Differential Equations

BERNOULLI EQUATIONS

Graham S McDonald

A Tutorial Module for learning how to solve Bernoulli differential equations

- Table of contents
- Begin Tutorial
(c) 2004 g.s.mcdonald@salford.ac.uk

Table of contents

1. Theory
2. Exercises
3. Answers
4. Integrating factor method
5. Standard integrals
6. Tips on using solutions Full worked solutions

1. Theory

A Bernoulli differential equation can be written in the following standard form:

$$
\frac{d y}{d x}+P(x) y=Q(x) y^{n}
$$

where $n \neq 1$ (the equation is thus nonlinear).
To find the solution, change the dependent variable from y to z, where $z=y^{1-n}$. This gives a differential equation in x and z that is linear, and can be solved using the integrating factor method.

Note: Dividing the above standard form by y^{n} gives:

$$
\begin{aligned}
\frac{1}{y^{n}} \frac{d y}{d x}+P(x) y^{1-n} & =Q(x) \\
\text { i.e. } \frac{1}{(1-n)} \frac{d z}{d x}+P(x) z & =Q(x)
\end{aligned}
$$

(where we have used $\frac{d z}{d x}=(1-n) y^{-n} \frac{d y}{d x}$).

Section 2: Exercises

2. Exercises

Click on Exercise links for full worked solutions (there are 9 exercises in total)

Exercise 1.
The general form of a Bernoulli equation is

$$
\frac{d y}{d x}+P(x) y=Q(x) y^{n}
$$

where P and Q are functions of x, and n is a constant. Show that the transformation to a new dependent variable $z=y^{1-n}$ reduces the equation to one that is linear in z (and hence solvable using the integrating factor method).

Solve the following Bernoulli differential equations:

Exercise 2.
$\frac{d y}{d x}-\frac{1}{x} y=x y^{2}$

- Theory Answers - IF method Integrals Tips

Toc
$4<$

Section 2: Exercises
Exercise 3.
$\frac{d y}{d x}+\frac{y}{x}=y^{2}$
Exercise 4.

$$
\frac{d y}{d x}+\frac{1}{3} y=e^{x} y^{4}
$$

Exercise 5.
$x \frac{d y}{d x}+y=x y^{3}$
Exercise 6.
$\frac{d y}{d x}+\frac{2}{x} y=-x^{2} \cos x \cdot y^{2}$

- Theory - Answers - IF method - Integrals - Tips

Toc
4
Back

Section 2: Exercises
Exercise 7.
$2 \frac{d y}{d x}+\tan x \cdot y=\frac{(4 x+5)^{2}}{\cos x} y^{3}$
Exercise 8.
$x \frac{d y}{d x}+y=y^{2} x^{2} \ln x$
Exercise 9.
$\frac{d y}{d x}=y \cot x+y^{3} \operatorname{cosec} x$

Section 3: Answers

3. Answers

1. HINT: Firstly, divide each term by y^{n}. Then, differentiate z with respect to x to show that $\frac{1}{(1-n)} \frac{d z}{d x}=\frac{1}{y^{n}} \frac{d y}{d x}$,
2. $\frac{1}{y}=-\frac{x^{2}}{3}+\frac{C}{x}$,
3. $\frac{1}{y}=x(C-\ln x)$,
4. $\frac{1}{y^{3}}=e^{x}(C-3 x)$,
5. $y^{2}=\frac{1}{2 x+C x^{2}}$,
6. $\frac{1}{y}=x^{2}(\sin x+C)$,
7. $\frac{1}{y^{2}}=\frac{1}{12 \cos x}(4 x+5)^{3}+\frac{C}{\cos x}$,
8. $\frac{1}{x y}=C+x(1-\ln x)$,

Section 3: Answers
9. $y^{2}=\frac{\sin ^{2} x}{2 \cos x+C}$.

Section 4: Integrating factor method

4. Integrating factor method

Consider an ordinary differential equation (o.d.e.) that we wish to solve to find out how the variable z depends on the variable x.

If the equation is first order then the highest derivative involved is a first derivative.

If it is also a linear equation then this means that each term can involve z either as the derivative $\frac{d z}{d x}$ OR through a single factor of z.

Any such linear first order o.d.e. can be re-arranged to give the following standard form:

$$
\frac{d z}{d x}+P_{1}(x) z=Q_{1}(x)
$$

where $P_{1}(x)$ and $Q_{1}(x)$ are functions of x, and in some cases may be constants.

