Differential Equations

INTEGRATING FACTOR METHOD

Graham S McDonald

A Tutorial Module for learning to solve 1st order linear differential equations

Table of contentsBegin Tutorial

© 2004 g.s.mcdonald@salford.ac.uk

Table of contents

- 1. Theory
- 2. Exercises
- **3.** Answers
- 4. Standard integrals
- 5. Tips on using solutions
- 6. Alternative notation Full worked solutions

Section 1: Theory

1. Theory

Consider an ordinary differential equation (o.d.e.) that we wish to solve to find out how the variable y depends on the variable x.

If the equation is **first order** then the highest derivative involved is a first derivative.

If it is also a **linear** equation then this means that each term can involve y either as the derivative $\frac{dy}{dx}$ OR through a single factor of y.

Any such linear first order o.d.e. can be re-arranged to give the following standard form:

$$\frac{dy}{dx} + P(x)y = Q(x)$$

where P(x) and Q(x) are functions of x, and in some cases may be constants.

A linear first order o.d.e. can be solved using the **integrating factor method**.

After writing the equation in standard form, P(x) can be identified. One then multiplies the equation by the following "integrating factor":

$$IF = e^{\int P(x)dx}$$

This factor is defined so that the equation becomes equivalent to:

$$\frac{d}{dx}(\mathrm{IF}\,y) = \mathrm{IF}\,Q(x),$$

whereby integrating both sides with respect to x, gives:

IF
$$y = \int IF Q(x) dx$$

Finally, division by the integrating factor (IF) gives y explicitly in terms of x, i.e. gives the solution to the equation.

Toc **4 > A Back**

Section 2: Exercises

2. Exercises

In each case, derive the general solution. When a boundary condition is also given, derive the particular solution.

Click on **EXERCISE** links for full worked solutions (there are 10 exercises in total)

EXERCISE 1.

$$\frac{dy}{dx} + y = x \quad ; \ y(0) = 2$$

EXERCISE 2.

$$\frac{dy}{dx} + y = e^{-x} \; ; \; y(0) = 1$$

EXERCISE 3.

$$x \frac{dy}{dx} + 2y = 10x^2$$
; $y(1) = 3$

Toc

• Theory • Answers • Integrals • Tips • Notation ----

Back

Section 2: Exercises

EXERCISE 4.

$$x\frac{dy}{dx} - y = x^2$$
; $y(1) = 3$

EXERCISE 5.

$$x\frac{dy}{dx} - 2y = x^4 \sin x$$

EXERCISE 6.

$$x\frac{dy}{dx} - 2y = x^2$$

EXERCISE 7.

 $\frac{dy}{dx} + y \cot x = \csc x$

Section 2: Exercises

EXERCISE 8.

 $\frac{dy}{dx} + y \cdot \cot x = \cos x$

EXERCISE 9.

$$(x^2 - 1)\frac{dy}{dx} + 2xy = x$$

EXERCISE 10.

$$\frac{dy}{dx} = y \tan x - \sec x \quad ; \quad y(0) = 1$$

Section 3: Answers

3. Answers

- 1. General solution is $y = (x 1) + Ce^{-x}$, and particular solution is $y = (x 1) + 3e^{-x}$,
- 2. General solution is $y = e^{-x}(x+C)$, and particular solution is $y = e^{-x}(x+1)$,
- 3. General solution is $y = \frac{5}{2}x^2 + \frac{C}{x^2}$, and particular solution is $y = \frac{1}{2}(5x^2 + \frac{1}{x^2})$,
- 4. General solution is $y = x^2 + Cx$, and particular solution is $y = x^2 + 2x$,
- 5. General solution is $y = -x^3 \cos x + x^2 \sin x + Cx^2$,
- 6. General solution is $y = x^2 \ln x + C x^2$,

Section 3: Answers

- 7. General solution is $y \sin x = x + C$,
- 8. General solution is $4y \sin x + \cos 2x = C$,
- 9. General solution is $(x^2 1)y = \frac{x^2}{2} + C$,
- 10. General solution is $y \cos x = C x$, and particular solution is $y \cos x = 1 x$.

