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1. Theory

A Bernoulli differential equation can be written in the following
standard form:

dy

dx
+ P (x)y = Q(x)yn ,

where n 6= 1 (the equation is thus nonlinear).

To find the solution, change the dependent variable from y to z, where
z = y1−n. This gives a differential equation in x and z that is
linear, and can be solved using the integrating factor method.

Note: Dividing the above standard form by yn gives:

1
yn

dy

dx
+ P (x)y1−n = Q(x)

i.e.
1

(1− n)
dz

dx
+ P (x)z = Q(x)(

where we have used dz
dx = (1− n)y−n dy

dx

)
.
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2. Exercises

Click on Exercise links for full worked solutions (there are 9
exercises in total)

Exercise 1.
The general form of a Bernoulli equation is

dy

dx
+ P (x)y = Q(x) yn ,

where P and Q are functions of x, and n is a constant. Show that
the transformation to a new dependent variable z = y1−n reduces
the equation to one that is linear in z (and hence solvable using the
integrating factor method).

Solve the following Bernoulli differential equations:

Exercise 2.

dy

dx
− 1

x
y = xy2

● Theory ● Answers ● IF method ● Integrals ● Tips
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Exercise 3.

dy

dx
+

y

x
= y2

Exercise 4.

dy

dx
+

1
3
y = exy4

Exercise 5.

x
dy

dx
+ y = xy3

Exercise 6.

dy

dx
+

2
x

y = −x2 cos x · y2

● Theory ● Answers ● IF method ● Integrals ● Tips
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Exercise 7.

2
dy

dx
+ tanx · y =

(4x + 5)2

cos x
y3

Exercise 8.

x
dy

dx
+ y = y2x2 ln x

Exercise 9.

dy

dx
= y cot x + y3cosecx

● Theory ● Answers ● IF method ● Integrals ● Tips
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3. Answers

1. HINT: Firstly, divide each term by yn. Then, differentiate z
with respect to x to show that 1

(1−n)
dz
dx = 1

yn
dy
dx ,

2. 1
y = −x2

3 + C
x ,

3. 1
y = x(C − ln x) ,

4. 1
y3 = ex(C − 3x) ,

5. y2 = 1
2x+Cx2 ,

6. 1
y = x2(sinx + C) ,

7. 1
y2 = 1

12 cos x (4x + 5)3 + C
cos x ,

8. 1
xy = C + x(1− ln x) ,
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9. y2 = sin2 x
2 cos x+C .
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4. Integrating factor method

Consider an ordinary differential equation (o.d.e.) that we wish to
solve to find out how the variable z depends on the variable x.

If the equation is first order then the highest derivative involved is
a first derivative.

If it is also a linear equation then this means that each term can
involve z either as the derivative dz

dx OR through a single factor of z .

Any such linear first order o.d.e. can be re-arranged to give the
following standard form:

dz

dx
+ P1(x)z = Q1(x)

where P1(x) and Q1(x) are functions of x, and in some cases may be
constants.
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A linear first order o.d.e. can be solved using the integrating
factor method.

After writing the equation in standard form, P1(x) can be identified.
One then multiplies the equation by the following “integrating
factor”:

IF= e
∫

P1(x)dx

This factor is defined so that the equation becomes equivalent to:

d
dx (IF z) = IFQ1(x),

whereby integrating both sides with respect to x, gives:

IF z =
∫

IFQ1(x) dx

Finally, division by the integrating factor (IF) gives z explicitly in
terms of x, i.e. gives the solution to the equation.
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5. Standard integrals

f (x)
∫

f(x)dx f (x)
∫

f(x)dx

xn xn+1

n+1 (n 6= −1) [g (x)]n g′ (x) [g(x)]n+1

n+1 (n 6= −1)
1
x ln |x| g′(x)

g(x) ln |g (x)|
ex ex ax ax

ln a (a > 0)
sinx − cos x sinhx coshx
cos x sinx coshx sinhx
tanx − ln |cos x| tanh x ln coshx
cosec x ln

∣∣tan x
2

∣∣ cosechx ln
∣∣tanh x

2

∣∣
sec x ln |sec x + tanx| sech x 2 tan−1 ex

sec2 x tanx sech2 x tanh x
cot x ln |sinx| cothx ln |sinhx|
sin2 x x

2 −
sin 2x

4 sinh2 x sinh 2x
4 − x

2

cos2 x x
2 + sin 2x

4 cosh2 x sinh 2x
4 + x

2
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f (x)
∫

f (x) dx f (x)
∫

f (x) dx

1
a2+x2

1
a tan−1 x

a
1

a2−x2
1
2a ln

∣∣∣a+x
a−x

∣∣∣ (0< |x|<a)

(a > 0) 1
x2−a2

1
2a ln

∣∣∣x−a
x+a

∣∣∣ (|x| > a>0)

1√
a2−x2 sin−1 x

a
1√

a2+x2 ln
∣∣∣x+

√
a2+x2

a

∣∣∣ (a > 0)

(−a < x < a) 1√
x2−a2 ln

∣∣∣x+
√

x2−a2

a

∣∣∣ (x>a>0)

√
a2 − x2 a2

2

[
sin−1

(
x
a

) √
a2+x2 a2

2

[
sinh−1

(
x
a

)
+ x

√
a2+x2

a2

]
+x

√
a2−x2

a2

] √
x2−a2 a2

2

[
− cosh−1

(
x
a

)
+ x

√
x2−a2

a2

]
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6. Tips on using solutions

● When looking at the THEORY, ANSWERS, IF METHOD,
INTEGRALS or TIPS pages, use the Back button (at the bottom of
the page) to return to the exercises.

