Differential Equations

SECOND ORDER (inhomogeneous)

Graham S McDonald

A Tutorial Module for learning to solve 2nd order (inhomogeneous) differential equations

- Table of contents
- Begin Tutorial
© 2004 g.s.mcdonald@salford.ac.uk

Table of contents

1. Theory
2. Exercises
3. Answers
4. Standard derivatives
5. Finding $y_{C F}$
6. Tips on using solutions

Full worked solutions

Section 1: Theory

1 Theory

This Tutorial deals with the solution of second order linear o.d.e.'s with constant coefficients (a, b and c), i.e. of the form:

$$
a \frac{d^{2} y}{d x^{2}}+b \frac{d y}{d x}+c y=f(x)
$$

The first step is to find the general solution of the homogeneous equation [i.e. as $(*)$, except that $f(x)=0$]. This gives us the "complementary function" $y_{C F}$.

The second step is to find a particular solution $y_{P S}$ of the full equation $\overline{(*) \text {. Assume that } y_{P S} \text { is a more general form of } f(x) \text {, having }{ }^{\text {a }} \text {, }}$ undetermined coefficients, as shown in the following table:

$f(x)$	Form of $y_{P S}$
$k($ a constant	C
linear in x	$C x+D$
quadratic in x	$C x^{2}+D x+E$
$k \sin p x$ or $k \cos p x$	$C \cos p x+D \sin p x$
$k e^{p x}$	$C e^{p x}$
sum of the above	sum of the above
product of the above	product of the above
(where p is a constant)	

Note: If the suggested form of $y_{P S}$ already appears in the complementary function then multiply this suggested form by x.

Substitution of $y_{P S}$ into $(*)$ yields values for the undetermined coefficients (C, D, etc). Then,

General solution of $(*)=y_{C F}+y_{P S}$

2 Exercises

Find the general solution of the following equations. Where boundary conditions are also given, derive the appropriate particular solution. Click on Exercise links for full worked solutions (there are 13 exercises in total)
$\left[\right.$ Notation: $\left.\quad y^{\prime \prime}=\frac{d^{2} y}{d x^{2}}, \quad y^{\prime}=\frac{d y}{d x}\right]$
Exercise 1. $y^{\prime \prime}-2 y^{\prime}-3 y=6$
Exercise 2. $y^{\prime \prime}+5 y^{\prime}+6 y=2 x$
EXERCISE 3. (a) $y^{\prime \prime}+5 y^{\prime}-9 y=x^{2}$
(b) $y^{\prime \prime}+5 y^{\prime}-9 y=\cos 2 x$
(c) $y^{\prime \prime}+5 y^{\prime}-9 y=e^{4 x}$
(d) $y^{\prime \prime}+5 y^{\prime}-9 y=e^{-2 x}+2-x$

Exercise 4. $y^{\prime \prime}-\lambda^{2} y=\sin 2 x$

- Theory Answers - Derivatives \bigcirc Finding $y_{C F}$ - Tips

Section 2: Exercises
Exercise 5. $y^{\prime \prime}-y=e^{x}$
Exercise 6. $y^{\prime \prime}+y^{\prime}-2 y=e^{-2 x}$
Exercise 7. $y^{\prime \prime}-2 y^{\prime}+y=e^{x}$
EXERCISE 8. $y^{\prime \prime}+8 y^{\prime}+17 y=2 e^{-3 x} ; \quad y(0)=2$ and $\quad y\left(\frac{\pi}{2}\right)=0$
Exercise 9. $y^{\prime \prime}+y^{\prime}-12 y=4 e^{2 x} ; \quad y(0)=7$ and $\quad y^{\prime}(0)=0$
ExErcise 10. $y^{\prime \prime}+3 y^{\prime}+2 y=10 \cos 2 x ; y(0)=1$ and $\quad y^{\prime}(0)=0$
ExErcise 11. $y^{\prime \prime}+4 y^{\prime}+5 y=2 e^{-2 x} ; \quad y(0)=1$ and $\quad y^{\prime}(0)=-2$
EXERCISE 12. $\frac{d^{2} x}{d \tau^{2}}+4 \frac{d x}{d \tau}+3 x=e^{-3 \tau} ; \quad x=\frac{1}{2}$ and $\frac{d x}{d \tau}=-2$ at $\tau=0$
EXERCISE 13. $\frac{d^{2} y}{d \tau^{2}}+4 \frac{d y}{d \tau}+5 y=6 \sin \tau$

- Theory - Answers - Derivatives \bigcirc Finding $y_{C F}$ - Tips

Section 3: Answers

3 Answers

1. $y=A e^{-x}+B e^{3 x}-2$,
2. $y=A e^{-2 x}+B e^{-3 x}+\frac{x}{3}-\frac{5}{18}$,
3. General solutions are $y=y_{C F}+y_{P S}$
where $y_{C F}=A e^{m_{1} x}+B e^{m_{2} x} \quad\left(m_{1,2}=-\frac{5}{2} \pm \frac{1}{2} \sqrt{61}\right)$
and (a) $y_{P S}=-\frac{1}{9} x^{2}-\frac{10}{81} x-\frac{68}{729}$
(b) $y_{P S}=-\frac{13}{269} \cos 2 x+\frac{10}{269} \sin 2 x$
(c) $y_{P S}=\frac{1}{27} e^{4 x}$
(d) $y_{P S}=-\frac{1}{15} e^{-2 x}+\frac{1}{9} x-\frac{13}{81}$,
4. $y=A e^{+\lambda x}+B e^{-\lambda x}-\frac{\sin 2 x}{4+\lambda^{2}}$,
5. $y=A e^{x}+B e^{-x}+\frac{1}{2} x e^{x}$,