Section 4: Integrating factor method
A linear first order o.d.e. can be solved using the integrating factor method.

After writing the equation in standard form, $P_{1}(x)$ can be identified. One then multiplies the equation by the following "integrating factor":

$$
\mathrm{IF}=e^{\int P_{1}(x) d x}
$$

This factor is defined so that the equation becomes equivalent to:

$$
\frac{d}{d x}(\operatorname{IF} z)=\operatorname{IF} Q_{1}(x)
$$

whereby integrating both sides with respect to x, gives:

$$
\mathrm{IF} z=\int \operatorname{IF} Q_{1}(x) d x
$$

Finally, division by the integrating factor (IF) gives z explicitly in terms of x, i.e. gives the solution to the equation.

Section 5: Standard integrals

5. Standard integrals

$f(x)$	$\int f(x) d x$	$f(x)$	$\int f(x) d x$
x^{n}	$\frac{x^{n+1}}{n+1} \quad(n \neq-1)$	$[g(x)]^{n} g^{\prime}(x)$	$\frac{[g(x)]^{n+1}}{n+1} \quad(n \neq-1)$
$\frac{1}{x}$	$\ln \|x\|$	$\frac{g^{\prime}(x)}{g(x)}$	$\ln \|g(x)\|$
e^{x}	e^{x}	a^{x}	$\frac{a^{x}}{\ln a} \quad(a>0)$
$\sin x$	$-\cos x$	$\sinh x$	$\cosh x$
$\cos x$	$\sin x$	$\cosh x$	$\sinh x$
$\tan x$	$-\ln \|\cos x\|$	$\tanh x$	$\ln \cosh x$
$\operatorname{cosec} x$	$\ln \left\|\tan \frac{x}{2}\right\|$	$\operatorname{cosech} x$	$\ln \left\lvert\, \tanh \frac{x}{2}\right.$
$\sec x$	$\ln \|\sec x+\tan x\|$	$\operatorname{sech} x$	$2 \tan ^{-1} e^{x}$
$\sec ^{2} x$	$\tan x$	$\operatorname{sech}^{2} x$	$\tanh x$
$\cot x$	$\ln \|\sin x\|$	$\operatorname{coth} x$	$\ln \|\sinh x\|$
$\sin ^{2} x$	$\frac{x}{2}-\frac{\sin 2 x}{4}$	$\sinh ^{2} x$	$\frac{\sinh 2 x}{4}-\frac{x}{2}$
$\cos ^{2} x$	$\frac{x}{2}+\frac{\sin 2 x}{4}$	$\cosh ^{2} x$	$\frac{\sinh 2 x}{4}+\frac{x}{2}$

Toc

$f(x)$	$\int f(x) d x$	$f(x)$	$\int f(x) d x$
$\frac{1}{a^{2}+x^{2}}$	$\frac{1}{a} \tan ^{-1} \frac{x}{a}$	$\frac{1}{a^{2}-x^{2}}$	$\frac{1}{2 a} \ln \left\|\frac{a+x}{a-x}\right\|(0<\|x\|<a)$
	$(a>0)$	$\frac{1}{x^{2}-a^{2}}$	$\frac{1}{2 a} \ln \left\|\frac{x-a}{x+a}\right\|(\|x\|>a>0)$
$\frac{1}{\sqrt{a^{2}-x^{2}}}$	$\sin ^{-1} \frac{x}{a}$	$\frac{1}{\sqrt{a^{2}+x^{2}}}$	$\ln \left\|\frac{x+\sqrt{a^{2}+x^{2}}}{a}\right\|(a>0)$
	$(-a<x<a)$	$\frac{1}{\sqrt{x^{2}-a^{2}}}$	$\ln \left\|\frac{x+\sqrt{x^{2}-a^{2}}}{a}\right\|(x>a>0)$
$\sqrt{a^{2}-x^{2}}$	$\frac{a^{2}}{2}\left[\sin ^{-1}\left(\frac{x}{a}\right)\right.$	$\sqrt{a^{2}+x^{2}}$	$\frac{a^{2}}{2}\left[\sinh ^{-1}\left(\frac{x}{a}\right)+\frac{x \sqrt{a^{2}+x^{2}}}{a^{2}}\right]$
	$\left.+\frac{x \sqrt{a^{2}-x^{2}}}{a^{2}}\right]$	$\sqrt{x^{2}-a^{2}}$	$\frac{a^{2}}{2}\left[-\cosh ^{-1}\left(\frac{x}{a}\right)+\frac{x \sqrt{x^{2}-a^{2}}}{a^{2}}\right]$

Section 6: Tips on using solutions

6. Tips on using solutions

- When looking at the THEORY, ANSWERS, IF METHOD, INTEGRALS or TIPS pages, use the Back button (at the bottom of the page) to return to the exercises.
- Use the solutions intelligently. For example, they can help you get started on an exercise, or they can allow you to check whether your intermediate results are correct.
- Try to make less use of the full solutions as you work your way through the Tutorial.

