Differential Equations

SECOND ORDER (inhomogeneous)

Graham S McDonald

A Tutorial Module for learning to solve 2nd order (inhomogeneous) differential equations

Table of contentsBegin Tutorial

© 2004 g.s.mcdonald@salford.ac.uk

Table of contents

- 1. Theory
- 2. Exercises
- **3.** Answers
- 4. Standard derivatives
- **5. Finding** y_{CF}
- 6. Tips on using solutions Full worked solutions

Section 1: Theory

1 Theory

This Tutorial deals with the solution of second order linear o.d.e.'s with constant coefficients (a, b and c), i.e. of the form:

$$a\frac{d^2y}{dx^2} + b\frac{dy}{dx} + cy = f(x) \quad (*)$$

The first step is to find the general solution of the homogeneous equation [i.e. as (*), except that f(x) = 0]. This gives us the "complementary function" y_{CF} .

The second step is to find a particular solution y_{PS} of the full equation $\overline{(*)}$. Assume that y_{PS} is a more general form of f(x), having undetermined coefficients, as shown in the following table:

Section 1: Theory

f(x)	Form of y_{PS}		
k (a constant)	С		
linear in x	Cx + D		
quadratic in x	$Cx^2 + Dx + E$		
$k\sin px$ or $k\cos px$	$C\cos px + D\sin px$		
ke^{px}	Ce^{px}		
sum of the above	sum of the above		
product of the above	product of the above		

(where p is a constant)

<u>Note</u>: If the suggested form of y_{PS} already appears in the complementary function then multiply this suggested form by x.

Substitution of y_{PS} into (*) yields values for the undetermined coefficients (C, D, etc). Then,

General solution of
$$(*) = y_{CF} + y_{PS}$$

Section 2: Exercises

2 Exercises

Toc

Find the general solution of the following equations. Where boundary conditions are also given, derive the appropriate particular solution. Click on **EXERCISE** links for full worked solutions (there are 13 exercises in total)

Notation: $y'' = \frac{d^2y}{dx^2}$, $y' = \frac{dy}{dx}$ EXERCISE 1. u'' - 2u' - 3u = 6EXERCISE 2. y'' + 5y' + 6y = 2xEXERCISE 3. (a) $y'' + 5y' - 9y = x^2$ (b) $y'' + 5y' - 9y = \cos 2x$ (c) $y'' + 5y' - 9y = e^{4x}$ (d) $y'' + 5y' - 9y = e^{-2x} + 2 - x$ EXERCISE 4. $y'' - \lambda^2 y = \sin 2x$ • Theory • Answers • Derivatives • Finding y_{CF} • Tips

Back

Section 2: Exercises

Toc

EXERCISE 5. $y'' - y = e^x$ EXERCISE 6. $y'' + y' - 2y = e^{-2x}$ EXERCISE 7. $y'' - 2y' + u = e^x$ EXERCISE 8. $y'' + 8y' + 17y = 2e^{-3x}$; y(0) = 2 and $y\left(\frac{\pi}{2}\right) = 0$ EXERCISE 9. $y'' + y' - 12y = 4e^{2x}$; y(0) = 7 and y'(0) = 0EXERCISE 10. $y'' + 3y' + 2y = 10 \cos 2x$; y(0) = 1 and y'(0) = 0EXERCISE 11. $y'' + 4y' + 5y = 2e^{-2x}$; y(0) = 1 and y'(0) = -2EXERCISE 12. $\frac{d^2x}{d\tau^2} + 4\frac{dx}{d\tau} + 3x = e^{-3\tau}$; $x = \frac{1}{2}$ and $\frac{dx}{d\tau} = -2$ at $\tau = 0$ EXERCISE 13. $\frac{d^2y}{d\tau^2} + 4\frac{dy}{d\tau} + 5y = 6\sin\tau$

6

• Theory • Answers • Derivatives • Finding y_{CF} • Tips

Back

Section 3: Answers

3 Answers

1.
$$y = Ae^{-x} + Be^{3x} - 2$$
,

2.
$$y = Ae^{-2x} + Be^{-3x} + \frac{x}{3} - \frac{5}{18}$$
,

3. General solutions are $y = y_{CF} + y_{PS}$ where $y_{CF} = Ae^{m_1x} + Be^{m_2x}$ $(m_{1,2} = -\frac{5}{2} \pm \frac{1}{2}\sqrt{61})$ and (a) $y_{PS} = -\frac{1}{9}x^2 - \frac{10}{81}x - \frac{68}{799}$