Section 3: Answers
6. $y=A e^{x}+B e^{-2 x}-\frac{1}{3} x e^{-2 x}$,
7. $y=(A+B x) e^{x}+\frac{1}{2} x^{2} e^{x}$,
8. $y=e^{-4 x}(A \cos x+B \sin x)+e^{-3 x}$;
$y=e^{-4 x}\left(\cos x-e^{\frac{\pi}{2}} \sin x\right)+e^{-3 x}$,
9. $y=A e^{3 x}+B e^{-4 x}-\frac{2}{3} e^{2 x}$;
$y=\frac{32}{7} e^{3 x}+\frac{65}{21} e^{-4 x}-\frac{2}{3} e^{2 x}$,
10. $y=A e^{-2 x}+B e^{-x}-\frac{1}{2} \cos 2 x+\frac{3}{2} \sin 2 x$;
$y=\frac{3}{2} e^{-2 x}-\frac{1}{2} \cos 2 x+\frac{3}{2} \sin 2 x$,
11. $y=e^{-2 x}(A \cos x+B \sin x)+2 e^{-2 x}$;

$$
y=e^{-2 x}(2-\cos x),
$$

12. $x=A e^{-3 \tau}+B e^{-\tau}-\frac{1}{2} \tau e^{-3 \tau}$;
$x=\frac{1}{2}(1-\tau) e^{-3 \tau}$,
13. $y=e^{-2 \tau}(A \cos \tau+B \sin \tau)-\frac{3}{4}(\cos \tau-\sin \tau)$.

Section 4: Standard derivatives

4 Standard derivatives

$f(x)$	$f^{\prime}(x)$	$f(x)$	$f^{\prime}(x)$
x^{n}	$n x^{n-1}$	$[g(x)]^{n}$	$n[g(x)]^{n-1} g^{\prime}(x)$
$\ln x$	$\frac{1}{x} \quad(x>0)$	$\ln g(x)$	$\frac{1}{g(x)} g^{\prime}(x) \quad(g(x)>0)$
e^{x}	e^{x}	a^{x}	$a^{x} \ln a \quad(a>0)$
$\sin x$	$\cos x$	$\sinh x$	$\cosh x$
$\cos x$	$-\sin x$	$\cosh x$	$\sinh x$
$\tan x$	$\sec 2 x$	$\tanh x$	$\operatorname{sech} 2 x$
$\operatorname{cosec} x$	$-\operatorname{cosec} x \cot x$	$\operatorname{cosech} x$	$-\operatorname{cosech} x \operatorname{coth} x$
$\sec x$	$\sec x \tan x$	$\operatorname{sech} x$	$-\operatorname{sech} x \tanh x$
$\cot x$	$-\operatorname{cosec}{ }^{2} x$	$\operatorname{coth} x$	$-\operatorname{cosech}{ }^{2} x$

Toc

Section 4: Standard derivatives

$f(x)$	$f^{\prime}(x)$	$f(x)$	$f^{\prime}(x)$
$\tan ^{-1} x$	$\frac{1}{1+x^{2}}$	$\tanh ^{-1} x$	$\frac{1}{1-x^{2}}(-1<x<1)$
$\cos ^{-1} x$	$-\frac{1}{\sqrt{1-x^{2}}}(-1<x<1)$	$\cosh ^{-1} x$	$\frac{1}{\sqrt{x^{2}-1}}(x>1)$
$\sin ^{-1} x$	$\frac{1}{\sqrt{1-x^{2}}}(-1<x<1)$	$\sinh ^{-1} x$	$\frac{1}{\sqrt{x^{2}+1}}$

where $\begin{array}{llll}\operatorname{cosec} x=1 / \sin x, & \sec x=1 / \cos x, & \cot x=1 / \tan x \\ \operatorname{cosech} x=1 / \sinh x, & \operatorname{sech} x=1 / \cosh x, & \operatorname{coth} x=1 / \tanh x\end{array}$

5 Finding $y_{C F}$

One considers the differential equation with $\mathrm{RHS}=0$. Substituting a trial solution of the form $y=A e^{m x}$ yields an "auxiliary equation":

$$
a m^{2}+b m+c=0
$$

This will have two roots (m_{1} and m_{2}).
The general solution $y_{C F}$, when $\mathrm{RHS}=0$, is then constructed from the possible forms (y_{1} and y_{2}) of the trial solution. The auxiliary equation may have:
i) real different roots,

$$
m_{1} \text { and } m_{2} \rightarrow y_{C F}=y_{1}+y_{2}=A e^{m_{1} x}+B e^{m_{2} x}
$$

or
ii) real equal roots,

$$
m_{1}=m_{2} \rightarrow y_{C F}=y_{1}+x y_{2}=(A+B x) e^{m_{1} x}
$$

or iii) complex roots,

$$
p \pm i q \rightarrow y_{C F}=y_{1}+y_{2} \equiv e^{p x}(A \cos q x+B \sin q x)
$$