Solutions to exercises

Full worked solutions

Exercise 1.

$$
\frac{d y}{d x}+P(x) y=Q(x) y^{n}
$$

DIVIDE by y^{n} :

$$
\frac{1}{y^{n}} \frac{d y}{d x}+P(x) y^{1-n}=Q(x)
$$

$\underline{\text { SET } z=y^{1-n}}: \quad$ i.e. $\quad \frac{d z}{d x}=(1-n) y^{(1-n-1)} \frac{d y}{d x}$
i.e. $\quad \frac{1}{(1-n)} \frac{d z}{d x}=\frac{1}{y^{n}} \frac{d y}{d x}$

SUBSTITUTE

$$
\frac{1}{(1-n)} \frac{d z}{d x}+P(x) z=Q(x)
$$

i.e.

$$
\frac{d z}{d x}+P_{1}(x) z=Q_{1}(x)
$$

linear in z
where $\quad P_{1}(x)=(1-n) P(x)$

$$
Q_{1}(x)=(1-n) Q(x) .
$$

Solutions to exercises

Exercise 2.

This is of the form $\frac{d y}{d x}+P(x) y=Q(x) y^{n}$ where

$$
\text { where } \left.\begin{array}{rl}
P(x) & =-\frac{1}{x} \\
& Q(x) \\
\text { and } & n
\end{array}\right) x
$$

DIVIDE by y^{n} :

$$
\text { i.e. } \quad \frac{1}{y^{2}} \frac{d y}{d x}-\frac{1}{x} y^{-1}=x
$$

$\underline{\text { SET } z=y^{1-n}=y^{-1}}$: i.e. $\frac{d z}{d x}=-y^{-2} \frac{d y}{d x}=-\frac{1}{y^{2}} \frac{d y}{d x}$

$$
\begin{aligned}
& \therefore \quad-\frac{d z}{d x}-\frac{1}{x} z=x \\
& \text { i.e. } \quad \frac{d z}{d x}+\frac{1}{x} z=-x
\end{aligned}
$$

Solutions to exercises
Integrating factor, $\quad \mathrm{IF}=e^{\int \frac{1}{x} d x}=e^{\ln x}=x$

$$
\begin{array}{cl}
\therefore & x \frac{d z}{d x}+z=-x^{2} \\
\text { i.e. } & \frac{d}{d x}[x \cdot z]=-x^{2} \\
\text { i.e. } & x z=-\int x^{2} d x \\
\text { i.e. } & x z=-\frac{x^{3}}{3}+C
\end{array}
$$

$\underline{\text { Use } z=\frac{1}{y}}$:

$$
\frac{x}{y}=-\frac{x^{3}}{3}+C
$$

i.e. $\frac{1}{y}=-\frac{x^{2}}{3}+\frac{C}{x}$.

Return to Exercise 2

Solutions to exercises

Exercise 3.

This is of the form $\frac{d y}{d x}+P(x) y=Q(x) y^{n}$ where $P(x)=\frac{1}{x}$,

$$
Q(x)=1,
$$

and

$$
n=2
$$

DIVIDE by y^{n} :
$\underline{\text { SET } z=y^{1-n}=y^{-1}}$: i.e. $\quad \frac{d z}{d x}=-1 \cdot y^{-2} \frac{d y}{d x}=-\frac{1}{y^{2}} \frac{d y}{d x}$

$$
\therefore \quad-\frac{d z}{d x}+\frac{1}{x} z=1
$$

i.e. $\quad \frac{d z}{d x}-\frac{1}{x} z=-1$

Solutions to exercises
Integrating factor, $\mathrm{IF}=e^{-\int \frac{d x}{x}}=e^{-\ln x}=e^{\ln x^{-1}}=\frac{1}{x}$
$\therefore \quad \frac{1}{x} \frac{d z}{d x}-\frac{1}{x^{2}} z=-\frac{1}{x}$
i.e. $\frac{d}{d x}\left[\frac{1}{x} \cdot z\right]=-\frac{1}{x}$
i.e. $\frac{1}{x} \cdot z=-\int \frac{d x}{x}$
i.e. $\quad \frac{z}{x}=-\ln x+C$

