Tutorial Module for learning to solve differential equations that involve
homogeneous functions

- Table of contents
- Begin Tutorial
(c) 2004 g.s.mcdonald@salford.ac.uk

Table of contents

1. Theory
2. Exercises
3. Answers
4. Standard integrals
5. Tips on using solutions Full worked solutions

Section 1: Theory

1. Theory

$M(x, y)=3 x^{2}+x y$ is a homogeneous function since the sum of the powers of x and y in each term is the same (i.e. x^{2} is x to power 2 and $x y=x^{1} y^{1}$ giving total power of $1+1=2$).

The degree of this homogeneous function is 2 .

Here, we consider differential equations with the following standard form:

$$
\frac{d y}{d x}=\frac{M(x, y)}{N(x, y)}
$$

where M and N are homogeneous functions of the same degree.

Section 1: Theory
To find the solution, change the dependent variable from y to v, where

$$
y=v x
$$

The LHS of the equation becomes:

$$
\frac{d y}{d x}=x \frac{d v}{d x}+v
$$

using the product rule for differentiation.

Solve the resulting equation by separating the variables v and x. Finally, re-express the solution in terms of x and y.

Note. This method also works for equations of the form:

$$
\frac{d y}{d x}=f\left(\frac{y}{x}\right) .
$$

Section 2: Exercises

2. Exercises

Click on Exercise links for full worked solutions (there are 11 exercises in total)

Exercise 1.
Find the general solution of $\frac{d y}{d x}=\frac{x y+y^{2}}{x^{2}}$
Exercise 2.
Solve $2 x y \frac{d y}{d x}=x^{2}+y^{2}$ given that $y=0$ at $x=1$

Exercise 3.
Solve $\frac{d y}{d x}=\frac{x+y}{x}$ and find the particular solution when $y(1)=1$

- Theory - Answers - Integrals - Tips

Toc
44
4
Back

Section 2: Exercises
Exercise 4.
Solve $x \frac{d y}{d x}=x-y$ and find the particular solution when $y(2)=\frac{1}{2}$
Exercise 5.
Solve $\frac{d y}{d x}=\frac{x-2 y}{x}$ and find the particular solution when $y(1)=-1$

Exercise 6.
Given that $\frac{d y}{d x}=\frac{x+y}{x-y}$, prove that $\tan ^{-1}\left(\frac{y}{x}\right)=\frac{1}{2} \ln \left(x^{2}+y^{2}\right)+A$, where A is an arbitrary constant

Exercise 7.
Find the general solution of $2 x^{2} \frac{d y}{d x}=x^{2}+y^{2}$

Section 2: Exercises
Exercise 8.
Find the general solution of $(2 x-y) \frac{d y}{d x}=2 y-x$

Note. The key to solving the next three equations is to recognise that each equation can be written in the form $\frac{d y}{d x}=f\left(\frac{y}{x}\right) \equiv f(v)$

Exercise 9.
Find the general solution of $\frac{d y}{d x}=\frac{y}{x}+\tan \left(\frac{y}{x}\right)$
Exercise 10.
Find the general solution of $x \frac{d y}{d x}=y+x e^{\frac{y}{x}}$

Section 2: Exercises
Exercise 11.
Find the general solution of $x \frac{d y}{d x}=y+\sqrt{x^{2}+y^{2}}$

- Theory - Answers - Integrals - Tips

3. Answers

1. General solution is $y=-\frac{x}{\ln x+C}$,
2. General solution is $x=C\left(x^{2}-y^{2}\right)$, and particular solution is $x=x^{2}-y^{2}$,
3. General solution is $y=x \ln (k x)$, and particular solution is $y=x+x \ln x$,
4. General solution is $1=K x(x-2 y)$, and particular solution is $2 x y-x^{2}=-2$,
5. General solution is $x^{2}(x-3 y)=K$, and particular solution is $x^{2}(x-3 y)=4$,
6. HINT: Try changing the variables from (x, y) to (x, v), where $y=v x$,
7. General solution is $2 x=(x-y)(\ln x+C)$,
8. General solution is $y-x=K(x+y)^{3}$,
9. General solution is $\sin \left(\frac{y}{x}\right)=k x$,
10. General solution is $y=-x \ln (-\ln k x)$,
11. General solution is $\sinh ^{-1}\left(\frac{y}{x}\right)=\ln x+C$.