Section 6: Tips on using solutions

6 Tips on using solutions

- When looking at the THEORY, ANSWERS, DERIVATIVES, FINDING $y_{C F}$ or TIPS pages, use the Back button (at the bottom of the page) to return to the exercises
- Use the solutions intelligently. For example, they can help you get started on an exercise, or they can allow you to check whether your intermediate results are correct
- Try to make less use of the full solutions as you work your way through the Tutorial

Solutions to exercises

Full worked solutions

Exercise 1. $y^{\prime \prime}-2 y^{\prime}-3 y=6$
Auxiliary equation (A.E.) from the homogeneous equation

$$
y^{\prime \prime}-2 y^{\prime}-3 y=0
$$

is $\quad m^{2}-2 m-3=0$
i.e. $\quad(m-3)(m+1)=0 \quad$ i.e. $\quad m_{1}=3, m_{2}=-1$.

Real different roots : homogeneous equation has general solution

$$
y=A e^{m_{1} x}+B e^{m_{2} x}
$$

i.e. $y_{C F}=A e^{-x}+B e^{3 x} \quad$ (complementary function).

Solutions to exercises

$$
\begin{array}{ll}
f(x)=6 & \text { suggests form of particular solution } \\
y_{P S}=C & (C=\text { undetermined constant }) \\
y_{P S}^{\prime \prime}=y_{P S}^{\prime}=0 & \text { when } y_{P S}=\text { constant } \\
\text { substitute } & y_{P S}=C: 0+0-3 C=6 \quad \text { i.e. } C=-2 .
\end{array}
$$

General solution, $y=y_{C F}+y_{P S}=A e^{-x}+B e^{3 x}-2$.
Return to Exercise 1

Solutions to exercises
Exercise 2. $y^{\prime \prime}+5 y^{\prime}+6 y=2 x$
A.E. is $\quad m^{2}+5 m+6=0 \quad$ i.e. $\quad(m+2)(m+3)=0$

$$
\text { i.e. } \quad m_{1}=-2, m_{2}=-3, \quad \underline{y_{C F}}=A e^{-2 x}+B e^{-3 x} .
$$

$f(x)=2 x$ suggests substitution of $y_{P S}=C x+D(C, D$ are undetermined constants)
$y_{P S}^{\prime}=C, y_{P S}^{\prime \prime}=0$, substitution gives

$$
0+5 C+6(C x+D)=2 x \text { i.e. } 5 C+6 D+6 C x=2 x
$$

Constant term :

$$
\begin{aligned}
5 C+6 D & =0 \\
6 C & =2
\end{aligned}
$$

Coefficient of x :

$$
\begin{array}{rr}
\text { i.e. } & C=\frac{1}{3} \\
\text { and } & D=-\frac{5 C}{6}=-\frac{5}{18}
\end{array}
$$

Solutions to exercises
General solution, $\quad y=y_{C F}+y_{P S}$

$$
\text { i.e. } \quad y=A e^{-2 x}+B e^{-3 x}+\frac{1}{3} x-\frac{5}{18} .
$$

Return to Exercise 2

Solutions to exercises
Exercise 3. Parts (a)-(d) have same homogeneous equation
i.e. $\quad y^{\prime \prime}+5 y^{\prime}-9 y=0 \quad$ with A.E. $\quad m^{2}+5 m-9=0$

$$
\begin{array}{ll}
\text { i.e. } & m=\frac{1}{2}(-5 \pm \sqrt{25-(-36)}) \\
\text { i.e. } & m=-\frac{5}{2} \pm \frac{1}{2} \sqrt{61}
\end{array}
$$

Real different roots: $\quad y_{C F}=A e^{m_{1} x}+B e^{m_{2} x}$,

$$
\begin{aligned}
\text { where } & m_{1}=-\frac{5}{2}+\frac{1}{2} \sqrt{61} \\
& m_{2}=-\frac{5}{2}-\frac{1}{2} \sqrt{61} .
\end{aligned}
$$

(a) $y^{\prime \prime}+5 y^{\prime}-9 y=x^{2}$
$\operatorname{Try} y_{P S}=C x^{2}+D x+E, \quad \frac{d y_{P S}}{d x}=2 C x+D, \quad \frac{d^{2} y_{P S}}{d x^{2}}=2 C$

Solutions to exercises
Substitution: $\quad 2 C+5(2 C x+D)-9\left(C x^{2}+D x+E\right)=x^{2}$

$$
\begin{array}{rlrl}
\text { i.e. } \quad 2 C+5 D-9 E & =0 \quad(\text { constant term }) \\
10 C x-9 D x & =0 \quad(\text { terms in } x) \\
-9 C x^{2} & =x^{2} \quad\left(\text { terms in } x^{2}\right) \\
\Rightarrow \quad-9 C=1 \quad \text { i.e. } & C & =-\frac{1}{9} \\
& & & \\
& & & =\frac{10 C}{9}=-\frac{10}{81} \\
10 C-9 D=0 \quad \text { gives } & & & =\frac{1}{9}(2 C+5 D) \\
2 C+5 D-9 E=0 \quad \text { gives } & & =\frac{1}{9}\left(-\frac{2}{9}-\frac{50}{81}\right)=\frac{1}{9}\left(-\frac{68}{81}\right) \\
& & & \\
& & & =-\frac{68}{729}
\end{array}
$$

