

SCALAR PRODUCT

Graham S McDonald

A Tutorial Module for learning about the scalar product of two vectors

Table of contentsBegin Tutorial

© 2004 g.s.mcdonald@salford.ac.uk

Table of contents

- 1. Theory
- 2. Exercises
- **3.** Answers
- 4. Tips on using solutions
- 5. Alternative notation Full worked solutions

Section 1: Theory

1. Theory

The purpose of this tutorial is to practice using the scalar product of two vectors. It is called the 'scalar product' because the result is a 'scalar', i.e. a quantity with **magnitude** but no associated direction.

The **SCALAR PRODUCT** (or 'dot product') of \underline{a} and \underline{b} is

$$\underline{a} \cdot \underline{b} = |\underline{a}| |\underline{b}| \cos \theta$$
$$= a_x b_x + a_y b_y + a_z b_z$$

where θ is the angle between \underline{a} and \underline{b}

Section 1: Theory

Note that when

$$\underline{a} = a_x \underline{i} + a_y \underline{j} + a_z \underline{k}$$

and

and

$$\underline{b} = b_x \underline{i} + b_y \underline{j} + b_z \underline{k}$$

then the magnitudes of \underline{a} and \underline{b} are

$$\begin{split} |\underline{a}| &= \sqrt{a_x^2 + a_y^2 + a_z^2} \\ |\underline{b}| &= \sqrt{b_x^2 + b_y^2 + b_z^2} \ , \end{split}$$

respectively.

2. Exercises

Click on EXERCISE links for full worked solutions (there are 16 exercises in total)

EXERCISE 1. Calculate $\underline{a} \cdot \underline{b}$ when $\underline{a} = 2\underline{i} - 3j + 5\underline{k}$, $\underline{b} = \underline{i} + 2j + 8\underline{k}$

EXERCISE 2. Calculate $\underline{a} \cdot \underline{b}$ when $\underline{a} = 4\underline{i} - 7j + 2\underline{k}$, $\underline{b} = 5\underline{i} - \underline{j} - 4\underline{k}$

EXERCISE 3. Calculate $\underline{a} \cdot \underline{b}$ when $\underline{a} = 2\underline{i} + 3\underline{j} + 3\underline{k}$, $\underline{b} = 3\underline{i} - 2j + 5\underline{k}$

EXERCISE 4. Calculate $\underline{a} \cdot \underline{b}$ when $\underline{a} = 3\underline{i} + 6\underline{j} - \underline{k}$, $\underline{b} = 8\underline{i} - 3\underline{j} - \underline{k}$

• Theory • Answers • Tips • Notation

EXERCISE 5. Show that \underline{a} is perpendicular to \underline{b} when $\underline{a} = \underline{i} + \underline{j} + 3\underline{k}, \quad \underline{b} = \underline{i} - 7\underline{j} + 2\underline{k}$

EXERCISE 6. Show that \underline{a} is perpendicular to \underline{b} when $\underline{a} = \underline{i} + 23\underline{j} + 7\underline{k}, \quad \underline{b} = 26\underline{i} + \underline{j} - 7\underline{k}$

EXERCISE 7. Show that \underline{a} is perpendicular to \underline{b} when $\underline{a} = \underline{i} + \underline{j} + 3\underline{k}, \quad \underline{b} = 2\underline{i} + 7\underline{j} - 3\underline{k}$

EXERCISE 8. Show that \underline{a} is perpendicular to \underline{b} when $\underline{a} = 39\underline{i} + 2\underline{j} + \underline{k}, \quad \underline{b} = \underline{i} - 23\underline{j} + 7\underline{k}$

• Theory • Answers • Tips • Notation

EXERCISE 9. Calculate the work done $\underline{F} \cdot \underline{s}$ given $|\underline{F}|$, $|\underline{s}|$ and θ (the angle between the force \underline{F} and the displacement \underline{s}) when $|\underline{F}| = 7 \text{ N}, \quad |\underline{s}| = 3 \text{ m}, \quad \theta = 0^{\circ}$

EXERCISE 10. Calculate the work done $\underline{F} \cdot \underline{s}$ given $|\underline{F}|$, $|\underline{s}|$ and θ (the angle between the force \underline{F} and the displacement \underline{s}) when $|\underline{F}| = 4 \text{ N}, \quad |\underline{s}| = 2 \text{ m}, \quad \theta = 27^{\circ}$