Section 4: Standard integrals

4. Standard integrals

$f(x)$	$\int f(x) d x$	$f(x)$	$\int f(x) d x$
x^{n}	$\frac{x^{n+1}}{n+1} \quad(n \neq-1)$	$[g(x)]^{n} g^{\prime}(x)$	$\frac{[g(x)]^{n+1}}{n+1} \quad(n \neq-1)$
$\frac{1}{x}$	$\ln \|x\|$	$\frac{g^{\prime}(x)}{g(x)}$	$\ln \|g(x)\|$
e^{x}	e^{x}	a^{x}	$\frac{a^{x}}{\ln a} \quad(a>0)$
$\sin x$	$-\cos x$	$\sinh x$	$\cosh x$
$\cos x$	$\sin x$	$\cosh x$	$\sinh x$
$\tan x$	$-\ln \|\cos x\|$	$\tanh x$	$\ln \cosh x$
$\operatorname{cosec} x$	$\ln \left\|\tan \frac{x}{2}\right\|$	$\operatorname{cosech} x$	$\ln \left\|\tanh \frac{x}{2}\right\|$
$\sec x$	$\ln \|\sec x+\tan x\|$	$\operatorname{sech} x$	$2 \tan e^{x}$
$\sec x$	$\tan x$	$\operatorname{sech} 2 x$	$\tanh x$
$\cot ^{2} x$	$\ln \|\sin x\|$	$\operatorname{coth}^{2} x$	$\ln \|\sinh x\|$
$\sin ^{2} x$	$\frac{x}{2}-\frac{\sin 2 x}{4}$	$\sinh ^{2} x$	$\frac{\sinh 2 x}{4}-\frac{x}{2}$
$\cos ^{2} x$	$\frac{x}{2}+\frac{\sin 2 x}{4}$	$\cosh ^{2} x$	$\frac{\sinh 2 x}{4}+\frac{x}{2}$

Toc

Section 4: Standard integrals

$f(x)$	$\int f(x) d x$	$f(x)$	$\int f(x) d x$
$\frac{1}{a^{2}+x^{2}}$	$\frac{1}{a} \tan ^{-1} \frac{x}{a}$	$\frac{1}{a^{2}-x^{2}}$	$\frac{1}{2 a} \ln \left\|\frac{a+x}{a-x}\right\|(0<\|x\|<a)$
	$(a>0)$	$\frac{1}{x^{2}-a^{2}}$	$\frac{1}{2 a} \ln \left\|\frac{x-a}{x+a}\right\|(\|x\|>a>0)$
$\frac{1}{\sqrt{a^{2}-x^{2}}}$	$\sin ^{-1} \frac{x}{a}$	$\frac{1}{\sqrt{a^{2}+x^{2}}}$	$\ln \left\|\frac{x+\sqrt{a^{2}+x^{2}}}{a}\right\|(a>0)$
	$(-a<x<a)$	$\frac{1}{\sqrt{x^{2}-a^{2}}}$	$\ln \left\|\frac{x+\sqrt{x^{2}-a^{2}}}{a}\right\|(x>a>0)$
$\sqrt{a^{2}-x^{2}}$	$\frac{a^{2}}{2}\left[\sin ^{-1}\left(\frac{x}{a}\right)\right.$	$\sqrt{a^{2}+x^{2}}$	$\frac{a^{2}}{2}\left[\sinh ^{-1}\left(\frac{x}{a}\right)+\frac{x \sqrt{a^{2}+x^{2}}}{a^{2}}\right]$
	$\left.\quad+\frac{x \sqrt{a^{2}-x^{2}}}{a^{2}}\right]$	$\sqrt{x^{2}-a^{2}}$	$\frac{a^{2}}{2}\left[-\cosh ^{-1}\left(\frac{x}{a}\right)+\frac{x \sqrt{x^{2}-a^{2}}}{a^{2}}\right]$

Section 5: Tips on using solutions

5. Tips on using solutions

- When looking at the THEORY, ANSWERS, INTEGRALS or TIPS pages, use the Back button (at the bottom of the page) to return to the exercises.
- Use the solutions intelligently. For example, they can help you get started on an exercise, or they can allow you to check whether your intermediate results are correct.
- Try to make less use of the full solutions as you work your way through the Tutorial.

Solutions to exercises

Full worked solutions

Exercise 1.