(b)
$$y_{PS} = -\frac{13}{269}\cos 2x + \frac{10}{269}\sin 2x$$

(c) $y_{PS} = \frac{1}{27}e^{4x}$

(d)
$$y_{PS} = -\frac{1}{15}e^{-2x} + \frac{1}{9}x - \frac{13}{81}$$
,

4.
$$y = Ae^{+\lambda x} + Be^{-\lambda x} - \frac{\sin 2x}{4+\lambda^2}$$
,

5.
$$y = Ae^x + Be^{-x} + \frac{1}{2}xe^x$$
,

Section 3: Answers

6.
$$y = Ae^{x} + Be^{-2x} - \frac{1}{3}xe^{-2x}$$
,
7. $y = (A + Bx)e^{x} + \frac{1}{2}x^{2}e^{x}$,
8. $y = e^{-4x}(A\cos x + B\sin x) + e^{-3x}$;
 $y = e^{-4x}(\cos x - e^{\frac{\pi}{2}}\sin x) + e^{-3x}$,
9. $y = Ae^{3x} + Be^{-4x} - \frac{2}{3}e^{2x}$;
 $y = \frac{32}{7}e^{3x} + \frac{65}{21}e^{-4x} - \frac{2}{3}e^{2x}$,
10. $y = Ae^{-2x} + Be^{-x} - \frac{1}{2}\cos 2x + \frac{3}{2}\sin 2x$;
 $y = \frac{3}{2}e^{-2x} - \frac{1}{2}\cos 2x + \frac{3}{2}\sin 2x$,
11. $y = e^{-2x}(A\cos x + B\sin x) + 2e^{-2x}$;
 $y = e^{-2x}(2 - \cos x)$,
12. $x = Ae^{-3\tau} + Be^{-\tau} - \frac{1}{2}\tau e^{-3\tau}$;
 $x = \frac{1}{2}(1 - \tau)e^{-3\tau}$,
13. $y = e^{-2\tau}(A\cos \tau + B\sin \tau) - \frac{3}{4}(\cos \tau - \sin \tau)$.

Back

Section 4: Standard derivatives

4 Standard derivatives

f(x)	f'(x)	f(x)	f'(x)
x^n	$n x^{n-1}$	$[g(x)]^n$	$n[g(x)]^{n-1}g'(x)$
$\ln x$	$\frac{1}{x} (x > 0)$	$\ln g(x)$	$\frac{1}{g(x)}g'(x) \ (g(x) > 0)$
e^x	e^x	a^x	$a^x \ln a (a > 0)$
$\sin x$	$\cos x$	$\sinh x$	$\cosh x$
$\cos x$	$-\sin x$	$\cosh x$	$\sinh x$
$\tan x$	$\sec^2 x$	$\tanh x$	$\operatorname{sech}^2 x$
$\operatorname{cosec} x$	$-\csc x \cot x$	$\operatorname{cosech} x$	$-\operatorname{cosech} x \operatorname{coth} x$
$\sec x$	$\sec x \tan x$	$\operatorname{sech} x$	$-\operatorname{sech} x \tanh x$
$\cot x$	$-\mathrm{cosec}^2 x$	$\coth x$	$-\mathrm{cosech}^2 x$

f(x)	f'(x)	f(x)	f'(x)
$\tan^{-1} x$	$\frac{1}{1+x^2}$	$\tanh^{-1} x$	$\frac{1}{1 - x^2} \left(-1 < x < 1 \right)$
$\cos^{-1}x$	$-\frac{1}{\sqrt{1-x^2}} \left(-1 < x < 1 \right)$	$\cosh^{-1}x$	$\frac{1}{\sqrt{x^2 - 1}} \left(x > 1 \right)$
$\sin^{-1}x$	$\frac{1}{\sqrt{1-x^2}} \left(-1 < x < 1 \right)$	$\sinh^{-1}x$	$\frac{1}{\sqrt{x^2+1}}$

where $\begin{array}{c} \operatorname{cosec} x = 1/\sin x \ , & \operatorname{sec} x = 1/\cos x \ , & \operatorname{cot} x = 1/\tan x \\ \operatorname{cosech} x = 1/\sinh x \ , & \operatorname{sech} x = 1/\cosh x \ , & \operatorname{coth} x = 1/\tanh x \end{array}$

Section 5: Finding y_{CF}

5 Finding y_{CF}

One considers the differential equation with RHS = 0. Substituting a trial solution of the form $y = Ae^{mx}$ yields an "auxiliary equation":

$$am^2 + bm + c = 0.$$

This will have two roots $(m_1 \text{ and } m_2)$.