Section 4: Standard integrals

Toc

4. Standard integrals

$f\left(x\right)$	$\int f(x)dx$	f(x)	$\int f(x)dx$
x^n	$\frac{x^{n+1}}{n+1} (n \neq -1)$	$\left[g\left(x\right)\right]^{n}g'\left(x\right)$	$\frac{[g(x)]^{n+1}}{n+1} (n \neq -1)$
$\frac{1}{x}$	$\ln x $	$\frac{g'(x)}{g(x)}$	$\ln\left g\left(x ight)\right $
e^x	e^x	a^x	$\frac{a^x}{\ln a} (a > 0)$
$\sin x$	$-\cos x$	$\sinh x$	$\cosh x$
$\cos x$	$\sin x$	$\cosh x$	$\sinh x$
$\tan x$	$-\ln \cos x $	$\tanh x$	$\ln \cosh x$
$\operatorname{cosec} x$	$\ln \left \tan \frac{x}{2} \right $	$\operatorname{cosech} x$	$\ln \tanh \frac{x}{2}$
$\sec x$	$\ln \sec x + \tan x $	$\operatorname{sech} x$	$2\tan^{-1}e^x$
$\sec^2 x$	$\tan x$	$\operatorname{sech}^2 x$	$\tanh x$
$\cot x$	$\ln \sin x $	$\coth x$	$\ln \sinh x $
$\sin^2 x$	$\frac{x}{2} - \frac{\sin 2x}{4}$	$\sinh^2 x$	$\frac{\sinh 2x}{4} - \frac{x}{2}$
$\cos^2 x$	$\frac{\frac{2}{x}}{\frac{2}{2}} + \frac{\frac{4}{\sin 2x}}{4}$	$\cosh^2 x$	$\frac{\sinh 2x}{4} + \frac{x}{2}$

Back

$f\left(x\right)$	$\int f(x) dx$	f(x)	$\int f(x) dx$
$\frac{1}{a^2 + x^2}$	$\frac{1}{a} \tan^{-1} \frac{x}{a}$	$\frac{1}{a^2 - x^2}$	$\frac{1}{2a} \ln \left \frac{a+x}{a-x} \right (0 < x < a)$
	(a > 0)	$\frac{1}{x^2-a^2}$	$\frac{1}{2a}\ln\left \frac{x-a}{x+a}\right (x >a>0)$
$\frac{1}{\sqrt{a^2 - x^2}}$	$\sin^{-1}\frac{x}{a}$	$\frac{1}{\sqrt{a^2 + x^2}}$	$\ln \left \frac{x + \sqrt{a^2 + x^2}}{a} \right \ (a > 0)$
	(-a < x < a)	$\frac{1}{\sqrt{x^2 - a^2}}$	$\ln \left \frac{x + \sqrt{x^2 - a^2}}{a} \right (x > a > 0)$
$\sqrt{a^2 - x^2}$	$\frac{a^2}{2} \left[\sin^{-1} \left(\frac{x}{a} \right) \right]$	$\sqrt{a^2+x^2}$	$\frac{a^2}{2} \left[\sinh^{-1} \left(\frac{x}{a} \right) + \frac{x\sqrt{a^2 + x^2}}{a^2} \right]$
	$+\frac{x\sqrt{a^2-x^2}}{a^2}\Big]$	$\sqrt{x^2-a^2}$	$\frac{a^2}{2} \left[-\cosh^{-1}\left(\frac{x}{a}\right) + \frac{x\sqrt{x^2 - a^2}}{a^2} \right]$

5. Tips on using solutions

• When looking at the THEORY, ANSWERS, INTEGRALS, TIPS or NOTATION pages, use the Back button (at the bottom of the page) to return to the exercises.

• Use the solutions intelligently. For example, they can help you get started on an exercise, or they can allow you to check whether your intermediate results are correct.

• Try to make less use of the full solutions as you work your way through the Tutorial.

6. Alternative notation

The linear first order differential equation:

$$\frac{dy}{dx} + P(x)y = Q(x)$$

has the integrating factor IF= $e^{\int P(x) dx}$.

The integrating factor method is sometimes explained in terms of simpler forms of differential equation. For example, when constant coefficients a and b are involved, the equation may be written as:

$$a\,\frac{dy}{dx} + b\,y = Q(x)$$

In our standard form this is:

$$\frac{dy}{dx} + \frac{b}{a}y = \frac{Q(x)}{a}$$

with an integrating factor of:

$$IF = e^{\int \frac{b}{a} \, dx} = e^{\frac{bx}{a}}$$

Toc << >> < Back

Full worked solutions

Exercise 1.

Compare with form: $\frac{dy}{dx} + P(x)y = Q(x)$ (*P*, *Q* are functions of *x*)

 $\underline{\text{Integrating factor:}} \quad P(x) = 1.$

Integrating factor, IF =
$$e^{\int P(x)dx}$$

= $e^{\int dx}$
= e^x

Multiply equation by IF:

$$e^{x}\frac{dy}{dx} + e^{x}y = e^{x}x$$

i.e.
$$\frac{d}{dx}[e^{x}y] = e^{x}x$$

Integrate both sides with respect to x:

$$e^x y = e^x (x-1) + C$$

$$\{ \underline{\text{Note:}} \int u \frac{dv}{dx} dx = uv - \int v \frac{du}{dx} dx \text{ i.e. integration by parts with} \\ u \equiv x, \quad \frac{dv}{dx} \equiv e^x \\ \rightarrow xe^x - \int e^x dx \\ \rightarrow xe^x - e^x = e^x(x-1) \} \\ \text{i.e.} \quad y = (x-1) + Ce^{-x} .$$

Particular solution with y(0) = 2:

2 =
$$(0-1) + Ce^0$$

= $-1 + C$ i.e. $C = 3$ and $y = (x-1) + 3e^{-x}$

Return to Exercise 1

.