RHS $=$ quotient of homogeneous functions of same degree $(=2)$
$\underline{\text { Set } y=v x}$: \quad i.e. $\quad \frac{d}{d x}(v x)=\frac{x v x+v^{2} x^{2}}{x^{2}}$
i.e. $\quad x \frac{d v}{d x}+v=v+v^{2}$
$\underline{\text { Separate variables }}$ $x \frac{d v}{d x}=v^{2} \quad$ (subtract v from both sides)

$$
\begin{aligned}
\text { and integrate : } & \int \frac{d v}{v^{2}} & =\int \frac{d x}{x} \\
\text { i.e. } & -\frac{1}{v} & =\ln x+C
\end{aligned}
$$

$\underline{\text { Re-express in terms of } \mathrm{x}, \mathrm{y}}:-\frac{x}{y}=\ln x+C$

$$
\text { i.e. } \quad y=\frac{-x}{\ln x+C} \text {. }
$$

Return to Exercise 1

Solutions to exercises
Exercise 2.
Standard form: $\quad \frac{d y}{d x}=\frac{x^{2}+y^{2}}{2 x y}$
i.e. quotient of homogeneous functions that have the same degree

$$
\begin{aligned}
\underline{\text { Set } y=} x v & \frac{d}{d x}(x v)=\frac{x^{2}+x^{2} v^{2}}{2 x \cdot x v} \\
\text { i.e. } & x \frac{d v}{d x}+\frac{d x}{d x} v=\frac{x^{2}\left(1+v^{2}\right)}{2 x^{2} v} \\
\text { i.e. } \quad & x \frac{d v}{d x}+v=\frac{1+v^{2}}{2 v}
\end{aligned}
$$

Separate variables
$\underline{(x, v) \text { and integrate: }} \quad x \frac{d v}{d x}=\frac{1+v^{2}}{2 v}-\frac{v(2 v)}{(2 v)}$

Solutions to exercises

$$
\begin{aligned}
& \text { i.e. } x \frac{d v}{d x}=\frac{1-v^{2}}{2 v} \\
& \text { i.e. } \quad \int \frac{2 v}{1-v^{2}} d v=\int \frac{d x}{x} \\
&\left\{\text { Note: } \frac{d}{d v}\left(1-v^{2}\right)=-2 v\right\} \text { i.e. } \quad-\int \frac{-2 v}{1-v^{2}} d v=\int \frac{d x}{x} \\
& \text { i.e. } \quad-\ln \left(1-v^{2}\right)=\ln x+\ln C \\
& \text { i.e. } \quad \ln \left[\left(1-v^{2}\right)^{-1}\right]=\ln (C x) \\
& \text { i.e. } \quad \frac{1}{1-v^{2}}=C x
\end{aligned}
$$

Solutions to exercises
$\underline{\text { Re-express in terms of } x \text { and } y}$: i.e. $\frac{1}{1-\frac{y^{2}}{x^{2}}}=C x$
i.e. $\frac{x^{2}}{x^{2}-y^{2}}=C x$
i.e. $\quad \frac{x}{C}=x^{2}-y^{2}$.

Particular solution: $\quad \begin{aligned} & x=1 \\ & y=0\end{aligned}$ gives $\quad-\frac{1}{C}=1-0$

$$
\begin{array}{ll}
\text { i.e. } & C=1 \\
\text { gives } & x^{2}-y^{2}=x .
\end{array}
$$

Return to Exercise 2

Solutions to exercises

Exercise 3.

Set $y=x v$:

$$
\begin{aligned}
x \frac{d v}{d x}+v & =\frac{x+x v}{x} \\
& =\frac{x}{x}(1+v)=1+v \\
\text { i.e. } x \frac{d v}{d x} & =1
\end{aligned}
$$

Separate variables and integrate:

$$
\begin{aligned}
\int d v & =\int \frac{d x}{x} \\
\text { i.e. } \quad v & =\ln x+\ln k \quad(\ln k=\text { constant }) \\
\text { i.e. } \quad v & =\ln (k x)
\end{aligned}
$$

Solutions to exercises
$\underline{\text { Re-express in terms of } x \text { and } y:}$

$$
\begin{aligned}
\frac{y}{x} & =\ln (k x) \\
\text { i.e. } y & =x \ln (k x) .
\end{aligned}
$$

$\underline{\text { Particular solution with } y=1 \text { when } x=1:}$

$$
\begin{aligned}
1 & =\ln (k) \\
\text { i.e. } \quad k & =e^{1}=e \\
\text { i.e. } \quad y & =x \ln (e x) \\
& =x[\ln e+\ln x] \\
& =x[1+\ln x] \\
\text { i.e. } \quad y & =x+x \ln x .
\end{aligned}
$$

Return to Exercise 3

Solutions to exercises
Exercise 4.