EXERCISE 11. Calculate the work done $\underline{F} \cdot \underline{s}$ given $|\underline{F}|$, $|\underline{s}|$ and θ (the angle between the force \underline{F} and the displacement \underline{s}) when $|\underline{F}| = 5 \text{ N}, \quad |\underline{s}| = 4 \text{ m}, \quad \theta = 48^{\circ}$

EXERCISE 12. Calculate the work done $\underline{F} \cdot \underline{s}$ given $|\underline{F}|$, $|\underline{s}|$ and θ (the angle between the force \underline{F} and the displacement \underline{s}) when $|\underline{F}| = 2 \text{ N}, \quad |\underline{s}| = 3 \text{ m}, \quad \theta = 56^{\circ}$

 \bullet Theory \bullet Answers \bullet Tips \bullet Notation

Toc

EXERCISE 13. Calculate the angle θ between vectors \underline{a} and \underline{b} when $\underline{a} = 2\underline{i} - \underline{j} + 2\underline{k}$, $\underline{b} = \underline{i} + \underline{j} + \underline{k}$

EXERCISE 14. Calculate the angle θ between vectors \underline{a} and \underline{b} when $\underline{a} = \underline{i} + \underline{j} + \underline{k}$, $\underline{b} = 2\underline{i} - 3\underline{j} + \underline{k}$

EXERCISE 15. Calculate the angle θ between vectors \underline{a} and \underline{b} when $\underline{a} = \underline{i} - 2\underline{j} + 2\underline{k}$, $\underline{b} = 2\underline{i} + 3\underline{j} + \underline{k}$

EXERCISE 16. Calculate the angle θ between vectors \underline{a} and \underline{b} when $\underline{a} = 5\underline{i} + 4\underline{j} + 3\underline{k}$, $\underline{b} = 4\underline{i} - 5\underline{j} + 3\underline{k}$

• Theory • Answers • Tips • Notation

Section 3: Answers

3. Answers

- $1.\ 36,$
- 2. 19,
- 3. 15,
- $4.\ 7,$
- 5. <u>Hint:</u> If $\theta = 90^{\circ}$ then what will $\underline{a} \cdot \underline{b} = a_x b_x + a_y b_y + a_z b_z$ be?
- 6. <u>Hint:</u> If $\theta = 90^{\circ}$ then what will $\underline{a} \cdot \underline{b} = a_x b_x + a_y b_y + a_z b_z$ be?
- 7. <u>Hint:</u> If $\theta = 90^{\circ}$ then what will $\underline{a} \cdot \underline{b} = a_x b_x + a_y b_y + a_z b_z$ be?
- 8. <u>Hint:</u> If $\theta = 90^{\circ}$ then what will $\underline{a} \cdot \underline{b} = a_x b_x + a_y b_y + a_z b_z$ be?
- 9. 21 J,
- 10. 7.128 J,
- 11. 13.38 J,
- 12. 3.355 J,
- 13. 54.7°,

Section 3: Answers

- 14. 90° ,
- 15. 100.3° ,
- 16. 79.6° .

4. Tips on using solutions

• When looking at the THEORY, ANSWERS, TIPS or NOTATION pages, use the Back button (at the bottom of the page) to return to the exercises

• Use the solutions intelligently. For example, they can help you get started on an exercise, or they can allow you to check whether your intermediate results are correct

• Try to make less use of the full solutions as you work your way through the Tutorial

5. Alternative notation

• Here, we use symbols like \underline{a} to denote a vector. In some texts, symbols for vectors are **in bold** (eg **a** instead of \underline{a})

• In this Tutorial, vectors are given in terms of the unit Cartesian vectors \underline{i} , \underline{j} and \underline{k} .

For example, $\underline{a} = \underline{i} + 2\underline{j} + 3\underline{k}$ implies that \underline{a} can be **decomposed** into the sum of the following three vectors:

	\underline{i}	(one step along the x-axis)
PLUS	2 j	(two steps along the y-axis)
PLUS	$3\overline{\underline{k}}$	(three steps along the z-axis)

See the figures on the next page ...

$$\underline{a} = \underline{i} + 2j + 3\underline{k}$$

one step along the x-axis two steps along the y-axis three steps along the z-axis

 \underline{a} is the (vector) sum of \underline{i} and $2\underline{j}$ and 3k

• A common alternative notation for expressing <u>a</u> in terms of these **Cartesian components** is given by <u>a</u> = (1, 2, 3)

Full worked solutions

Exercise 1.