The general solution y_{CF} , when RHS = 0, is then constructed from the possible forms $(y_1 \text{ and } y_2)$ of the trial solution. The auxiliary equation may have:

> i) real different roots, m_1 and $m_2 \rightarrow y_{CF} = y_1 + y_2 = Ae^{m_1 x} + Be^{m_2 x}$

or ii) real equal roots,

$$m_1 = m_2 \rightarrow y_{CF} = y_1 + xy_2 = (A + Bx)e^{m_1x}$$

or iii) complex roots,

$$p \pm iq \rightarrow y_{CF} = y_1 + y_2 \equiv e^{px} (A \cos qx + B \sin qx)$$

6 Tips on using solutions

 \bullet When looking at the THEORY, ANSWERS, DERIVATIVES, FIND-ING y_{CF} or TIPS pages, use the Back button (at the bottom of the page) to return to the exercises

• Use the solutions intelligently. For example, they can help you get started on an exercise, or they can allow you to check whether your intermediate results are correct

• Try to make less use of the full solutions as you work your way through the Tutorial

Full worked solutions

Exercise 1.
$$y'' - 2y' - 3y = 6$$

Auxiliary equation (A.E.) from the homogeneous equation

$$y'' - 2y' - 3y = 0 \; ,$$

is
$$m^2 - 2m - 3 = 0$$

i.e. $(m-3)(m+1) = 0$ i.e. $m_1 = 3, m_2 = -1$

Real different roots : homogeneous equation has general solution

$$y = Ae^{m_1x} + Be^{m_2x}$$

i.e. $y_{CF} = Ae^{-x} + Be^{3x}$ (complementary function).

$$\begin{split} f(x) &= 6 & \text{suggests form of particular solution} \\ y_{PS} &= C & (C = \text{undetermined constant}) \\ y_{PS}'' &= y_{PS}' = 0 & \text{when } y_{PS} = \text{constant} \\ \text{substitute} & y_{PS} &= C : 0 + 0 - 3C = 6 & \text{i.e. } C = -2. \end{split}$$

General solution, $y = y_{CF} + y_{PS} = Ae^{-x} + Be^{3x} - 2.$

Exercise 2. y'' + 5y' + 6y = 2xA.E. is $m^2 + 5m + 6 = 0$ i.e. (m+2)(m+3) = 0i.e. $m_1 = -2, m_2 = -3,$ $y_{CF} = Ae^{-2x} + Be^{-3x}$.

f(x) = 2x suggests substitution of $y_{PS} = Cx + D$ (C, D are undetermined constants)

$$y_{PS}'=C,\ y_{PS}''=0,$$
 substitution gives
$$0+5C+6(Cx+D)=2x \ \ {\rm i.e.} \ \ 5C+6D+6Cx=2x$$

Constant term :5C + 6D = 0Coefficient of x:6C = 2

i.e.
$$C = \frac{1}{3}$$

and $D = -\frac{5C}{6} = -\frac{5}{18}$

General solution, $y = y_{CF} + y_{PS}$

i.e.
$$y = Ae^{-2x} + Be^{-3x} + \frac{1}{3}x - \frac{5}{18}$$
.

Exercise 3. Parts (a)-(d) have same homogeneous equation i.e. y'' + 5y' - 9y = 0 with A.E. $m^2 + 5m - 9 = 0$ i.e. $m = \frac{1}{2} \left(-5 \pm \sqrt{25 - (-36)} \right)$ i.e. $m = -\frac{5}{2} \pm \frac{1}{2} \sqrt{61}$

Real different roots: $y_{CF} = Ae^{m_1x} + Be^{m_2x}$,

where
$$m_1 = -\frac{5}{2} + \frac{1}{2}\sqrt{61}$$

 $m_2 = -\frac{5}{2} - \frac{1}{2}\sqrt{61}$.

(a) $y'' + 5y' - 9y = x^2$

Try $y_{PS} = Cx^2 + Dx + E$, $\frac{dy_{PS}}{dx} = 2Cx + D$, $\frac{d^2y_{PS}}{dx^2} = 2C$

 $2C + 5(2Cx + D) - 9(Cx^{2} + Dx + E) = x^{2}$ Substitution: i.e. 2C + 5D - 9E = 0 (constant term) 10Cx - 9Dx = 0 (terms in x) $-9Cx^2 = x^2$ (terms in x^2) \Rightarrow -9C = 1 i.e. $C = -\frac{1}{6}$ 10C - 9D = 0 gives $D = \frac{10C}{2} = -\frac{10}{21}$ 2C + 5D - 9E = 0 gives $E = \frac{1}{9}(2C + 5D)$ $=\frac{1}{2}\left(-\frac{2}{2}-\frac{50}{21}\right)=\frac{1}{2}\left(-\frac{68}{21}\right)$ $=-\frac{68}{720}$