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{x-y}{x}: \\
& \left.\begin{array}{l}
\text { i.e. } y=v x: \quad \text { i.e. } x \frac{d v}{d x}+v=1-v \\
\text { i.e. }-\frac{1}{2} \ln (1-2 v)=\ln x+\ln k \\
\text { i.e. } \ln \left[(1-2 v)^{-\frac{1}{2}}\right]-\ln x=\ln k \\
\\
\text { i.e. } \ln \left[\frac{1}{1-2 v}=\int \frac{d x}{x}\right. \\
(1-2 v)^{\frac{1}{2} x}
\end{array}\right]=\ln k
\end{aligned}
$$

Solutions to exercises

$$
\text { i.e. } \quad 1=k x(1-2 v)^{\frac{1}{2}}
$$

Re-express in $x, y: \quad 1=k x\left(1-\frac{2 y}{x}\right)^{\frac{1}{2}}$

$$
\text { i.e. } \quad 1=k x\left(\frac{x-2 y}{x}\right)^{\frac{1}{2}}
$$

(square both sides)

$$
1=K x^{2}\left(\frac{x-2 y}{x}\right) \quad, \quad\left(k^{2}=K\right)
$$

$$
\text { i.e. } \quad 1=K x(x-2 y)
$$

$\underline{\text { Particular solution: }} \quad 1=K \cdot 2 \cdot\left(2-2\left(\frac{1}{2}\right)\right)=K \cdot 2 \cdot 1, \quad$ i.e. $K=\frac{1}{2}$
$y(2)=\frac{1}{2} \quad$ i.e. $\quad \begin{aligned} & x=2 \\ & y=\frac{1}{2}\end{aligned} \quad$ gives $\quad 2=x^{2}-2 x y$.
Return to Exercise 4

Solutions to exercises

Exercise 5.

Set $y=x v$:

$$
\begin{aligned}
x \frac{d v}{d x}+v & =\frac{x-2 x v}{x} \\
& =1-2 v \\
\text { i.e. } x \frac{d v}{d x} & =1-3 v
\end{aligned}
$$

Separate variables and integrate:

$$
\begin{aligned}
\int \frac{d v}{1-3 v} & =\int \frac{d x}{x} \\
\text { i.e. } \quad \frac{1}{(-3)} \ln (1-3 v) & =\ln x+\ln k \quad(\ln k=\text { constant }) \\
\text { i.e. } \ln (1-3 v) & =-3 \ln x-3 \ln k \\
\text { i.e } \ln (1-3 v)+\ln x^{3} & =-3 \ln k \\
\text { i.e } \ln \left[x^{3}(1-3 v)\right] & =-3 \ln k \\
\text { i.e } \quad x^{3}(1-3 v) & =K \quad(K=\text { constant })
\end{aligned}
$$

Solutions to exercises
$\underline{\text { Re-express in terms of } x \text { and } y:}$

$$
\begin{aligned}
x^{3}\left(1-\frac{3 y}{x}\right) & =K \\
\text { i.e. } x^{3}\left(\frac{x-3 y}{x}\right) & =K \\
\text { i.e. } x^{2}(x-3 y) & =K .
\end{aligned}
$$

$\underline{\text { Particular solution with } y(1)=-1}$:

$$
\begin{aligned}
1(1+3) & =K \quad \text { i.e. } K=4 \\
\therefore \quad x^{2}(x-3 y) & =4 .
\end{aligned}
$$

Return to Exercise 5

Solutions to exercises

Exercise 6.

Already in standard form, with quotient of two first degree homogeneous functions.

Set $y=x v: \quad x \frac{d v}{d x}+v=\frac{x+v x}{x-v x}$
i.e. $\quad x \frac{d v}{d x}=\frac{x(1+v)}{x(1-v)}-v$
$=\frac{1+v-v(1-v)}{1-v}$
i.e. $\quad x \frac{d v}{d x}=\frac{1+v^{2}}{1-v}$

Solutions to exercises
$\underline{\text { Separate variables and integrate: }}$

$$
\begin{aligned}
\int \frac{1-v}{1+v^{2}} d v & =\int \frac{d x}{x} \\
\text { i.e. } \int \frac{d v}{1+v^{2}}-\frac{1}{2} \int \frac{2 v}{1+v^{2}} & =\int \frac{d x}{x} \\
\text { i.e. } \tan ^{-1} v-\frac{1}{2} \ln \left(1+v^{2}\right) & =\ln x+A
\end{aligned}
$$