 $\underline{a} \cdot \underline{b} = a_x b_x + a_y b_y + a_z b_z, \text{ where}$ $\underline{a} = a_x \underline{i} + a_y \underline{j} + a_z \underline{k}$ $\underline{b} = b_x \underline{i} + b_y \underline{j} + b_z \underline{k}$

 $\underline{a} = 2\underline{i} - 3\underline{j} + 5\underline{k}, \ \underline{b} = \underline{i} + 2\underline{j} + 8\underline{k}$ gives

$$\underline{a} \cdot \underline{b} = (2)(1) + (-3)(2) + (5)(8)$$

= 2 - 6 + 40
= 36.

Exercise 2.

 $\underline{a} \cdot \underline{b} = a_x b_x + a_y b_y + a_z b_z, \text{ where}$ $\underline{a} = a_x \underline{i} + a_y \underline{j} + a_z \underline{k}$ $\underline{b} = b_x \underline{i} + b_y \underline{j} + b_z \underline{k}$ $\underline{a} = 4\underline{i} - 7\underline{j} + 2\underline{k}, \quad \underline{b} = 5\underline{i} - \underline{j} - 4\underline{k} \quad \text{gives}$ $\underline{a} \cdot \underline{b} = (4)(5) + (-7)(-1) + (2)(-4)$ = 20 + 7 - 8 = 19.

Exercise 3.

 $\underline{a} \cdot \underline{b} = a_x b_x + a_y b_y + a_z b_z, \text{ where}$ $\underline{a} = a_x \underline{i} + a_y \underline{j} + a_z \underline{k}$ $\underline{b} = b_x \underline{i} + b_y \underline{j} + b_z \underline{k}$

 $\underline{a} = 2\underline{i} + 3\underline{j} + 3\underline{k}, \ \underline{b} = 3\underline{i} - 2\underline{j} + 5\underline{k}$ gives

$$\underline{a} \cdot \underline{b} = (2)(3) + (3)(-2) + (3)(5)$$

= 6 - 6 + 15
= 15.

Exercise 4.

 $\underline{a} \cdot \underline{b} = a_x b_x + a_y b_y + a_z b_z, \text{ where}$ $\underline{a} = a_x \underline{i} + a_y \underline{j} + a_z \underline{k}$ $\underline{b} = b_x \underline{i} + b_y \underline{j} + b_z \underline{k}$ $\underline{a} = 3\underline{i} + 6\underline{j} - \underline{k}, \quad \underline{b} = 8\underline{i} - 3\underline{j} - \underline{k} \quad \text{gives}$ $\underline{a} \cdot \underline{b} = (3)(8) + (6)(-3) + (-1)(-1)$ = 24 - 18 + 1 = 7.

Exercise 5.

 $\underline{a} \cdot \underline{b} = |\underline{a}| |\underline{b}| \cos \theta$, where θ is the angle between \underline{a} and \underline{b}

$$\underline{a}$$
 perpendicular to \underline{b} gives $\theta = 90^{\circ}$
i.e. $\cos \theta = 0$
i.e. $\underline{a} \cdot \underline{b} = 0$

To show that this is true, use $\underline{a} \cdot \underline{b} = a_x b_x + a_y b_y + a_z b_z$

i.e.
$$\underline{a} \cdot \underline{b} = (1)(1) + (1)(-7) + (3)(2)$$

= $1 - 7 + 6$
= $0.$

Exercise 6.

 $\underline{a} \cdot \underline{b} = |\underline{a}| |\underline{b}| \cos \theta$, where θ is the angle between \underline{a} and \underline{b}

$$\underline{a}$$
 perpendicular to \underline{b} gives $\theta = 90^{\circ}$
i.e. $\cos \theta = 0$
i.e. $\underline{a} \cdot \underline{b} = 0$

To show that this is true, use $\underline{a} \cdot \underline{b} = a_x b_x + a_y b_y + a_z b_z$

i.e.
$$\underline{a} \cdot \underline{b} = (1)(26) + (23)(1) + (7)(-7)$$

= $26 + 23 - 49$
= $0.$

Exercise 7.