● Use the solutions intelligently. For example, they can help you get
started on an exercise, or they can allow you to check whether your
intermediate results are correct.

● Try to make less use of the full solutions as you work your way
through the Tutorial.
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Full worked solutions

Exercise 1.
dy

dx
+ P (x)y = Q(x)yn

DIVIDE by yn: 1
yn

dy
dx + P (x)y1−n = Q(x)

SET z = y1−n: i.e. dz
dx = (1− n)y(1−n−1) dy

dx

i.e. 1
(1−n)

dz
dx = 1

yn
dy
dx

SUBSTITUTE 1
(1−n)

dz
dx + P (x)z = Q(x)

i.e. dz
dx + P1(x)z = Q1(x) linear in z

where P1(x) = (1− n)P (x)
Q1(x) = (1− n)Q(x) .

Return to Exercise 1
Toc JJ II J I Back
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Exercise 2.

This is of the form
dy

dx
+ P (x)y = Q(x)yn where

where P (x) = − 1
x

Q(x) = x

and n = 2

DIVIDE by yn: i.e.
1
y2

dy

dx
− 1

x
y−1 = x

SET z = y1−n = y−1: i.e.
dz

dx
= −y−2 dy

dx
= − 1

y2

dy

dx

∴ −dz

dx
− 1

x
z = x

i.e.
dz

dx
+

1
x

z = −x
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Integrating factor, IF = e
∫ 1

x dx = eln x = x

∴ x
dz

dx
+ z = −x2

i.e.
d

dx
[x · z] = −x2

i.e. xz = −
∫

x2dx

i.e. xz = −x3

3
+ C

Use z = 1
y : x

y = −x3

3 + C

i.e.
1
y

= −x2

3
+

C

x
.

Return to Exercise 2

Toc JJ II J I Back



Solutions to exercises 17

Exercise 3.
This is of the form

dy

dx
+ P (x)y = Q(x)yn

where P (x) = 1
x ,

Q(x) = 1,

and n = 2

DIVIDE by yn: i.e. 1
y2

dy
dx + 1

xy−1 = 1

SET z = y1−n = y−1: i.e. dz
dx = −1 · y−2 dy

dx = − 1
y2

dy
dx

∴ − dz
dx + 1

xz = 1

i.e. dz
dx −

1
xz = −1
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Integrating factor, IF = e−
∫

dx
x = e− ln x = eln x−1

=
1
x

∴ 1
x

dz
dx −

1
x2 z = − 1

x

i.e. d
dx

[
1
x · z

]
= − 1

x

i.e. 1
x · z = −

∫
dx
x

i.e. z
x = − ln x + C

Use z = 1
y : 1

yx = C − ln x

i.e. 1
y = x(C − ln x) .

Return to Exercise 3
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Exercise 4.

This of the form
dy

dx
+ P (x)y = Q(x)yn

where P (x) =
1
3

Q(x) = ex

and n = 4

DIVIDE by yn: i.e.
1
y4

dy

dx
+

1
3
y−3 = ex

SET z = y1−n = y−3: i.e.
dz

dx
= −3y−4 dy

dx
= − 3

y4

dy

dx

∴ −1
3

dz

dx
+

1
3
z = ex

i.e.
dz

dx
− z = −3ex
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Integrating factor, IF = e−
∫

dx = e−x

∴ e−x dz

dx
− e−xz = −3e−x · ex

i.e.
d

dx
[e−x · z] = −3

i.e. e−x · z =
∫
−3 dx

i.e. e−x · z = −3x + C

Use z = 1
y3 : e−x · 1

y3 = −3x + C

i.e.
1
y3

= ex(C − 3x) .

Return to Exercise 4

Toc JJ II J I Back



Solutions to exercises 21

Exercise 5.
Bernoulli equation:

dy

dx
+

y

x
= y3 with P (x) =

1
x

,Q(x) = 1, n = 3

DIVIDE by yn i.e. y3: 1
y3

dy
dx + 1

xy−2 = 1

SET z = y1−n i.e. z = y−2: dz
dx = −2y−3 dy

dx

i.e. − 1
2

dz
dx = 1

y3
dy
dx

∴ − 1
2

dz
dx + 1

xz = 1

i.e. dz
dx −

2
xz = −2
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Integrating factor, IF = e−2
∫

dx
x = e−2 ln x = eln x−2

=
1
x2

∴ 1
x2

dz
dx −

2
x3 z = − 2

x2

i.e. d
dx

[
1
x2 z

]
= − 2

x2

i.e. 1
x2 z = (−2) · (−1) 1

x + C

i.e. z = 2x + Cx2

Use z = 1
y2 : y2 = 1

2x+Cx2 .
Return to Exercise 5
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Exercise 6.