General solution is:

$$y = y_{CF} + y_{PS} = Ae^{m_1x} + Be^{m_2x} - \frac{1}{9}x^2 - \frac{10}{81}x - \frac{68}{729}.$$

(b)
$$y'' + 5y' - 9y = \cos 2x$$

Try
$$y_{PS} = C \cos 2x + D \sin 2x$$
$$y'_{PS} = -2C \sin 2x + 2D \cos 2x$$
$$y''_{PS} = -4C \cos 2x - 4D \sin 2x$$

Substitute:
$$-4C\cos 2x - 4D\sin 2x + 5 \cdot (-2C\sin 2x + 2D\cos 2x) -9(C\cos 2x + D\sin 2x) = \cos 2x$$

i.e.
$$(-4C+10D-9C)\cos 2x - (4D+10C+9D)\sin 2x = \cos 2x$$

i.e. $(-13C+10D)\cos 2x - (13D+10C)\sin 2x = \cos 2x$

Coefficients of $\cos 2x$: -13C + 10D = 1 (i) Coefficients of $\sin 2x$: 13D + 10C = 0 (ii)

(ii) gives
$$D = -\frac{10C}{13}$$
 then (i) gives $-13C - \frac{100C}{13} = 1$
i.e. $-\frac{13\cdot13-100}{13} = \frac{1}{C}$
i.e. $-\frac{13}{269} = C$

then
$$D = -\frac{10}{13} \cdot \left(-\frac{13}{269}\right) = +\frac{10}{269}$$

i.e. $y_{PS} = -\frac{13}{269} \cos 2x + \frac{10}{269} \sin 2x$

General solution is:

$$y = y_{CF} + y_{PS} = Ae^{m_1 x} + Be^{m_2 x} + \frac{1}{269}(10\sin 2x - 13\cos 2x).$$

(c)
$$y'' + 5y' - 9y = e^{4x}$$

Try $y_{PS} = Ce^{4x}$
i.e. $y'_{PS} = 4Ce^{4x}$
 $y''_{PS} = 16Ce^{4x}$
Substitute: $16Ce^{4x} + 20Ce^{4x} - 9Ce^{4x} = e^{4x}$
i.e. $(16C + 20C - 9C)e^{4x} = e^{4x}$
i.e. $27C = 1$
i.e. $C = \frac{1}{27}$

(by comparing coefficients of e^{4x})

i.e.
$$y_{PS} = \frac{1}{27}e^{4x}$$

General solution is:

$$y = y_{CF} + y_{PS} = Ae^{m_1x} + Be^{m_2x} + \frac{1}{27}e^{4x}$$
.
Toc

(d)
$$y'' + 5y' - 9y = e^{-2x} + 2 - x$$

Try $y_{PS} = Ce^{-2x} + Dx + E$ (i.e. sum of the forms " ke^{px} " and "linear in x")

i.e.
$$y'_{PS} = -2Ce^{-2x} + D$$

 $y''_{PS} = +4Ce^{-2x}$

Substitute: $4Ce^{-2x} - 10Ce^{-2x} + 5D - 9Ce^{-2x} - 9Dx - 9E = e^{-2x} + 2 - x$

Coeff.
$$e^{-2x}$$
: $4C - 10C - 9C = 1 \rightarrow C = -\frac{1}{15}$
Coeff. x : $-9D = -1 \rightarrow D = \frac{1}{9}$
Coeff. x^0 : $5D - 9E = 2 \rightarrow 5(\frac{1}{9}) - 9E = 2$
i.e. $E = -\frac{13}{81}$

i.e.
$$y_{PS} = -\frac{1}{15}e^{-2x} + \frac{1}{9}x - \frac{13}{81}$$

General solution is:

$$y = y_{CF} + y_{PS} = Ae^{m_1x} + Be^{m_2x} - \frac{1}{15}e^{-2x} + \frac{1}{9}x - \frac{13}{81}$$

Return to Exercise 3

•

Exercise 4.
$$y'' - \lambda^2 y = \sin 2x$$
A.E. is $m^2 - \lambda^2 = 0$ i.e. $m = \pm \lambda$ (real different roots)
 $y_{CF} = Ae^{\lambda x} + Be^{-\lambda x}$
 $f(x) = \sin 2x$ suggests trying $y_{PS} = A \sin 2x + B \cos 2x$
i.e. $y'_{PS} = 2A \cos 2x - 2B \sin 2x$
 $y''_{PS} = -4A \sin 2x - 4B \cos 2x$