General solution is:

$$
y=y_{C F}+y_{P S}=A e^{m_{1} x}+B e^{m_{2} x}-\frac{1}{9} x^{2}-\frac{10}{81} x-\frac{68}{729} .
$$

Solutions to exercises
(b) $y^{\prime \prime}+5 y^{\prime}-9 y=\cos 2 x$

Try

$$
\begin{aligned}
& y_{P S}=C \cos 2 x+D \sin 2 x \\
& y_{P S}^{\prime}=-2 C \sin 2 x+2 D \cos 2 x \\
& y_{P S}^{\prime \prime}=-4 C \cos 2 x-4 D \sin 2 x
\end{aligned}
$$

Substitute: $\quad-4 C \cos 2 x-4 D \sin 2 x+5 \cdot(-2 C \sin 2 x+2 D \cos 2 x)$

$$
-9(C \cos 2 x+D \sin 2 x)=\cos 2 x
$$

$$
\text { i.e. } \quad(-4 C+10 D-9 C) \cos 2 x-(4 D+10 C+9 D) \sin 2 x=\cos 2 x
$$

$$
\begin{equation*}
\text { i.e. } \quad(-13 C+10 D) \cos 2 x-(13 D+10 C) \sin 2 x=\cos 2 x \tag{i}
\end{equation*}
$$

Coefficients of $\cos 2 x: \quad-13 C+10 D=1$
Coefficients of $\sin 2 x: \quad 13 D+10 C=0$

Solutions to exercises
(ii) gives $D=-\frac{10 C}{13}$ then (i) gives $\quad-13 C-\frac{100 C}{13}=1$

$$
\begin{array}{lr}
\text { i.e. } & -\frac{13 \cdot 13-100}{13}=\frac{1}{C} \\
\text { i.e. } & -\frac{13}{269}=C
\end{array}
$$

$$
\begin{gathered}
\text { then } D=-\frac{10}{13} \cdot\left(-\frac{13}{269}\right)=+\frac{10}{269} \\
\text { i.e. } y_{P S}=-\frac{13}{269} \cos 2 x+\frac{10}{269} \sin 2 x
\end{gathered}
$$

General solution is:

$$
y=y_{C F}+y_{P S}=A e^{m_{1} x}+B e^{m_{2} x}+\frac{1}{269}(10 \sin 2 x-13 \cos 2 x) .
$$

Solutions to exercises
(c) $y^{\prime \prime}+5 y^{\prime}-9 y=e^{4 x}$

Try

$$
\begin{aligned}
y_{P S} & =C e^{4 x} \\
y_{P S}^{\prime} & =4 C e^{4 x} \\
y_{P S}^{\prime \prime} & =16 C e^{4 x}
\end{aligned}
$$

i.e.

Substitute: $\quad 16 C e^{4 x}+20 C e^{4 x}-9 C e^{4 x}=e^{4 x}$

$$
\begin{aligned}
\text { i.e. } & (16 C+20 C-9 C) e^{4 x} & =e^{4 x} \\
\text { i.e. } & 27 C & =1 \\
\text { i.e. } & C & =\frac{1}{27}
\end{aligned}
$$

(by comparing coefficients of $e^{4 x}$)

$$
\text { i.e. } \quad y_{P S}=\frac{1}{27} e^{4 x}
$$

General solution is:

$$
y=y_{C F}+y_{P S}=A e^{m_{1} x}+B e^{m_{2} x}+\frac{1}{27} e^{4 x} .
$$

Solutions to exercises
(d) $y^{\prime \prime}+5 y^{\prime}-9 y=e^{-2 x}+2-x$

Try $y_{P S}=C e^{-2 x}+D x+E$ (i.e. sum of the forms " $k e^{p x}$ " and "linear in x ")
i.e. $\quad y_{P S}^{\prime}=-2 C e^{-2 x}+D$

$$
y_{P S}^{\prime \prime}=+4 C e^{-2 x}
$$

Substitute: $4 C e^{-2 x}-10 C e^{-2 x}+5 D-9 C e^{-2 x}-9 D x-9 E=e^{-2 x}+2-x$
Coeff. $e^{-2 x}: \quad 4 C-10 C-9 C=1 \quad \rightarrow \quad C=-\frac{1}{15}$
Coeff. x :

$$
-9 D=-1 \quad \rightarrow \quad D=\frac{1}{9}
$$

Coeff. x^{0} :

$$
\begin{aligned}
5 D-9 E=2 \rightarrow & 5\left(\frac{1}{9}\right)-9 E=2 \\
& \text { i.e. } E=-\frac{13}{81}
\end{aligned}
$$

i.e. $y_{P S}=-\frac{1}{15} e^{-2 x}+\frac{1}{9} x-\frac{13}{81}$

Solutions to exercises
General solution is:

$$
y=y_{C F}+y_{P S}=A e^{m_{1} x}+B e^{m_{2} x}-\frac{1}{15} e^{-2 x}+\frac{1}{9} x-\frac{13}{81} .
$$

Return to Exercise 3

Exercise 4. $y^{\prime \prime}-\lambda^{2} y=\sin 2 x$
A.E. is $\quad m^{2}-\lambda^{2}=0$ i.e. $m= \pm \lambda \quad$ (real different roots)

$$
y_{C F}=A e^{\lambda x}+B e^{-\lambda x}
$$

$f(x)=\sin 2 x$ suggests trying $\quad y_{P S}=A \sin 2 x+B \cos 2 x$

$$
\begin{aligned}
& \text { i.e. } \quad y_{P S}^{\prime}=2 A \cos 2 x-2 B \sin 2 x \\
& y_{P S}^{\prime \prime}=-4 A \sin 2 x-4 B \cos 2 x
\end{aligned}
$$