This is of the form
dy

dx
+ P (x)y = Q(x)yn where

where P (x) =
2
x

Q(x) = −x2 cos x

and n = 2

DIVIDE by yn: i.e.
1
y2

dy

dx
+

2
x

y−1 = −x2 cos x

SET z = y1−n = y−1: i.e.
dz

dx
= −1 · y−2 dy

dx
= − 1

y2

dy

dx

∴ −dz

dx
+

2
x

z = −x2 cos x

i.e.
dz

dx
− 2

x
z = x2 cos x
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Integrating factor, IF =e
∫
−2

x dx =e−2
∫

dx
x =e−2 ln x =eln x−2

=
1
x2

∴
1
x2

dz

dx
− 2

x3
z =

x2

x2
cos x

i.e.
d

dx

[
1
x2

· z
]

= cos x

i.e.
1
x2

· z =
∫

cos x dx

i.e.
1
x2

· z = sinx + C

Use z = 1
y : 1

x2y = sinx + C

i.e.
1
y

= x2(sinx + C) .

Return to Exercise 6
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Exercise 7.

Divide by 2 to get standard form:

dy

dx
+

1
2

tanx · y =
(4x + 5)2

2 cos x
y3

This is of the form
dy

dx
+ P (x)y = Q(x)yn

where P (x) =
1
2

tanx

Q(x) =
(4x + 5)2

2 cos x

and n = 3

Toc JJ II J I Back
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DIVIDE by yn: i.e.
1
y3

dy

dx
+

1
2

tanx · y−2 =
(4x + 5)2

2 cos x

SET z = y1−n = y−2: i.e.
dz

dx
= −2y−3 dy

dx
= − 2

y3

dy

dx

∴ −1
2

dz

dx
+

1
2

tanx · z =
(4x + 5)2

2 cos x

i.e.
dz

dx
− tanx · z =

(4x + 5)2

cos x
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Integrating factor, IF = e
∫
− tan x·dx = e

∫
− sin x

cos x dx

[
≡ e

∫ f′(x)
f(x) dx

]
= eln cos x = cos x

∴ cos x
dz

dx
−cos x tanx · z=cos x

(4x+5)2

cos x

i.e. cos x
dz

dx
− sinx · z = (4x + 5)2

i.e.
d

dx
[cos x · z] = (4x + 5)2

i.e. cos x · z =
∫

(4x + 5)2dx

i.e. cos x · z =
(

1
4

)
· 1
3
(4x + 5)3 + C

Use z = 1
y2 : cos x

y2 = 1
12 (4x + 5)3 + C

i.e.
1
y2

=
1

12 cos x
(4x + 5)3 +

C

cos x
.

Return to Exercise 7
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Exercise 8.

Standard form: dy
dx +

(
1
x

)
y = (x ln x)y2

i.e. P (x) = 1
x , Q(x) = x ln x , n = 2

DIVIDE by y2: 1
y2

dy
dx +

(
1
x

)
y−1 = x ln x

SET z = y−1: dz
dx = −y−2 dy

dx = − 1
y2

dy
dx

∴ − dz
dx +

(
1
x

)
z = x ln x

i.e. dz
dx −

1
x · z = −x ln x
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Integrating factor: IF = e−
∫

dx
x = e− ln x = eln x−1

=
1
x

∴ 1
x

dz
dx −

1
x2 z = − ln x

i.e. d
dx

[
1
xz

]
= − ln x

i.e. 1
xz = −

∫
ln x dx + C ′

[Use integration by parts:
∫

u dv
dxdx = uv −

∫
v du

dxdx,

with u = ln x , dv
dx = 1 ]

i.e. 1
xz = −

[
x ln x−

∫
x · 1

xdx
]
+ C

Use z = 1
y : 1

xy = x(1− ln x) + C .

Return to Exercise 8
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Exercise 9.

Standard form: dy
dx − (cot x) · y = (cosec x) y3

DIVIDE by y3: 1
y3

dy
dx − (cot x) · y−2 = cosec x

SET z = y−2: dz
dx = −2y−3 dy

dx = −2 · 1
y3

dy
dx

∴ − 1
2

dz
dx − cot x · z = cosec x

i.e. dz
dx + 2 cot x · z = −2 cosec x
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Integrating factor: IF = e2
∫ cos x

sin x dx ≡ e2
∫ f′(x)

f(x) dx = e2 ln(sin x) = sin2 x.

∴ sin2 x · dz
dx + 2 sinx · cos x · z = −2 sinx

i.e. d
dx

[
sin2 x · z

]
= −2 sinx

i.e. z sin2 x = (−2) · (− cos x) + C

Use z = 1
y2 : sin2 x

y2 = 2 cos x + C

i.e. y2 = sin2 x
2 cos x+C .

Return to Exercise 9
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