Substitute:

Toc

$$-4A\sin 2x - 4B\cos 2x - \lambda^{2}A\sin 2x - \lambda^{2}B\cos 2x = \sin 2x$$

i.e. $(-4A - \lambda^{2}A)\sin 2x + (-4B - \lambda^{2}B)\cos 2x = \sin 2x$
Coeff. $\cos 2x$: $-4B - \lambda^{2}B = 0$ i.e. $B = 0$
Coeff. $\sin 2x$: $-4A - \lambda^{2}A = 1$ i.e. $A = -\frac{1}{4+\lambda^{2}}$
i.e. $y_{PS} = -\frac{\sin 2x}{4+\lambda^{2}}$;

general solution $y = y_{CF} + y_{PS} = Ae^{\lambda x} + Be^{-\lambda x} - \frac{\sin 2x}{4+\lambda^2}$.

Return to Exercise 4

Back

Exercise 5. $y'' - y = e^x$

A.E. is
$$m^2 - 1 = 0$$
 i.e. $m = \pm 1$, $y_{CF} = Ae^x + Be^{-x}$

 $f(x) = e^x$ suggests trying $y_{PS} = Ce^x \underline{BUT}$ THIS ALREADY AP-PEARS IN y_{CF} , therefore multiply this trial form by x.

Try
$$y_{PS} = Cxe^x, \ y'_{PS} = Cxe^x + Ce^x = C(1+x)e^x$$

 $y''_{PS} = C(1+x)e^x + Ce^x = C(2+x)e^x$
Substitute: $C(2+x)e^x - Cxe^x = e^x$
Coeff. e^x : $C(2+x) - Cx = 1$ i.e. $2C = 1$ i.e. $C = \frac{1}{2}$

 $\therefore y_{PS} = \frac{1}{2}xe^x$ and general solution is

$$y = y_{CF} + y_{PS} = Ae^x + Be^{-x} + \frac{1}{2}xe^x$$

Exercise 6. $y'' + y' - 2y = e^{-2x}$

A.E. is
$$m^2 + m - 2 = 0$$
 i.e. $(m+2)(m-1) = 0$

i.e. m = 1 or m = -2 i.e. $y_{CF} = Ae^x + Be^{-2x}$

Try
$$y_{PS} = Ce^{-2x}$$
? No. This already appears in y_{CF}
Try $y_{PS} = Cxe^{-2x}$ (i.e. multiply trial solution by x , until it does not appear in y_{CF})

i.e.
$$y'_{PS} = -2Cxe^{-2x} + Ce^{-2x} = (1-2x)Ce^{-2x}$$

 $y_{PS}'' = -2(1-2x)Ce^{-2x} + (-2)Ce^{-2x} = (-4+4x)Ce^{-2x}$

Substitute: $(-4+4x)Ce^{-2x} + (1-2x)Ce^{-2x} - 2Cxe^{-2x} = e^{-2x}$ Coeff. e^{-2x} : -4C+4xC+C-2xC-2Cx = 1i.e. $C = -\frac{1}{3}$, i.e. $y_{PS} = -\frac{1}{3}xe^{-2x}$

General solution is $y = y_{CF} + y_{PS} = Ae^x + Be^{-2x} - \frac{1}{3}xe^{-2x}$.

Exercise 7. $|y'' - 2y' + y = e^x|$ A.E. is $m^2 - 2m + 1 = 0$ i.e. $(m-1)^2 = 0$ i.e. m = 1 (twice) i.e. $y_{CF} = (A + Bx)e^x$ Try $y_{PS} = Ce^x$? No, it's in y_{CF} Try $y_{PS} = Cxe^x$? No. Also in y_{CF} ! Try $y_{PS} = Cx^2 e^x$. $y'_{PS} = 2xCe^x + Cx^2e^x, \ y''_{PS} = (2+2x)Ce^x + (2x+x^2)Ce^x$ i.e. $y'_{PS} = (2x + x^2)Ce^x = (2 + 4 + x^2)Ce^x$ Substitute: $(2+4x+x^2)Ce^x - 2(2x+x^2)Ce^x + Cx^2e^x = e^x$

Coeff. e^x : $(2+4x+x^2-4x-2x^2+x^2)C=1$ i.e. $C=\frac{1}{2}$

 $\therefore \quad y_{PS} = \frac{1}{2}x^2 e^x \text{ and general solution is}$ $y = y_{CF} + y_{PS} = (A + Bx)e^x + \frac{1}{2}x^2 e^x .$