 $\underline{a} \cdot \underline{b} = |\underline{a}| |\underline{b}| \cos \theta$, where θ is the angle between \underline{a} and \underline{b}

$$\underline{a}$$
 perpendicular to \underline{b} gives $\theta = 90^{\circ}$
i.e. $\cos \theta = 0$
i.e. $\underline{a} \cdot \underline{b} = 0$

To show that this is true, use $\underline{a} \cdot \underline{b} = a_x b_x + a_y b_y + a_z b_z$

i.e.
$$\underline{a} \cdot \underline{b} = (1)(2) + (1)(7) + (3)(-3)$$

= 2+7-9
= 0.

Exercise 8.

 $\underline{a} \cdot \underline{b} = |\underline{a}| |\underline{b}| \cos \theta$, where θ is the angle between \underline{a} and \underline{b}

$$\underline{a}$$
 perpendicular to \underline{b} gives $\theta = 90^{\circ}$
i.e. $\cos \theta = 0$
i.e. $\underline{a} \cdot \underline{b} = 0$

To show that this is true, use $\underline{a} \cdot \underline{b} = a_x b_x + a_y b_y + a_z b_z$

i.e.
$$\underline{a} \cdot \underline{b} = (39)(1) + (2)(-23) + (1)(7)$$

= $39 - 46 + 7$
= $0.$

Exercise 9.

 $\underline{F} \cdot \underline{s} = |\underline{F}| |\underline{s}| \cos \theta,$ $|\underline{F}| = 7 \text{ N}$ $|\underline{s}| = 3 \text{ m}$ $\theta = 0^{\circ} \text{ gives } \cos \theta = 1$

$$\therefore \underline{F} \cdot \underline{s} = |\underline{F}| |\underline{s}| \cos \theta = (7 \text{ N})(3 \text{ m})(1) = 21 \text{ J}.$$

<u>Note</u>: When the angle θ is zero then

$$\underline{F} \cdot \underline{s} = |\underline{F}| |\underline{s}|$$

and one simply multiplies the magnitudes of \underline{F} and \underline{s} .

Exercise 10.

$$\underline{F} \cdot \underline{s} = |\underline{F}| |\underline{s}| \cos \theta, \qquad \qquad |\underline{F}| = 4 \text{ N} \\ |\underline{s}| = 2 \text{ m} \\ \theta = 27^{\circ} \text{ gives } \cos \theta \simeq 0.8910$$

$$\therefore \underline{F} \cdot \underline{s} \simeq (4 \text{ N})(2 \text{ m})(0.8910) \simeq 7.128 \text{ J}.$$

$$\underline{F} \cdot \underline{s} = |\underline{F}| |\underline{s}| \cos \theta$$

and
$$\underline{F} \cdot \underline{s} = (|\underline{F}| \cos \theta) |\underline{s}|$$

Note: $\underline{F} \cdot \underline{s}$ is the product of $|\underline{s}|$ and the **projected component** of force $|\underline{F}| \cos \theta$ along the direction of \underline{s} .

Exercise 11.

$$\begin{split} \underline{F} \cdot \underline{s} &= |\underline{F}| |\underline{s}| \cos \theta, \\ &|\underline{F}| = 5 \ \mathrm{N} \\ &|\underline{s}| = 4 \ \mathrm{m} \\ \theta &= 48^\circ \ \mathrm{gives} \ \cos \theta \simeq 0.6691 \end{split}$$

: $\underline{F} \cdot \underline{s} \simeq (5 \text{ N})(4 \text{ m})(0.6691) \simeq 13.38 \text{ J}.$

Exercise 12.

$$\begin{split} \underline{F} \cdot \underline{s} &= |\underline{F}| |\underline{s}| \cos \theta, \\ &|\underline{F}| = 2 \ \mathrm{N} \\ &|\underline{s}| = 3 \ \mathrm{m} \\ \theta &= 56^\circ \ \mathrm{gives} \ \cos \theta \simeq 0.5592 \end{split}$$

: $\underline{F} \cdot \underline{s} \simeq (2 \text{ N})(3 \text{ m})(0.5592) \simeq 3.355 \text{ J}.$

Exercise 13.