$\underline{\text { Re-express in terms of } x \text { and } y}$:

$$
\begin{aligned}
& \tan ^{-1}\left(\frac{y}{x}\right)-\frac{1}{2} \ln \left(1+\frac{y^{2}}{x^{2}}\right)=\ln x+A \\
& \text { i.e. } \quad \begin{aligned}
\tan ^{-1}\left(\frac{y}{x}\right) & =\frac{1}{2} \ln \left(\frac{x^{2}+y^{2}}{x^{2}}\right)+\frac{1}{2} \ln x^{2}+A \\
& =\frac{1}{2} \ln \left[\left(\frac{x^{2}+y^{2}}{\not x^{2}}\right) \cdot \not x^{2}\right]+A
\end{aligned} \$=\text {, }
\end{aligned}
$$

Return to Exercise 6

Solutions to exercises
Exercise 7.

$$
\frac{d y}{d x}=\frac{x^{2}+y^{2}}{2 x^{2}}
$$

Set $y=x v$:

$$
\begin{aligned}
x \frac{d v}{d x}+v & =\frac{x^{2}+x^{2} v^{2}}{2 x^{2}} \\
& =\frac{1+v^{2}}{2} \\
\text { i.e. } \quad x \frac{d v}{d x} & =\frac{1+v^{2}}{2}-\frac{2 v}{2} \\
& =\frac{1+v^{2}-2 v}{2}
\end{aligned}
$$

Solutions to exercises
$\underline{\text { Separate variables and integrate: }}$

$$
\begin{aligned}
\int \frac{d v}{1-2 v+v^{2}} & =\frac{1}{2} \int \frac{d x}{x} \\
\text { i.e. } \quad \int \frac{d v}{(1-v)^{2}} & =\frac{1}{2} \int \frac{d x}{x}
\end{aligned}
$$

[Note: $1-v$ is a linear function of v, therefore use standard integral and divide by coefficient of v. In other words,

$$
\begin{aligned}
& w=1-v \\
& \left.\frac{d w}{d v}=-1 \quad \text { and } \quad \int \frac{d v}{(1-v)^{2}}=\frac{1}{(-1)} \int \frac{d w}{w^{2}} .\right] \\
& \text { i.e. }-\int \frac{d w}{w^{2}}=\frac{1}{2} \int \frac{d x}{x} \\
& \text { i.e. } \quad-\left(-\frac{1}{w}\right)=\frac{1}{2} \ln x+C \\
& \text { i.e. } \frac{1}{1-v}=\frac{1}{2} \ln x+C
\end{aligned}
$$

Solutions to exercises
$\underline{\text { Re-express in terms of } x \text { and } y:}$

$$
\begin{array}{rlrl}
& & \frac{1}{1-\frac{y}{x}} & =\frac{1}{2} \ln x+C \\
\text { i.e. } & \frac{x}{x-y} & =\frac{1}{2} \ln x+C \\
\text { i.e. } & 2 x & =(x-y)\left(\ln x+C^{\prime}\right), \quad\left(C^{\prime}=2 C\right)
\end{array}
$$

Return to Exercise 7

Solutions to exercises
Exercise 8.
$\frac{d y}{d x}=\frac{2 y-x}{2 x-y} . \quad$ Set $y=v x, \quad x \frac{d v}{d x}+v=\frac{2 v-1}{2-v}$

$$
\therefore x \frac{d v}{d x}=\frac{2 v-1-v(2-v)}{2-v}=\frac{v^{2}-1}{2-v} ; \int \frac{2-v}{v^{2}-1} d v=\int \frac{d x}{x}
$$

Partial fractions: $\quad \frac{2-v}{v^{2}-1}=\frac{A}{v-1}+\frac{B}{v+1}=\frac{A(v+1)+B(v-1)}{v^{2}-1}$

$$
\text { i.e. } \begin{aligned}
A+B & =-1 \\
A-B & =2 \\
\hline 2 A & =1
\end{aligned}
$$

i.e. $A=\frac{1}{2}, B=-\frac{3}{2}$
i.e. $\quad \frac{1}{2} \int \frac{1}{v-1}-\frac{3}{v+1} d v=\int \frac{d x}{x}$
i.e. $\quad \frac{1}{2} \ln (v-1)-\frac{3}{2} \ln (v+1)=\ln x+\ln k$