Use $z=\frac{1}{y}: \quad \frac{1}{y x}=C-\ln x$

$$
\text { i.e. } \quad \frac{1}{y}=x(C-\ln x)
$$

Return to Exercise 3

Solutions to exercises
Exercise 4.
This of the form $\frac{d y}{d x}+P(x) y=Q(x) y^{n}$

$$
\text { where } \left.\quad \begin{array}{rl}
P(x) & =\frac{1}{3} \\
& Q(x) \\
\text { and } & n
\end{array}\right)=4
$$

DIVIDE by y^{n}
i.e. $\frac{1}{y^{4}} \frac{d y}{d x}+\frac{1}{3} y^{-3}=e^{x}$
$\underline{\text { SET } z=y^{1-n}=y^{-3}}$: i.e. $\quad \frac{d z}{d x}=-3 y^{-4} \frac{d y}{d x}=-\frac{3}{y^{4}} \frac{d y}{d x}$

$$
\begin{aligned}
& \therefore \quad-\frac{1}{3} \frac{d z}{d x}+\frac{1}{3} z=e^{x} \\
& \text { i.e. } \quad \frac{d z}{d x}-z=-3 e^{x}
\end{aligned}
$$

Solutions to exercises
Integrating factor,

$$
\begin{array}{ll}
& \mathrm{IF}=e^{-\int d x}=e^{-x} \\
\therefore & e^{-x} \frac{d z}{d x}-e^{-x} z=-3 e^{-x} \cdot e^{x} \\
\text { i.e. } & \frac{d}{d x}\left[e^{-x} \cdot z\right]=-3 \\
\text { i.e. } & e^{-x} \cdot z=\int-3 d x \\
\text { i.e. } & e^{-x} \cdot z=-3 x+C
\end{array}
$$

Use $z=\frac{1}{y^{3}}$:

$$
\begin{aligned}
& \quad e^{-x} \cdot \frac{1}{y^{3}}=-3 x+C \\
& \text { i.e. } \quad \frac{1}{y^{3}}=e^{x}(C-3 x)
\end{aligned}
$$

Return to Exercise 4

Solutions to exercises

Exercise 5.

Bernoulli equation: $\frac{d y}{d x}+\frac{y}{x}=y^{3}$ with $P(x)=\frac{1}{x}, Q(x)=1, n=3$
$\underline{\text { DIVIDE by } y^{n}}$ i.e. $y^{3}: \quad \frac{1}{y^{3}} \frac{d y}{d x}+\frac{1}{x} y^{-2}=1$
$\underline{\operatorname{SET} z=y^{1-n}}$ i.e. $z=y^{-2}$:

$$
\begin{array}{ll}
& \frac{d z}{d x}=-2 y^{-3} \frac{d y}{d x} \\
\text { i.e. } & -\frac{1}{2} \frac{d z}{d x}=\frac{1}{y^{3}} \frac{d y}{d x} \\
\therefore & -\frac{1}{2} \frac{d z}{d x}+\frac{1}{x} z=1 \\
\text { i.e. } & \frac{d z}{d x}-\frac{2}{x} z=-2
\end{array}
$$

Solutions to exercises
Integrating factor, $\quad \mathrm{IF}=e^{-2 \int \frac{d x}{x}}=e^{-2 \ln x}=e^{\ln x^{-2}}=\frac{1}{x^{2}}$

$$
\therefore \quad \frac{1}{x^{2}} \frac{d z}{d x}-\frac{2}{x^{3}} z=-\frac{2}{x^{2}}
$$

i.e. $\quad \frac{d}{d x}\left[\frac{1}{x^{2}} z\right]=-\frac{2}{x^{2}}$
i.e. $\quad \frac{1}{x^{2}} z=(-2) \cdot(-1) \frac{1}{x}+C$
i.e. $\quad z=2 x+C x^{2}$
$\underline{\text { Use } z=\frac{1}{y^{2}}}: \quad y^{2}=\frac{1}{2 x+C x^{2}}$.
Return to Exercise 5

Solutions to exercises

Exercise 6.