Substitute:
$-4 A \sin 2 x-4 B \cos 2 x-\lambda^{2} A \sin 2 x-\lambda^{2} B \cos 2 x=\sin 2 x$
i.e. $\left(-4 A-\lambda^{2} A\right) \sin 2 x+\left(-4 B-\lambda^{2} B\right) \cos 2 x=\sin 2 x$

Coeff. $\cos 2 x: \quad-4 B-\lambda^{2} B=0 \quad$ i.e. $B=0$
Coeff. $\sin 2 x: \quad-4 A-\lambda^{2} A=1$ i.e. $A=-\frac{1}{4+\lambda^{2}}$
i.e.

$$
y_{P S}=-\frac{\sin 2 x}{4+\lambda^{2}} ;
$$

general solution $y=y_{C F}+y_{P S}=A e^{\lambda x}+B e^{-\lambda x}-\frac{\sin 2 x}{4+\lambda^{2}}$.
Return to Exercise 4

Solutions to exercises
Exercise 5. $y^{\prime \prime}-y=e^{x}$
A.E. is $\quad m^{2}-1=0 \quad$ i.e. $\quad m= \pm 1, \quad \underline{y_{C F}}=A e^{x}+B e^{-x}$
$f(x)=e^{x}$ suggests trying $y_{P S}=C e^{x}$ BUT THIS ALREADY APPEARS IN $y_{C F}$, therefore multiply this trial form by x.

Try

$$
\begin{aligned}
& y_{P S}=C x e^{x}, y_{P S}^{\prime}=C x e^{x}+C e^{x}=C(1+x) e^{x} \\
& y_{P S}^{\prime \prime}=C(1+x) e^{x}+C e^{x}=C(2+x) e^{x}
\end{aligned}
$$

Substitute: $\quad C(2+x) e^{x}-C x e^{x}=e^{x}$
Coeff. $e^{x}: \quad C(2+x)-C x=1 \quad$ i.e. $\quad 2 C=1 \quad$ i.e. $\quad C=\frac{1}{2}$
$\therefore y_{P S}=\frac{1}{2} x e^{x}$ and general solution is

$$
y=y_{C F}+y_{P S}=A e^{x}+B e^{-x}+\frac{1}{2} x e^{x} .
$$

Return to Exercise 5

Solutions to exercises
Exercise 6. $y^{\prime \prime}+y^{\prime}-2 y=e^{-2 x}$
A.E. is $\quad m^{2}+m-2=0 \quad$ i.e. $\quad(m+2)(m-1)=0$

$$
\text { i.e. } \quad m=1 \text { or } m=-2 \quad \text { i.e. } \quad \underline{y_{C F}}=A e^{x}+B e^{-2 x}
$$

Try $\quad y_{P S}=C e^{-2 x}$? No. This already appears in $y_{C F}$
Try $\quad y_{P S}=C x e^{-2 x} \quad$ (i.e. multiply trial solution by x, until it does not appear in $y_{C F}$)
i.e. $\quad y_{P S}^{\prime}=-2 C x e^{-2 x}+C e^{-2 x}=(1-2 x) C e^{-2 x}$

$$
y_{P S}^{\prime \prime}=-2(1-2 x) C e^{-2 x}+(-2) C e^{-2 x}=(-4+4 x) C e^{-2 x}
$$

Solutions to exercises
Substitute: $\quad(-4+4 x) C e^{-2 x}+(1-2 x) C e^{-2 x}-2 C x e^{-2 x}=e^{-2 x}$
Coeff. $e^{-2 x}: \quad-4 C+4 x C+C-2 x C-2 C x=1$

$$
\text { i.e. } C=-\frac{1}{3}, \quad \text { i.e. } \quad y_{P S}=-\frac{1}{3} x e^{-2 x}
$$

General solution is $y=y_{C F}+y_{P S}=A e^{x}+B e^{-2 x}-\frac{1}{3} x e^{-2 x}$.
Return to Exercise 6

Solutions to exercises
Exercise 7. $y^{\prime \prime}-2 y^{\prime}+y=e^{x}$
A.E. is $\quad m^{2}-2 m+1=0 \quad$ i.e. $\quad(m-1)^{2}=0$

$$
\text { i.e. } \quad m=1 \text { (twice) } \quad \text { i.e. } \quad \underline{y_{C F}}=(A+B x) e^{x}
$$

Try $y_{P S}=C e^{x} ? \quad$ No, it's in $y_{C F}$
Try $y_{P S}=C x e^{x} ? \quad$ No. Also in $y_{C F}$!
Try $y_{P S}=C x^{2} e^{x}$.

$$
y_{P S}^{\prime}=2 x C e^{x}+C x^{2} e^{x}, y_{P S}^{\prime \prime}=(2+2 x) C e^{x}+\left(2 x+x^{2}\right) C e^{x}
$$

i.e. $y_{P S}^{\prime}=\left(2 x+x^{2}\right) C e^{x}=\left(2+4+x^{2}\right) C e^{x}$