Solutions to exercises
i.e. $\ln \left[\frac{(v-1)^{\frac{1}{2}}}{(v+1)^{\frac{3}{2}} x}\right]=\ln k$
i.e. $\frac{v-1}{(v+1)^{3} x^{2}}=k^{2}$
$\underline{\text { Re-express in } x, y:} \quad \frac{\left(\frac{y}{x}-1\right)}{\left(\frac{y}{x}+1\right)^{3} x^{2}}=k^{2}$
i.e. $\frac{\left(\frac{y-x}{x}\right)}{\left(\frac{y+x}{x}\right)^{3} x^{2}}=k^{2}$
i.e. $y-x=K(y+x)^{3}$.

Return to Exercise 8

Solutions to exercises

Exercise 9.

RHS is only a function of $v=\frac{y}{x}$, so substitute and separate variables.
$\underline{\text { Set } y=x v}$:

$$
\begin{aligned}
x \frac{d v}{d x}+v & =v+\tan v \\
\text { i.e. } \quad x \frac{d v}{d x} & =\tan v
\end{aligned}
$$

$\underline{\text { Separate variables and integrate: }}$

$$
\begin{aligned}
\int \frac{d v}{\tan v} & =\int \frac{d x}{x} \\
\left\{\text { Note: } \int \frac{\cos v}{\sin v} d x\right. & \left.\equiv \int \frac{f^{\prime}(v)}{f(v)} d v=\ln [f(v)]+C\right\}
\end{aligned}
$$

Solutions to exercises

$$
\begin{aligned}
\text { i.e. } \ln [\sin v] & =\ln x+\ln k \quad(\ln k=\text { constant }) \\
\text { i.e. } \ln \left[\frac{\sin v}{x}\right] & =\ln k \\
\text { i.e. } \frac{\sin v}{x} & =k \\
\text { i.e. } \sin v & =k x
\end{aligned}
$$

$\underline{\text { Re-express in terms of } x \text { and } y: \quad \sin \left(\frac{y}{x}\right)=k x . ~}$
Return to Exercise 9

Solutions to exercises
Exercise 10.
$\frac{d y}{d x}=\left(\frac{y}{x}\right)+e^{\left(\frac{y}{x}\right)}$
i.e. RHS is function of $v=\frac{y}{x}$, only.

Set $y=v x$:

$$
\begin{aligned}
x \frac{d v}{d x}+v & =v+e^{v} \\
\text { i.e. } x \frac{d v}{d x} & =e^{v} \\
\text { i.e. } \int e^{-v} d v & =\int \frac{d x}{x} \\
\text { i.e. }-e^{-v} & =\ln x+\ln k \\
& =\ln (k x) \\
\text { i.e. } e^{-v} & =-\ln (k x)
\end{aligned}
$$

Solutions to exercises
$\underline{\text { Re-express in terms of } x, y}$:

$$
\begin{aligned}
e^{-\frac{y}{x}} & =-\ln (k x) \\
\text { i.e. } \quad-\frac{y}{x} & =\ln [-\ln (k x)] \\
\text { i.e. } y & =-x \ln [-\ln (k x)] .
\end{aligned}
$$

Return to Exercise 10

Solutions to exercises
Exercise 11.

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{y}{x}+\frac{1}{x} \sqrt{x^{2}+y^{2}} \\
& =\frac{y}{x}+\sqrt{1+\left(\frac{y}{x}\right)^{2}}
\end{aligned}
$$

[Note RHS is a function of only $v=\frac{y}{x}$, so substitute and separate the variables]
i.e. Set $y=x v$:

$$
\begin{aligned}
x \frac{d v}{d x}+v & =v+\sqrt{1+v^{2}} \\
\text { i.e. } \quad x \frac{d v}{d x} & =\sqrt{1+v^{2}}
\end{aligned}
$$

Solutions to exercises
$\underline{\text { Separate variables and integrate: }}$

$$
\int \frac{d v}{\sqrt{1+v^{2}}}=\int \frac{d x}{x}
$$

$\left\{\underline{\text { Standard integral: }} \int \frac{d v}{\sqrt{1+v^{2}}}=\sinh ^{-1}(v)+C\right\}$

$$
\text { i.e. } \sinh ^{-1}(v)=\ln x+A
$$

$\underline{\text { Re-express in terms of } x \text { and } y}$

$$
\sinh ^{-1}\left(\frac{y}{x}\right)=\ln x+A .
$$

Return to Exercise 11