 $\underline{a} \cdot \underline{b} = |\underline{a}| |\underline{b}| \cos \theta$, where θ is the angle between vectors \underline{a} and \underline{b}

$$\therefore \cos \theta = \frac{\underline{a} \cdot \underline{b}}{|\underline{a}||\underline{b}|}$$

If
$$\underline{a} = a_x \underline{i} + a_y \underline{j} + a_z \underline{k}$$

 $\underline{b} = b_x \underline{i} + b_y \underline{j} + b_z \underline{k}$

then
$$\cos \theta = \frac{\underline{a} \cdot \underline{b}}{|\underline{a}||\underline{b}|}$$
 where

$$\underline{a} \cdot \underline{b} = a_x b_x + a_y b_y + a_z b_z$$

$$|\underline{a}| = \sqrt{a_x^2 + a_y^2 + a_z^2}$$

$$|\underline{b}| = \sqrt{b_x^2 + b_y^2 + b_z^2}$$

$$\underline{a} = 2\underline{i} - \underline{j} + 2\underline{k} , \quad \underline{b} = \underline{i} + \underline{j} + \underline{k}$$

i.e. $a_x = 2, \ a_y = -1, \ a_z = 2$ and $b_x = 1, \ b_y = 1, \ b_z = 1$

then

$$\underline{a} \cdot \underline{b} = (2)(1) + (-1)(1) + (2)(1) = 2 - 1 + 2 = 3$$
$$|\underline{a}| = \sqrt{2^2 + (-1)^2 + 2^2} = \sqrt{4 + 1 + 4} = \sqrt{9} = 3$$
$$|\underline{b}| = \sqrt{1^2 + 1^2 + 1^2} = \sqrt{3}$$

$$\therefore \quad \cos \theta = \frac{\underline{a} \cdot \underline{b}}{|\underline{a}||\underline{b}|} = \frac{3}{3\sqrt{3}} \simeq 0.5774$$

so $\theta \simeq \cos^{-1}(0.5774) \simeq 54.7^{\circ}$. Return to Exercise 13

Exercise 14.

 $\underline{a} \cdot \underline{b} = |\underline{a}| |\underline{b}| \cos \theta$, where θ is the angle between vectors \underline{a} and \underline{b}

$$\therefore \cos \theta = \frac{\underline{a} \cdot \underline{b}}{|\underline{a}||\underline{b}|}$$

If
$$\underline{a} = a_x \underline{i} + a_y \underline{j} + a_z \underline{k}$$

 $\underline{b} = b_x \underline{i} + b_y \underline{j} + b_z \underline{k}$

then
$$\cos \theta = \frac{\underline{a} \cdot \underline{b}}{|\underline{a}||\underline{b}|}$$
 where

$$\underline{a} \cdot \underline{b} = a_x b_x + a_y b_y + a_z b_z$$

$$|\underline{a}| = \sqrt{a_x^2 + a_y^2 + a_z^2}$$

$$|\underline{b}| = \sqrt{b_x^2 + b_y^2 + b_z^2}$$

$$\underline{a} = \underline{i} + \underline{j} + \underline{k} , \quad \underline{b} = 2\underline{i} - 3\underline{j} + \underline{k}$$

i.e. $a_x = 1, \ a_y = 1, \ a_z = 1$ and $b_x = 2, \ b_y = -3, \ b_z = 1$

then

$$\underline{a} \cdot \underline{b} = (1)(2) + (1)(-3) + (1)(1) = 2 - 3 + 1 = 0$$
$$|\underline{a}| = \sqrt{1^2 + 1^2 + 1^2} = \sqrt{3}$$
$$|\underline{b}| = \sqrt{2^2 + (-3)^2 + 1^2} = \sqrt{4 + 9 + 1} = \sqrt{14}$$

$$\therefore \quad \cos \theta = \frac{\underline{a} \cdot \underline{b}}{|\underline{a}| |\underline{b}|} = \frac{0}{\sqrt{3}\sqrt{14}} = \frac{0}{\sqrt{42}} = 0$$

so $\theta = \cos^{-1}(0) = 90^{\circ}.$ Return to Exercise 14

Exercise 15.