Exercise 8. $y'' + 8y' + 17y = 2e^{-3x}$; y(0) = 2 and $y\left(\frac{\pi}{2}\right) = 0$

A.E. is
$$m^2 + 8m + 17 = 0$$
 i.e. $m = \frac{1}{2} \left(-8 \pm \sqrt{64 - 68} \right) = -4 \pm i$
i.e. $y_{CF} = e^{-4x} (A \cos x + B \sin x).$

$$\begin{split} f(x) &= 2e^{-3x}, \text{ so try } y_{PS} = Ce^{-3x} \\ \text{i.e. } y'_{PS} &= -3Ce^{-3x}, \quad y''_{PS} = 9Ce^{-3x} \\ \text{Substitute:} & 9Ce^{-3x} + 8 \cdot (-3)Ce^{-3x} + 17Ce^{-3x} = 2e^{-3x} \\ \text{Coeff. } e^{-3x} : & 9C - 24C + 17C = 2 \quad \text{i.e. } C = 1 \\ y_{PS} &= e^{-3x} , \quad \text{general solution} \\ \hline y &= y_{CF} + y_{PS} = e^{-4x}(A\cos x + B\sin x) + e^{-3x} . \end{split}$$

<u>Now</u> use the boundary conditions.

$$\begin{array}{lll} y(0) = 2 & \mbox{means } y = 2 \mbox{ when } x = 0 & \mbox{i.e. } 2 = e^0 (A \cos 0 + B \sin 0) + e^0 \\ & \mbox{i.e. } 2 = A + 1 \mbox{ i.e. } A = 1 \\ y(\frac{\pi}{2}) = 0 & \mbox{means } y = 0 \mbox{ when } x = \frac{\pi}{2} & \mbox{i.e. } 0 = e^{-2\pi} (A \cos \frac{\pi}{2} + B \sin \frac{\pi}{2}) + e^{-\frac{3\pi}{2}} \\ & \mbox{cos } \frac{\pi}{2} = 0 \\ & \mbox{sin } \frac{\pi}{2} = 1 \\ & \mbox{i.e. } 0 = e^{-2\pi} (0 + B) + e^{-\frac{3\pi}{2}} \\ & \mbox{i.e. } 0 = e^{-2\pi} B + e^{-\frac{3\pi}{2}} \\ & \mbox{i.e. } 0 = B + e^{-\frac{3\pi}{2}} \cdot e^{2\pi} \\ & \mbox{i.e. } 0 = B + e^{\frac{\pi}{2}} \mbox{i.e. } B = -e^{\frac{\pi}{2}} \\ & \mbox{Required particular solution is} & \mbox{ } y = e^{-4x} \left(\cos x - e^{\frac{\pi}{2}} \sin x \right) + e^{-3x} \end{array}$$

Exercise 9. $y'' + y' - 12y = 4e^{2x}$; y(0) = 7 and y'(0) = 0

A.E. is
$$m^2 + m - 12 = 0$$
 i.e. $(m - 3)(m + 4) = 0$

i.e. m = 3 or m = -4 i.e. $y_{CF} = Ae^{3x} + Be^{-4x}$

Try $y_{PS} = Ce^{2x}$, $y'_{PS} = 2Ce^{2x}$, $y''_{PS} = 4Ce^{2x}$

Substitute: $4Ce^{2x} + 2Ce^{2x} - 12Ce^{2x} = 4e^{2x}$ Coeff. e^{2x} : 4C + 2C - 12C = 4 i.e. $C = -\frac{2}{3}$

$$y_{PS} = -\frac{2}{3}e^{2x}$$
, general solution is $y = Ae^{3x} + Be^{-4x} - \frac{2}{3}e^{2x}$.

Apply boundary conditions to general solution (as always)

$$y(0) = 7$$
 means $y = 7$ when $x = 0$ i.e. $7 = Ae^0 + Be^0 - \frac{2}{3}e^0$
i.e. $7 = A + B - \frac{2}{3}$
i.e. $21 = 3A + 3B - 2$ (i)

$$y'(0) = 0$$
 means $y' = 0$ when $x = 0$,
where $y' \equiv \frac{dy}{dx} = 3Ae^{3x} - 4Be^{-4x} - \frac{4}{3}e^{2x}$
i.e. $0 = 3Ae^0 - 4Be^0 - \frac{4}{3}e^0$
i.e. $\left[\frac{4}{3} = 3A - 4B\right]$ (ii)

Solve equations (i) and (ii) simultaneously to find A and B

(i)-(ii) gives
$$21 - \frac{4}{3} = 7B - 2$$
 i.e. $(23 - \frac{4}{3}) \cdot \frac{1}{7} = B$
i.e. $\frac{65}{3} \cdot \frac{1}{7} = B$ i.e. $B = \frac{65}{21}$,
then (ii) gives $3A = \frac{4}{3} + 4B$ i.e. $\frac{4}{3} + \frac{260}{21} = \frac{288}{21} = 3A$
i.e. $A = \frac{96}{21} = \frac{32}{7}$.