Exercise 2. Integrating Factor:

$$P(x) = 1$$
, IF $= e^{\int P dx} = e^{\int dx} = e^x$

Multiply equation:

$$e^{x}\frac{dy}{dx} + e^{x}y = e^{x}e^{-x}$$

i.e.
$$\frac{d}{dx}[e^{x}y] = 1$$

Integrate:

$$e^x y = x + C$$

i.e. $y = e^{-x}(x + C)$.

Particular solution:

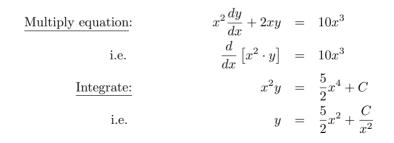
$$y = 1$$

 $x = 0$ gives $1 = e^0(0 + C)$
 $= 1.C$ i.e. $C = 1$
and $y = e^{-x}(x + 1)$.

Return to Exercise 2

Exercise 3.

Equation is linear, 1st order i.e. $\frac{dy}{dx} + P(x)y = Q(x)$ i.e. $\frac{dy}{dx} + \frac{2}{x}y = 10x, \quad \text{where} \quad P(x) = \frac{2}{x}, \ Q(x) = 10x$ Integrating factor : IF = $e^{\int P(x)dx} = e^{2\int \frac{dx}{x}} = e^{2\ln x} = e^{\ln x^2} = x^2$.



 $\underline{\text{Particular solution}} \quad y(1) = 3 \quad \text{i.e.} \ y(x) = 3 \quad \text{when } x = 1.$

- i.e. $3 = \frac{5}{2} \cdot 1 + \frac{C}{1}$
- i.e. $\frac{6}{2} = \frac{5}{2} + C$
- i.e. $C = \frac{1}{2}$

$$\therefore \qquad y = \frac{5}{2}x^2 + \frac{1}{2x^2} = \frac{1}{2}\left(5x^2 + \frac{1}{x^2}\right) \,.$$

Return to Exercise 3

Exercise 4.

Standard form:
$$\frac{dy}{dx} - \left(\frac{1}{x}\right)y = x$$

i.e.

Compare with $\frac{dy}{dx} + P(x)y = Q(x)$, giving $P(x) = -\frac{1}{x}$

Integrating Factor: IF $= e^{\int P(x)dx} = e^{-\int \frac{dx}{x}} = e^{-\ln x} = e^{\ln(x^{-1})} = \frac{1}{x}.$

Multiply equation:

$$\frac{1}{x}\frac{dy}{dx} - \frac{1}{x^2}y = 1$$

i.e.
$$\frac{d}{dx}\left[\frac{1}{x}y\right] = 1$$

Integrate:

$$\frac{1}{x}y = x + C$$
$$y = x^2 + Cx .$$

Particular solution with y(1) = 3:

$$3 = 1 + C$$

i.e. $C = 2$

Particular solution is $y = x^2 + 2x$.

Return to Exercise 4

Exercise 5. Linear in y: $\frac{dy}{dx} - \frac{2}{x}y = x^3 \sin x$ <u>Integrating factor</u>: IF = $e^{-2\int \frac{dx}{x}} = e^{-2\ln x} = e^{\ln x^{-2}} = \frac{1}{x^2}$ <u>Multiply equation</u>: $\frac{1}{x^2} \frac{dy}{dx} - \frac{2}{x^3}y = x \sin x$ i.e. $\frac{d}{dx} \left[\frac{1}{x^2}y\right] = x \sin x$ <u>Integrate</u>: $\frac{y}{x^2} = -x \cos x - \int 1 \cdot (-\cos x) dx + C'$

[Note: integration by parts,

$$\int u \frac{dv}{dx} dx = uv - \int v \frac{du}{dx} dx, \ u = x, \ \frac{dv}{dx} = \sin x$$

i.e.
$$\frac{y}{x^2} = -x\cos x + \sin x + C$$

i.e. $y = -x^3\cos x + x^2\sin x + Cx^2$.

Return to Exercise 5

Exercise 6.