 $\underline{a} \cdot \underline{b} = |\underline{a}| |\underline{b}| \cos \theta$, where θ is the angle between vectors \underline{a} and \underline{b}

$$\therefore \cos \theta = \frac{\underline{a} \cdot \underline{b}}{|\underline{a}||\underline{b}|}$$

If
$$\underline{a} = a_x \underline{i} + a_y \underline{j} + a_z \underline{k}$$

 $\underline{b} = b_x \underline{i} + b_y \underline{j} + b_z \underline{k}$

then
$$\cos \theta = \frac{\underline{a} \cdot \underline{b}}{|\underline{a}||\underline{b}|}$$
 where

$$\underline{a} \cdot \underline{b} = a_x b_x + a_y b_y + a_z b_z$$

$$|\underline{a}| = \sqrt{a_x^2 + a_y^2 + a_z^2}$$

$$|\underline{b}| = \sqrt{b_x^2 + b_y^2 + b_z^2}$$

$$\underline{a} = \underline{i} - 2\underline{j} + 2\underline{k} , \quad \underline{b} = 2\underline{i} + 3\underline{j} + \underline{k}$$

i.e. $a_x = 1, \ a_y = -2, \ a_z = 2$ and $b_x = 2, \ b_y = 3, \ b_z = 1$

then

$$\underline{a} \cdot \underline{b} = (1)(2) + (-2)(3) + (2)(1) = 2 - 6 + 2 = -2$$
$$|\underline{a}| = \sqrt{1^2 + (-2)^2 + 2^2} = \sqrt{1 + 4 + 4} = \sqrt{9} = 3$$
$$|\underline{b}| = \sqrt{2^2 + 3^2 + 1^2} = \sqrt{4 + 9 + 1} = \sqrt{14}$$

$$\therefore \quad \cos \theta = \frac{\underline{a} \cdot \underline{b}}{|\underline{a}| |\underline{b}|} = \frac{-2}{3\sqrt{14}} \simeq -0.1782$$

so
$$\theta \simeq \cos^{-1}(-0.1782) \simeq 100.3^{\circ},$$

see also the Note on the next page \ldots

Note:

When $\underline{a} \cdot \underline{b}$ is positive $\cos \theta$ is positive and θ is an acute angle

When $\underline{a} \cdot \underline{b}$ is negative $\cos \theta$ is negative and θ is an obtuse angle

End of Note.

Toc

Return to Exercise 15

Back

Exercise 16.

 $\underline{a} \cdot \underline{b} = |\underline{a}| |\underline{b}| \cos \theta$, where θ is the angle between vectors \underline{a} and \underline{b}

$$\therefore \cos \theta = \frac{\underline{a} \cdot \underline{b}}{|\underline{a}||\underline{b}|}$$

If
$$\underline{a} = a_x \underline{i} + a_y \underline{j} + a_z \underline{k}$$

 $\underline{b} = b_x \underline{i} + b_y \underline{j} + b_z \underline{k}$

then
$$\cos \theta = \frac{\underline{a} \cdot \underline{b}}{|\underline{a}||\underline{b}|}$$
 where

$$\underline{a} \cdot \underline{b} = a_x b_x + a_y b_y + a_z b_z$$

$$|\underline{a}| = \sqrt{a_x^2 + a_y^2 + a_z^2}$$

$$|\underline{b}| = \sqrt{b_x^2 + b_y^2 + b_z^2}$$

$$\underline{a} = 5\underline{i} + 4\underline{j} + 3\underline{k} , \quad \underline{b} = 4\underline{i} - 5\underline{j} + 3\underline{k}$$

i.e. $a_x = 5, \ a_y = 4, \ a_z = 3$ and $b_x = 4, \ b_y = -5, \ b_z = 3$

then

$$\underline{a} \cdot \underline{b} = (5)(4) + (4)(-5) + (3)(3) = 20 - 20 + 9 = 9$$
$$|\underline{a}| = \sqrt{5^2 + 4^2 + 3^2} = \sqrt{25 + 16 + 9} = \sqrt{50}$$
$$|\underline{b}| = \sqrt{4^2 + (-5)^2 + 3^2} = \sqrt{16 + 25 + 9} = \sqrt{50}$$

$$\therefore \quad \cos \theta = \frac{\underline{a} \cdot \underline{b}}{|\underline{a}||\underline{b}|} = \frac{9}{\sqrt{50}\sqrt{50}} = \frac{9}{50} = 0.18$$

so
$$\theta = \cos^{-1}(0.18) \simeq 79.6^{\circ}.$$
 Return to Exercise 16