Substitute: $\quad\left(2+4 x+x^{2}\right) C e^{x}-2\left(2 x+x^{2}\right) C e^{x}+C x^{2} e^{x}=e^{x}$
Coeff. $e^{x}: \quad\left(2+4 x+x^{2}-4 x-2 x^{2}+x^{2}\right) C=1 \quad$ i.e. $C=\frac{1}{2}$
$\therefore y_{P S}=\frac{1}{2} x^{2} e^{x}$ and general solution is

$$
y=y_{C F}+y_{P S}=(A+B x) e^{x}+\frac{1}{2} x^{2} e^{x} .
$$

Return to Exercise 7

Solutions to exercises
Exercise 8. $y^{\prime \prime}+8 y^{\prime}+17 y=2 e^{-3 x} ; \quad y(0)=2 \quad$ and $\quad y\left(\frac{\pi}{2}\right)=0$
A.E. is $\quad m^{2}+8 m+17=0 \quad$ i.e. $m=\frac{1}{2}(-8 \pm \sqrt{64-68})=-4 \pm i$
i.e. $\quad y_{C F}=e^{-4 x}(A \cos x+B \sin x)$.
$f(x)=2 e^{-3 x}$, so try $y_{P S}=C e^{-3 x}$
i.e. $y_{P S}^{\prime}=-3 C e^{-3 x}, \quad y_{P S}^{\prime \prime}=9 C e^{-3 x}$

Substitute: $\quad 9 C e^{-3 x}+8 \cdot(-3) C e^{-3 x}+17 C e^{-3 x}=2 e^{-3 x}$
Coeff. $e^{-3 x}: \quad 9 C-24 C+17 C=2 \quad$ i.e. $C=1$
$y_{P S}=e^{-3 x}, \quad$ general solution

$$
y=y_{C F}+y_{P S}=e^{-4 x}(A \cos x+B \sin x)+e^{-3 x}
$$

Solutions to exercises
Now use the boundary conditions.
$y(0)=2 \quad$ means $y=2$ when $x=0 \quad$ i.e. $2=e^{0}(A \cos 0+B \sin 0)+e^{0}$ i.e. $2=A+1$ i.e. $A=1$
$y\left(\frac{\pi}{2}\right)=0 \quad$ means $y=0$ when $x=\frac{\pi}{2}$ i.e. $0=e^{-2 \pi}\left(A \cos \frac{\pi}{2}+B \sin \frac{\pi}{2}\right)+e^{-\frac{3 \pi}{2}}$ $\cos \frac{\pi}{2}=0$
$\sin \frac{\pi}{2}=1$
i.e. $0=e^{-2 \pi}(0+B)+e^{-\frac{3 \pi}{2}}$
i.e. $0=e^{-2 \pi} B+e^{-\frac{3 \pi}{2}}$
(multiply both sides by $e^{2 \pi}$)
i.e. $0=B+e^{-\frac{3 \pi}{2}} \cdot e^{2 \pi}$
i.e. $0=B+e^{\frac{\pi}{2}}$ i.e. $B=-e^{\frac{\pi}{2}}$

Required particular solution is

Return to Exercise 8

Solutions to exercises
Exercise 9. $y^{\prime \prime}+y^{\prime}-12 y=4 e^{2 x} ; \quad y(0)=7 \quad$ and $\quad y^{\prime}(0)=0$
A.E. is $\quad m^{2}+m-12=0 \quad$ i.e. $\quad(m-3)(m+4)=0$

$$
\text { i.e. } \quad m=3 \text { or } m=-4 \quad \text { i.e. } \quad y_{C F}=A e^{3 x}+B e^{-4 x}
$$

Try $y_{P S}=C e^{2 x}, \quad y_{P S}^{\prime}=2 C e^{2 x}, \quad y_{P S}^{\prime \prime}=4 C e^{2 x}$
Substitute: $\quad 4 C e^{2 x}+2 C e^{2 x}-12 C e^{2 x}=4 e^{2 x}$
Coeff. $e^{2 x}: \quad 4 C+2 C-12 C=4 \quad$ i.e. $C=-\frac{2}{3}$
$y_{P S}=-\frac{2}{3} e^{2 x}, \quad$ general solution is $y=A e^{3 x}+B e^{-4 x}-\frac{2}{3} e^{2 x}$.

Apply boundary conditions to general solution (as always)

$$
\begin{align*}
y(0)=7 \quad \text { means } y=7 \text { when } x=0 & \text { i.e. } 7=A e^{0}+B e^{0}-\frac{2}{3} e^{0} \\
& \text { i.e. } 7=A+B-\frac{2}{3} \\
& \text { i.e. } 21=3 A+3 B-2 \tag{i}
\end{align*}
$$

$y^{\prime}(0)=0 \quad$ means $y^{\prime}=0$ when $x=0$,

$$
\text { where } \quad y^{\prime} \equiv \frac{d y}{d x}=3 A e^{3 x}-4 B e^{-4 x}-\frac{4}{3} e^{2 x}
$$

$$
\text { i.e. } 0=3 A e^{0}-4 B e^{0}-\frac{4}{3} e^{0}
$$

$$
\begin{equation*}
\text { i.e. } \frac{4}{3}=3 A-4 B \tag{ii}
\end{equation*}
$$

Solutions to exercises
Solve equations (i) and (ii) simultaneously to find A and B
(i)-(ii) gives $\quad 21-\frac{4}{3}=7 B-2 \quad$ i.e. $\left(23-\frac{4}{3}\right) \cdot \frac{1}{7}=B$
i.e. $\frac{65}{3} \cdot \frac{1}{7}=B$ i.e. $B=\frac{65}{21}$,
then (ii) gives $\quad 3 A=\frac{4}{3}+4 B$
i.e. $\frac{4}{3}+\frac{260}{21}=\frac{288}{21}=3 \mathrm{~A}$
i.e. $A=\frac{96}{21}=\frac{32}{7}$.