This is of the form $\frac{d y}{d x}+P(x) y=Q(x) y^{n}$ where

$$
\begin{aligned}
\text { where } \quad \begin{aligned}
P(x) & =\frac{2}{x} \\
Q(x) & =-x^{2} \cos x
\end{aligned} \\
\text { and } \quad \begin{aligned}
n & =2
\end{aligned} \\
\underline{\text { DIVIDE by } y^{n}: \quad} \quad \begin{aligned}
\text { i.e. } \quad \frac{1}{y^{2}} \frac{d y}{d x}+\frac{2}{x} y^{-1}=-x^{2} \cos x \\
\underline{\text { SET } z=y^{1-n}=y^{-1}}: \quad \text { i.e. } \quad \frac{d z}{d x}=-1 \cdot y^{-2} \frac{d y}{d x}=-\frac{1}{y^{2}} \frac{d y}{d x} \\
\therefore \quad-\frac{d z}{d x}+\frac{2}{x} z=-x^{2} \cos x \\
\text { i.e. } \quad \frac{d z}{d x}-\frac{2}{x} z=x^{2} \cos x
\end{aligned}
\end{aligned}
$$

Solutions to exercises
$\underline{\text { Integrating factor, }} \quad \mathrm{IF}=e^{\int-\frac{2}{x} d x}=e^{-2 \int \frac{d x}{x}}=e^{-2 \ln x}=e^{\ln x^{-2}}=\frac{1}{x^{2}}$
$\therefore \quad \frac{1}{x^{2}} \frac{d z}{d x}-\frac{2}{x^{3}} z=\frac{x^{2}}{x^{2}} \cos x$
i.e. $\frac{d}{d x}\left[\frac{1}{x^{2}} \cdot z\right]=\cos x$
i.e. $\frac{1}{x^{2}} \cdot z=\int \cos x d x$
i.e. $\quad \frac{1}{x^{2}} \cdot z=\sin x+C$

Use $z=\frac{1}{y}:$

$$
\begin{gathered}
\frac{1}{x^{2} y}=\sin x+C \\
\text { i.e. } \quad \frac{1}{y}=x^{2}(\sin x+C)
\end{gathered}
$$

Return to Exercise 6

Solutions to exercises

Exercise 7.

Divide by 2 to get standard form:

$$
\frac{d y}{d x}+\frac{1}{2} \tan x \cdot y=\frac{(4 x+5)^{2}}{2 \cos x} y^{3}
$$

This is of the form $\frac{d y}{d x}+P(x) y=Q(x) y^{n}$

$$
\text { where } \quad P(x)=\frac{1}{2} \tan x
$$

$$
Q(x)=\frac{(4 x+5)^{2}}{2 \cos x}
$$

and

$$
n=3
$$

Solutions to exercises
DIVIDE by y^{n} :
i.e. $\frac{1}{y^{3}} \frac{d y}{d x}+\frac{1}{2} \tan x \cdot y^{-2}=\frac{(4 x+5)^{2}}{2 \cos x}$
$\underline{\text { SET } z=y^{1-n}=y^{-2}}$: i.e. $\quad \frac{d z}{d x}=-2 y^{-3} \frac{d y}{d x}=-\frac{2}{y^{3}} \frac{d y}{d x}$
$\therefore \quad-\frac{1}{2} \frac{d z}{d x}+\frac{1}{2} \tan x \cdot z=\frac{(4 x+5)^{2}}{2 \cos x}$
i.e. $\frac{d z}{d x}-\tan x \cdot z=\frac{(4 x+5)^{2}}{\cos x}$

Solutions to exercises
$\underline{\text { Integrating factor, }} \quad \mathrm{IF}=e^{\int-\tan x \cdot d x}=e^{\int-\frac{\sin x}{\cos x} d x}\left[\equiv e^{\int \frac{f^{\prime}(x)}{f(x)} d x}\right]$

$$
=e^{\ln \cos x}=\cos x
$$

$\therefore \quad \cos x \frac{d z}{d x}-\cos x \tan x \cdot z=\cos x \frac{(4 x+5)^{2}}{\cos x}$
i.e. $\quad \cos x \frac{d z}{d x}-\sin x \cdot z=(4 x+5)^{2}$
i.e. $\frac{d}{d x}[\cos x \cdot z]=(4 x+5)^{2}$
i.e. $\quad \cos x \cdot z=\int(4 x+5)^{2} d x$
i.e. $\quad \cos x \cdot z=\left(\frac{1}{4}\right) \cdot \frac{1}{3}(4 x+5)^{3}+C$