Standard form:
$$\frac{dy}{dx} - \left(\frac{2}{x}\right)y = x$$

Integrating Factor: $P(x) = -\frac{2}{x}$

IF =
$$e^{\int Pdx} = e^{-2\int \frac{dx}{x}} = e^{-2\ln x} = e^{\ln x^{-2}} = \frac{1}{x^2}$$

1

Multiply equation:

i.e.
$$\frac{1}{x^2}\frac{dy}{dx} - \frac{2}{x^3}y = \frac{1}{x}$$
$$\frac{d}{dx}\left[\frac{1}{x^2}y\right] = \frac{1}{x}$$

1 du 9

<u>Integrate</u>: $\frac{1}{x^2} y = \int \frac{dx}{x}$ i.e. $\frac{1}{x^2} y = \ln x + C$ i.e. $y = x^2 \ln x + Cx^2$. Return to Exercise 6

23

Toc

Exercise 7.

Of the form: $\frac{dy}{dx} + P(x)y = Q(x)$ (i.e. linear, 1st order o.d.e.) where $P(x) = \cot x$. <u>Integrating factor</u>: IF $= e^{\int P(x)dx} = e^{\int \frac{\cos x}{\sin x}dx} \left\{ \equiv e^{\int \frac{f'(x)}{f(x)}dx} \right\}$ $= e^{\ln(\sin x)} = \sin x$

<u>Multiply equation</u>: $\sin x \cdot \frac{dy}{dx} + \sin x \left(\frac{\cos x}{\sin x}\right) y = \frac{\sin x}{\sin x}$ i.e. $\sin x \cdot \frac{dy}{dx} + \cos x \cdot y = 1$ i.e. $\frac{d}{dx} [\sin x \cdot y] = 1$ <u>Integrate</u>: $(\sin x)y = x + C$. Return to Exercise 7

Back

Exercise 8. Integrating factor: $P(x) = \cot x = \frac{\cos x}{\sin x}$

$$IF = e^{\int P dx} = e^{\int \frac{\cos x}{\sin x} dx} = e^{\ln(\sin x)} = \sin x$$

$$\left\{ \underline{\text{Note}}: \quad \frac{\cos x}{\sin x} \equiv \frac{f'(x)}{f(x)} \right\}$$

Multiply equation:

$$\sin x \cdot \frac{dy}{dx} + \sin x \cdot y \cdot \frac{\cos x}{\sin x} = \sin x \cdot \cos x$$

i.e.
$$\frac{d}{dx} [\sin x \cdot y] = \sin x \cdot \cos x$$

$$y\sin x = \int \sin x \cdot \cos x \, dx$$

$$\{ \underline{\text{Note:}} \int \sin x \cos x \, dx \equiv \int f(x) f'(x) dx \equiv \int f \, \frac{df}{dx} \cdot dx \\ \equiv \int f \, df = \frac{1}{2} f^2 + C \}$$

i.e. $y \sin x = \frac{1}{2} \sin^2 x + C$ $= \frac{1}{2} \cdot \frac{1}{2} (1 - \cos 2x) + C$ i.e. $4y \sin x + \cos 2x = C'$

$$\left(\begin{array}{c} \text{where } C' = 4C + 1\\ = \text{constant} \end{array}\right)$$

Return to Exercise 8

٠

Exercise 9.

Standard form:
$$\frac{dy}{dx} + \left(\frac{2x}{x^2 - 1}\right)y = \frac{x}{x^2 - 1}$$

Integrating factor:
$$P(x) = \frac{2x}{x^2 - 1}$$
$$IF = e^{\int Pdx} = e^{\int \frac{2x}{x^2 - 1}dx} = e^{\ln(x^2 - 1)}$$
$$= x^2 - 1$$

Multiply equation:
$$(x^2 - 1)\frac{dy}{dx} + 2xy = x$$

(the original form of the equation was half-way there!)

i.e.
$$\frac{d}{dx}\left[(x^2-1)y\right] = x$$

<u>Integrate</u>: $(x^2 - 1)y = \frac{1}{2}x^2 + C$.

Return to Exercise 9

Exercise 10.

 $P(x) = -\tan x$ $Q(x) = -\sec x$ $IF = e^{-\int \tan x \, dx} = e^{-\int \frac{\sin x}{\cos x} dx} = e^{+\int \frac{-\sin x}{\cos x} dx}$ $= e^{\ln(\cos x)} = \cos x$

Multiply by IF: $\cos x \frac{dy}{dx} - \cos x \cdot \frac{\sin x}{\cos x}y = -\cos x \cdot \sec x$

i.e.
$$\frac{d}{dx} [\cos x \cdot y] = -1$$
 i.e. $y \cos x = -x + C$

$$y(0) = 1$$
 i.e. $y = 1$ when $x = 0$ gives
 $\cos(0) = 0 + C$ \therefore $C = 1$

i.e. $y \cos x = -x + 1$.

Return to Exercise 10

•