Particular solution is

$$y = \frac{32}{7}e^{3x} + \frac{65}{21}e^{-4x} - \frac{2}{3}e^{2x} .$$

Exercise 10. $|y'' + 3y' + 2y = 10 \cos 2x$; y(0) = 1 and y'(0) = 0

A.E. is
$$m^2 + 3m + 2 = 0$$
 i.e. $(m+2)(m+1) = 0$

i.e. m = -2 or m - 1 i.e. $y_{CF} = Ae^{-2x} + Be^{-x}$

Try
$$y_{PS} = C \cos 2x + D \sin 2x$$
 i.e. $y'_{PS} = -2C \sin 2x + 2D \cos 2x$
 $y''_{PS} = -4C \cos 2x - 4D \sin 2x$

Substitute:

$$-4C\cos 2x - 4D\sin 2x + 3(-2C\sin 2x + 2D\cos 2x) + 2(C\cos 2x + D\sin 2x) = 10\cos 2x$$

Coeff.
$$\cos 2x$$
: $-4C + 6D + 2C = 10$ i.e. $-2C + 6D = 10$ (i)

Coeff.
$$\sin 2x$$
: $-4D - 6C + 2D = 0$ i.e. $-2D - 6C = 0$ (ii)

Solve (i) and (ii) for C and D

(-3) times (i) gives
$$+6C - 18D = -30$$
 (i)
ADD $-6C - 2D = 0$ (ii)
 $-20D = -30$ i.e. $D = \frac{3}{2}$,

(ii) then gives
$$-2\left(\frac{3}{2}\right) - 6C = 0$$
 i.e. $-3 - 6C = 0$
i.e. $C = -\frac{1}{2}$.

$$\therefore y_{PS} = -\frac{1}{2}\cos 2x + \frac{3}{2}\sin 2x;$$

general solution is:
$$y = Ae^{-2x} + Be^{-x} - \frac{1}{2}\cos 2x + \frac{3}{2}\sin 2x$$

Boundary condition y(0) = 1 gives $1 = A + B - \frac{1}{2}$ i.e. $\underline{A + B = \frac{3}{2}}$ (iii) $y' = -2Ae^{-2x} - Be^{-x} + \sin 2x + 3\cos 2x$

:
$$y'(0) = 0$$
 gives $0 = -2A - B + 3$ i.e. $2A + B = 3$ (iv)

Solve (iii) and (iv) to find A and B (iv)-(iii) gives $A = 3 - \frac{3}{2} = \frac{3}{2}$. Then, (iv) gives $2\left(\frac{3}{2}\right) + B = 3$ i.e. B = 0

Particular solution is $y = \frac{3}{2}e^{-2x} - \frac{1}{2}\cos 2x + \frac{3}{2}\sin 2x$.

Exercise 11. $|y'' + 4y' + 5y = 2e^{-2x}$; y(0) = 1 and y'(0) = -2

A.E. is
$$m^2 + 4m + 5 = 0$$
 i.e. $m = \frac{1}{2} \left(-4 \pm \sqrt{16 - 20} \right) = -2 \pm i$
i.e. $y_{CF} = e^{-2x} (A \cos x + B \sin x)$

Try
$$y_{PS} = Ce^{-2x}, y'_{PS} = -2Ce^{-2x}, y''_{PS} = 4Ce^{-2x}$$

Substitute: $4Ce^{-2x} - 8Ce^{-2x} + 5Ce^{-2x} = 2e^{-2x}$
Coeff. e^{-2x} : $4C - 8C + 5C = 2$ i.e. $C = 2$.
 $y_{PS} = 2e^{-2x}$, general solution is
 $y = e^{-2x}(A\cos x + B\sin x) + 2e^{-2x}$

Boundary condition
$$y(0) = 1$$
: $1 = A \cos 0 + B \sin 0 + 2$
i.e. $1 = A + 2$ i.e. $A = -1$

$$y' = -2e^{-2x}(A\cos x + B\sin x) + e^{-2x} \cdot (-A\sin x + B\cos x) - 4e^{-2x}$$

y'(0) = -2 gives $-2 = -2 \cdot (-1+0) + (0+B) - 4$ i.e. -2 = 2 + B - 4 i.e. B = 0.

