Vectors

SCALAR PRODUCT

Graham S McDonald

A Tutorial Module for learning about the scalar product of two vectors

- Table of contents
- Begin Tutorial
© 2004 g.s.mcdonald@salford.ac.uk

Table of contents

1. Theory
2. Exercises
3. Answers
4. Tips on using solutions
5. Alternative notation Full worked solutions

Section 1: Theory

1. Theory

The purpose of this tutorial is to practice using the scalar product of two vectors. It is called the 'scalar product' because the result is a 'scalar', i.e. a quantity with magnitude but no associated direction.

The SCALAR PRODUCT (or 'dot product') of \underline{a} and \underline{b} is

$$
\begin{aligned}
\underline{a} \cdot \underline{b} & =|\underline{a}||\underline{b}| \cos \theta \\
& =a_{x} b_{x}+a_{y} b_{y}+a_{z} b_{z}
\end{aligned}
$$

where θ is the angle between \underline{a} and \underline{b}

$$
\begin{gathered}
\text { and } \\
\underline{a}=a_{x} \underline{i}+a_{y} \underline{j}+a_{z} \underline{k} \\
\underline{b}=b_{x} \underline{i}+b_{y} \underline{j}+b_{z} \underline{k} .
\end{gathered}
$$

Section 1: Theory
Note that when

$$
\underline{a}=a_{x} \underline{i}+a_{y} \underline{j}+a_{z} \underline{k}
$$

and

$$
\underline{b}=b_{x} \underline{i}+b_{y} \underline{j}+b_{z} \underline{k}
$$

then the magnitudes of \underline{a} and \underline{b} are

$$
|\underline{a}|=\sqrt{a_{x}^{2}+a_{y}^{2}+a_{z}^{2}}
$$

and

$$
|\underline{b}|=\sqrt{b_{x}^{2}+b_{y}^{2}+b_{z}^{2}}
$$

respectively.

Section 2: Exercises

2. Exercises

Click on Exercise links for full worked solutions (there are 16 exercises in total)

Exercise 1. Calculate $\underline{a} \cdot \underline{b}$ when $\underline{a}=2 \underline{i}-3 \underline{j}+5 \underline{k}, \underline{b}=\underline{i}+2 \underline{j}+8 \underline{k}$

Exercise 2. Calculate $\underline{a} \cdot \underline{b}$ when $\underline{a}=4 \underline{i}-7 \underline{j}+2 \underline{k}, \underline{b}=5 \underline{i}-\underline{j}-4 \underline{k}$

Exercise 3. Calculate $\underline{a} \cdot \underline{b}$ when $\underline{a}=2 \underline{i}+3 \underline{j}+3 \underline{k}, \underline{b}=3 \underline{i}-2 \underline{j}+5 \underline{k}$

Exercise 4. Calculate $\underline{a} \cdot \underline{b}$ when $\underline{a}=3 \underline{i}+6 \underline{j}-\underline{k}, \underline{b}=8 \underline{i}-3 \underline{j}-\underline{k}$

Section 2: Exercises
Exercise 5. Show that \underline{a} is perpendicular to \underline{b} when

$$
\underline{a}=\underline{i}+\underline{j}+3 \underline{k}, \quad \underline{b}=\underline{i}-7 \underline{j}+2 \underline{k}
$$

Exercise 6. Show that \underline{a} is perpendicular to \underline{b} when

$$
\underline{a}=\underline{i}+23 \underline{j}+7 \underline{k}, \quad \underline{b}=26 \underline{i}+\underline{j}-7 \underline{k}
$$

Exercise 7. Show that \underline{a} is perpendicular to \underline{b} when

$$
\underline{a}=\underline{i}+\underline{j}+3 \underline{k}, \quad \underline{b}=2 \underline{i}+7 \underline{j}-3 \underline{k}
$$

Exercise 8. Show that \underline{a} is perpendicular to \underline{b} when

$$
\underline{a}=39 \underline{i}+2 \underline{j}+\underline{k}, \quad \underline{b}=\underline{i}-23 \underline{j}+7 \underline{k}
$$

Section 2: Exercises
Exercise 9. Calculate the work done $\underline{F} \cdot \underline{s}$ given $|\underline{F}|,|\underline{s}|$ and θ (the angle between the force \underline{F} and the displacement \underline{s}) when $|\underline{F}|=7 \mathrm{~N}, \quad|\underline{s}|=3 \mathrm{~m}, \quad \theta=0^{\circ}$

Exercise 10. Calculate the work done $\underline{F} \cdot \underline{s}$ given $|\underline{F}|,|\underline{s}|$ and θ (the angle between the force \underline{F} and the displacement \underline{s}) when $|\underline{F}|=4 \mathrm{~N}, \quad|\underline{s}|=2 \mathrm{~m}, \quad \theta=27^{\circ}$

Exercise 11. Calculate the work done $\underline{F} \cdot \underline{s}$ given $|\underline{F}|,|\underline{s}|$ and θ (the angle between the force \underline{F} and the displacement \underline{s}) when $|\underline{F}|=5 \mathrm{~N}, \quad|\underline{s}|=4 \mathrm{~m}, \quad \theta=48^{\circ}$