Particular solution is

$$
y=\frac{32}{7} e^{3 x}+\frac{65}{21} e^{-4 x}-\frac{2}{3} e^{2 x}
$$

Return to Exercise 9

Solutions to exercises
Exercise 10. $y^{\prime \prime}+3 y^{\prime}+2 y=10 \cos 2 x ; \quad y(0)=1 \quad$ and $\quad y^{\prime}(0)=0$
A.E. is $\quad m^{2}+3 m+2=0 \quad$ i.e. $\quad(m+2)(m+1)=0$

$$
\text { i.e. } \quad m=-2 \text { or } m-1 \quad \text { i.e. } \quad \underline{y_{C F}}=A e^{-2 x}+B e^{-x}
$$

Try $\quad y_{P S}=C \cos 2 x+D \sin 2 x \quad$ i.e. $\quad y_{P S}^{\prime}=-2 C \sin 2 x+2 D \cos 2 x$

$$
y_{P S}^{\prime \prime}=-4 C \cos 2 x-4 D \sin 2 x
$$

Substitute:

$$
\begin{aligned}
-4 C \cos 2 x-4 D \sin 2 x & +3(-2 C \sin 2 x+2 D \cos 2 x) \\
& +2(C \cos 2 x+D \sin 2 x)=10 \cos 2 x
\end{aligned}
$$

Coeff. $\cos 2 x: \quad-4 C+6 D+2 C=10 \quad$ i.e. $-2 C+6 D=10$
Coeff. $\sin 2 x: \quad-4 D-6 C+2 D=0 \quad$ i.e. $-2 D-6 C=0$

Solutions to exercises
Solve (i) and (ii) for C and D
(-3) times (i) gives $\quad+6 C-18 D=-30$

$$
\text { ADD } \begin{array}{r}
\frac{-6 C-2 D=0}{-20 D=-30} \tag{i}\\
\hline
\end{array}
$$

i.e. $D=\frac{3}{2}$,
(ii) then gives $-2\left(\frac{3}{2}\right)-6 C=0 \quad$ i.e. $\quad-3-6 C=0$ i.e. $\quad C=-\frac{1}{2}$.
$\therefore y_{P S}=-\frac{1}{2} \cos 2 x+\frac{3}{2} \sin 2 x$;
general solution is: $y=A e^{-2 x}+B e^{-x}-\frac{1}{2} \cos 2 x+\frac{3}{2} \sin 2 x$

$y^{\prime}=-2 A e^{-2 x}-B e^{-x}+\sin 2 x+3 \cos 2 x$
$\therefore y^{\prime}(0)=0$ gives $0=-2 A-B+3$
i.e. $2 \mathrm{~A}+\mathrm{B}=3$ (iv)

Solutions to exercises
$\underline{\text { Solve (iii) and (iv) to find } A \text { and } B} \quad$ (iv)-(iii) gives $A=3-\frac{3}{2}=\frac{3}{2}$.
Then, (iv) gives $2\left(\frac{3}{2}\right)+B=3$ i.e. $B=0$
Particular solution is $y=\frac{3}{2} e^{-2 x}-\frac{1}{2} \cos 2 x+\frac{3}{2} \sin 2 x$.
Return to Exercise 10

Solutions to exercises
Exercise 11. $y^{\prime \prime}+4 y^{\prime}+5 y=2 e^{-2 x} ; \quad y(0)=1 \quad$ and $\quad y^{\prime}(0)=-2$
A.E. is $\quad m^{2}+4 m+5=0 \quad$ i.e. $m=\frac{1}{2}(-4 \pm \sqrt{16-20})=-2 \pm i$

$$
\text { i.e. } \quad y_{C F}=e^{-2 x}(A \cos x+B \sin x)
$$

Try

$$
y_{P S}=C e^{-2 x}, y_{P S}^{\prime}=-2 C e^{-2 x}, y_{P S}^{\prime \prime}=4 C e^{-2 x}
$$

Substitute: $\quad 4 C e^{-2 x}-8 C e^{-2 x}+5 C e^{-2 x}=2 e^{-2 x}$
Coeff. $e^{-2 x}: \quad 4 C-8 C+5 C=2 \quad$ i.e. $\quad C=2$.
$y_{P S}=2 e^{-2 x}, \quad$ general solution is

$$
y=e^{-2 x}(A \cos x+B \sin x)+2 e^{-2 x}
$$

Boundary condition $\quad y(0)=1: \quad 1=A \cos 0+B \sin 0+2$

$$
\text { i.e. } 1=A+2 \quad \text { i.e. } A=-1
$$

$y^{\prime}=-2 e^{-2 x}(A \cos x+B \sin x)+e^{-2 x} \cdot(-A \sin x+B \cos x)-4 e^{-2 x}$
$y^{\prime}(0)=-2$ gives

$$
\begin{array}{ll}
& -2=-2 \cdot(-1+0)+(0+B)-4 \\
\text { i.e. } & -2=2+B-4 \quad \text { i.e. } B=0 .
\end{array}
$$

Particular solution is

$$
y=e^{-2 x} \cdot(-\cos x+0)+2 e^{-2 x}
$$

i.e. $\quad y=e^{-2 x}(2-\cos x)$.