Use $z=\frac{1}{y^{2}}$:

$$
\begin{aligned}
& \quad \frac{\cos x}{y^{2}}=\frac{1}{12}(4 x+5)^{3}+C \\
& \text { i.e. } \quad \frac{1}{y^{2}}=\frac{1}{12 \cos x}(4 x+5)^{3}+\frac{C}{\cos x} .
\end{aligned}
$$

Return to Exercise 7

Solutions to exercises
Exercise 8.
Standard form: $\quad \frac{d y}{d x}+\left(\frac{1}{x}\right) y=(x \ln x) y^{2}$

$$
\text { i.e. } \quad P(x)=\frac{1}{x}, Q(x)=x \ln x, n=2
$$

$\underline{\text { DIVIDE by } y^{2}}: \quad \frac{1}{y^{2}} \frac{d y}{d x}+\left(\frac{1}{x}\right) y^{-1}=x \ln x$

SET $z=y^{-1}:$

$$
\begin{aligned}
& \quad \frac{d z}{d x}=-y^{-2} \frac{d y}{d x}=-\frac{1}{y^{2}} \frac{d y}{d x} \\
& \therefore \quad-\frac{d z}{d x}+\left(\frac{1}{x}\right) z=x \ln x \\
& \text { i.e. } \quad \frac{d z}{d x}-\frac{1}{x} \cdot z=-x \ln x
\end{aligned}
$$

Solutions to exercises
$\underline{\text { Integrating factor: }} \quad \mathrm{IF}=e^{-\int \frac{d x}{x}}=e^{-\ln x}=e^{\ln x^{-1}}=\frac{1}{x}$

$$
\begin{array}{cl}
\therefore & \frac{1}{x} \frac{d z}{d x}-\frac{1}{x^{2}} z=-\ln x \\
\text { i.e. } & \frac{d}{d x}\left[\frac{1}{x} z\right]=-\ln x \\
\text { i.e. } & \frac{1}{x} z=-\int \ln x d x+C^{\prime}
\end{array}
$$

[Use integration by parts: $\int u \frac{d v}{d x} d x=u v-\int v \frac{d u}{d x} d x$,

$$
\begin{gathered}
\text { with } \left.u=\ln x, \frac{d v}{d x}=1\right] \\
\text { i.e. } \frac{1}{x} z=-\left[x \ln x-\int x \cdot \frac{1}{x} d x\right]+C
\end{gathered}
$$

$$
\text { Use } z=\frac{1}{y}: \quad \frac{1}{x y}=x(1-\ln x)+C
$$

Return to Exercise 8

Solutions to exercises

Exercise 9.

Standard form: $\quad \frac{d y}{d x}-(\cot x) \cdot y=(\operatorname{cosec} x) y^{3}$
DIVIDE by $y^{3}: \quad \frac{1}{y^{3}} \frac{d y}{d x}-(\cot x) \cdot y^{-2}=\operatorname{cosec} x$
$\underline{\mathrm{SET} z=y^{-2}}: \quad \frac{d z}{d x}=-2 y^{-3} \frac{d y}{d x}=-2 \cdot \frac{1}{y^{3}} \frac{d y}{d x}$
$\therefore \quad-\frac{1}{2} \frac{d z}{d x}-\cot x \cdot z=\operatorname{cosec} x$
i.e. $\frac{d z}{d x}+2 \cot x \cdot z=-2 \operatorname{cosec} x$

Solutions to exercises
$\underline{\text { Integrating factor: }} \mathrm{IF}=e^{2 \int \frac{\cos x}{\sin x} d x} \equiv e^{2 \int \frac{f^{\prime}(x)}{f(x)} d x}=e^{2 \ln (\sin x)}=\sin ^{2} x$.

$$
\therefore \quad \sin ^{2} x \cdot \frac{d z}{d x}+2 \sin x \cdot \cos x \cdot z=-2 \sin x
$$

i.e. $\frac{d}{d x}\left[\sin ^{2} x \cdot z\right]=-2 \sin x$
i.e. $\quad z \sin ^{2} x=(-2) \cdot(-\cos x)+C$
$\underline{\text { Use } z=\frac{1}{y^{2}}:} \quad \frac{\sin ^{2} x}{y^{2}}=2 \cos x+C$
i.e. $\quad y^{2}=\frac{\sin ^{2} x}{2 \cos x+C}$.

Return to Exercise 9