Particular solution is

$$y = e^{-2x} \cdot (-\cos x + 0) + 2e^{-2x}$$

i.e. $y = e^{-2x}(2 - \cos x)$.

Exercise 12. $\left| \frac{d^2x}{d\tau^2} + 4\frac{dx}{d\tau} + 3x = e^{-3\tau}; \quad x = \frac{1}{2} \text{ and } \frac{dx}{d\tau} = -2 \text{ at } \tau = 0 \right|$

A.E. is $m^2 + 4m + 3 = 0$ i.e. (m+3)(m+1) = 0

i.e. m = -3 or m = -1 i.e. $x_{CF} = Ae^{-3\tau} + Be^{-\tau}$

Try $x_{PS} = Ce^{-3\tau}$? No. Already in x_{CF} Try $x_{PS} = C\tau e^{-3\tau}$, $\frac{dx_{PS}}{d\tau} = Ce^{-3\tau} - 3\tau Ce^{-3\tau}$ $= (1 - 3\tau)Ce^{-3\tau}$. $\frac{d^2x_{PS}}{d\tau^2} = -3Ce^{-3\tau} - 3(1 - 3\tau)Ce^{-3\tau}$

$$= (9\tau - 6)Ce^{-3\tau}$$

Substitute: $(9\tau - 6)Ce^{-3\tau} + 4(1 - 3\tau)Ce^{-3\tau} + 3C\tau e^{-3\tau} = e^{-3\tau}$ Coeff. $e^{-3\tau}$: $9\tau C - 6C + 4C - 12\tau C + 3C\tau = 1$ i.e. $C = -\frac{1}{2}$ Toc **Solution** Back

$$x_{PS} = -\frac{1}{2}\tau e^{-3\tau}$$
, general solution is
$$x = x_{CF} + x_{PS} = Ae^{-3\tau} + Be^{-\tau} - \frac{1}{2}\tau e^{-3\tau}$$

Boundary conditions $x = \frac{1}{2}$ when $\tau = 0$: $\frac{1}{2} = A + B$ (i)

$$\frac{dx}{d\tau} = -3Ae^{-3\tau} - Be^{-\tau} + \frac{3}{2}\tau e^{-3\tau} - \frac{1}{2}e^{-3\tau}$$
$$\frac{dx}{d\tau} = -2 \text{ when } \tau = 0: \quad -2 = -3A - B - \frac{1}{2}$$
$$\text{i.e.} \quad -\frac{3}{2} = -3A - B \qquad (\text{ii})$$

Solve (i) and (ii) for A and B: (i)+(ii) gives $\frac{1}{2}-\frac{3}{2} = A-3A$ i.e. $A = \frac{1}{2}$ Then, (i) gives B = 0.

Particular solution is

$$x = \frac{1}{2}e^{-3\tau} - \frac{1}{2}\tau e^{-3\tau} = \frac{1}{2}(1-\tau)e^{-3\tau}.$$

Exercise 13. $\left| \frac{d^2y}{d\tau^2} + 4\frac{dy}{d\tau} + 5y = 6\sin\tau \right|$

A.E. is $m^2 + 4m + 5 = 0$ i.e. $m = \frac{1}{2} \left(-4 \pm \sqrt{16 - 20} \right) = -2 \pm i$ $y_{CF} = e^{-2\tau} (A \cos \tau + B \sin \tau)$

[Since $e^{-2\tau}$ multiplies $\sin \tau$ in y_{CF} , $\sin \tau$ is an independent function with respect to the components of y_{CF}].

Try
$$y_{PS} = C \cos \tau + D \sin \tau$$

 $y'_{PS} = -C \sin \tau + D \cos \tau$
 $y''_{PS} = -C \cos \tau - D \sin \tau$ (each dash denoting $\frac{d}{d\tau}$, here)

Substitute: $-C\cos\tau - D\sin\tau + 4(-C\sin\tau + D\cos\tau) + 5(C\cos\tau + D\sin\tau) = 6\sin\tau$

Coeff.
$$\cos \tau$$
: $-C + 4D + 5C = 0$ i.e. $C + D = 0$ (i)
Coeff. $\sin \tau$: $-D - 4C + 5D = 6$ i.e. $\frac{-C + D = \frac{3}{2}}{2}$ (ii)
ADD $\frac{2D = \frac{3}{2}}{2}$
i.e. $D = \frac{3}{4}$ and $C = -\frac{3}{4}$

General solution:
$$y = e^{-2\tau} (A \cos \tau + B \sin \tau) - \frac{3}{4} (\cos \tau - \sin \tau)$$
.