Return to Exercise 11

Solutions to exercises
Exercise 12. $\frac{d^{2} x}{d \tau^{2}}+4 \frac{d x}{d \tau}+3 x=e^{-3 \tau} ; \quad x=\frac{1}{2}$ and $\frac{d x}{d \tau}=-2$ at $\tau=0$
A.E. is $\quad m^{2}+4 m+3=0 \quad$ i.e. $\quad(m+3)(m+1)=0$
i.e. $\quad m=-3$ or $m=-1 \quad$ i.e. $\quad x_{C F}=A e^{-3 \tau}+B e^{-\tau}$

Try $\quad x_{P S}=C e^{-3 \tau}$? No. Already in $x_{C F}$
Try $\quad x_{P S}=C \tau e^{-3 \tau}, \quad \frac{d x_{P S}}{d \tau}=C e^{-3 \tau}-3 \tau C e^{-3 \tau}$

$$
=(1-3 \tau) C e^{-3 \tau}
$$

$$
\begin{aligned}
\frac{d^{2} x_{P S}}{d \tau^{2}} & =-3 C e^{-3 \tau}-3(1-3 \tau) C e^{-3 \tau} \\
& =(9 \tau-6) C e^{-3 \tau}
\end{aligned}
$$

Substitute: $\quad(9 \tau-6) C e^{-3 \tau}+4(1-3 \tau) C e^{-3 \tau}+3 C \tau e^{-3 \tau}=e^{-3 \tau}$
Coeff. $e^{-3 \tau}: \quad 9 \tau C-6 C+4 C-12 \tau C+3 C \tau=1$
i.e. $C=-\frac{1}{2}$

Solutions to exercises
$x_{P S}=-\frac{1}{2} \tau e^{-3 \tau}, \quad$ general solution is

$$
x=x_{C F}+x_{P S}=A e^{-3 \tau}+B e^{-\tau}-\frac{1}{2} \tau e^{-3 \tau}
$$

$\underline{\text { Boundary conditions }} x=\frac{1}{2}$ when $\tau=0: \quad \frac{1}{2}=A+B$

$$
\begin{align*}
\frac{d x}{d \tau}=-3 A e^{-3 \tau}-B e^{-\tau}+\frac{3}{2} \tau e^{-3 \tau}-\frac{1}{2} e^{-3 \tau} \tag{i}\\
\frac{d x}{d \tau}=-2 \text { when } \tau=0: \quad-2=-3 A-B-\frac{1}{2} \\
\text { i.e. } \quad-\frac{3}{2}=-3 A-B \tag{ii}
\end{align*}
$$

Solve (i) and (ii) for A and B : (i) + (ii) gives $\frac{1}{2}-\frac{3}{2}=A-3 A$ i.e. $A=\frac{1}{2}$
Then, (i) gives $B=0$.

Particular solution is

$$
x=\frac{1}{2} e^{-3 \tau}-\frac{1}{2} \tau e^{-3 \tau}=\frac{1}{2}(1-\tau) e^{-3 \tau} .
$$

Exercise 13. $\frac{d^{2} y}{d \tau^{2}}+4 \frac{d y}{d \tau}+5 y=6 \sin \tau$
A.E. is $\quad m^{2}+4 m+5=0 \quad$ i.e. $m=\frac{1}{2}(-4 \pm \sqrt{16-20})=-2 \pm i$

$$
y_{C F}=e^{-2 \tau}(A \cos \tau+B \sin \tau)
$$

[Since $e^{-2 \tau}$ multiplies $\sin \tau$ in $y_{C F}, \sin \tau$ is an independent function with respect to the components of $\left.y_{C F}\right]$.

Try $\quad y_{P S}=C \cos \tau+D \sin \tau$

$$
y_{P S}^{\prime}=-C \sin \tau+D \cos \tau
$$

$$
\left.y_{P S}^{\prime \prime \prime}=-C \cos \tau-D \sin \tau \quad \text { (each dash denoting } \frac{d}{d \tau}, \text { here }\right)
$$

Substitute: $\quad-C \cos \tau-D \sin \tau+4(-C \sin \tau+D \cos \tau)$

$$
+5(C \cos \tau+D \sin \tau)=6 \sin \tau
$$

Solutions to exercises

$$
\begin{array}{llrl}
\text { Coeff. } \cos \tau: & -C+4 D+5 C=0 & \text { i.e. } & C+D=0 \\
\text { Coeff. } \sin \tau: & -D-4 C+5 D=6 & \text { i.e. } & \begin{array}{r}
-C+D=\frac{3}{2} \\
\end{array} \tag{ii}\\
& \text { ADD } & 2 D=\frac{3}{2} \\
& \text { i.e. } & D=\frac{3}{4} \text { and } \\
& & C=-\frac{3}{4}
\end{array}
$$

General solution: $y=e^{-2 \tau}(A \cos \tau+B \sin \tau)-\frac{3}{4}(\cos \tau-\sin \tau)$.
Return to Exercise 13