Exercise 12. Calculate the work done $\underline{F} \cdot \underline{s}$ given $|\underline{F}|,|\underline{s}|$ and θ (the angle between the force \underline{F} and the displacement \underline{s}) when $|\underline{F}|=2 \mathrm{~N}, \quad|\underline{s}|=3 \mathrm{~m}, \quad \theta=56^{\circ}$

- Theory - Answers Tips - Notation

Section 2: Exercises
Exercise 13. Calculate the angle θ between vectors \underline{a} and \underline{b} when

$$
\underline{a}=2 \underline{i}-\underline{j}+2 \underline{k}, \quad \underline{b}=\underline{i}+\underline{j}+\underline{k}
$$

Exercise 14. Calculate the angle θ between vectors \underline{a} and \underline{b} when $\underline{a}=\underline{i}+\underline{j}+\underline{k}, \quad \underline{b}=2 \underline{i}-3 \underline{j}+\underline{k}$

Exercise 15. Calculate the angle θ between vectors \underline{a} and \underline{b} when $\underline{a}=\underline{i}-2 \underline{j}+2 \underline{k}, \quad \underline{b}=2 \underline{i}+3 \underline{j}+\underline{k}$

Exercise 16. Calculate the angle θ between vectors \underline{a} and \underline{b} when

$$
\underline{a}=5 \underline{i}+4 \underline{j}+3 \underline{k}, \quad \underline{b}=4 \underline{i}-5 \underline{j}+3 \underline{k}
$$

3. Answers

1. 36 ,
2. 19,
3. 15 ,
4. 7 ,
5. Hint: If $\theta=90^{\circ}$ then what will $\underline{a} \cdot \underline{b}=a_{x} b_{x}+a_{y} b_{y}+a_{z} b_{z}$ be?
6. Hint: If $\theta=90^{\circ}$ then what will $\underline{a} \cdot \underline{b}=a_{x} b_{x}+a_{y} b_{y}+a_{z} b_{z}$ be?
7. Hint: If $\theta=90^{\circ}$ then what will $\underline{a} \cdot \underline{b}=a_{x} b_{x}+a_{y} b_{y}+a_{z} b_{z}$ be?
8. Hint: If $\theta=90^{\circ}$ then what will $\underline{a} \cdot \underline{b}=a_{x} b_{x}+a_{y} b_{y}+a_{z} b_{z}$ be?
9. 21 J ,
10. 7.128 J ,
11. 13.38 J ,
12. 3.355 J ,
13. 54.7°,

Section 3: Answers
14. 90°,
15. 100.3°,
16. 79.6°.

Section 4: Tips on using solutions

4. Tips on using solutions

- When looking at the THEORY, ANSWERS, TIPS or NOTATION pages, use the Back button (at the bottom of the page) to return to the exercises
- Use the solutions intelligently. For example, they can help you get started on an exercise, or they can allow you to check whether your intermediate results are correct
- Try to make less use of the full solutions as you work your way through the Tutorial

5. Alternative notation

- Here, we use symbols like \underline{a} to denote a vector. In some texts, symbols for vectors are in bold (eg a instead of \underline{a})
- In this Tutorial, vectors are given in terms of the unit Cartesian vectors $\underline{i}, \underline{j}$ and \underline{k}.

For example, $\underline{a}=\underline{i}+2 \underline{j}+3 \underline{k}$ implies that \underline{a} can be decomposed into the sum of the following three vectors:

	\underline{i}	(one step along the x-axis)
PLUS	$2 \underline{j}$	(two steps along the y-axis)
PLUS	$3 \underline{k}$	(three steps along the z-axis)

See the figures on the next page ...

$$
\underline{a}=\underline{i}+2 \underline{j}+3 \underline{k}
$$

one step along the x-axis two steps along the y-axis three steps along the z-axis

\underline{a} is the (vector) sum

$$
\begin{gathered}
\text { of } \underline{i} \text { and } 2 \underline{j} \\
\text { and } 3 \underline{k}
\end{gathered}
$$

- A common alternative notation for expressing \underline{a} in terms of these Cartesian components is given by $\underline{a}=(1,2,3)$

Solutions to exercises

Full worked solutions

Exercise 1.

$\underline{a} \cdot \underline{b}=a_{x} b_{x}+a_{y} b_{y}+a_{z} b_{z}$, where

$$
\begin{aligned}
\underline{a} & =a_{x} \underline{i}+a_{y} \underline{j}+a_{z} \underline{k} \\
\underline{b} & =b_{x} \underline{i}+b_{y} \underline{j}+b_{z} \underline{k}
\end{aligned}
$$

$\underline{a}=2 \underline{i}-3 \underline{j}+5 \underline{k}, \quad \underline{b}=\underline{i}+2 \underline{j}+8 \underline{k} \quad$ gives

$$
\begin{aligned}
\underline{a} \cdot \underline{b} & =(2)(1)+(-3)(2)+(5)(8) \\
& =2-6+40 \\
& =36 .
\end{aligned}
$$

Return to Exercise 1

Solutions to exercises
Exercise 2.
$\underline{a} \cdot \underline{b}=a_{x} b_{x}+a_{y} b_{y}+a_{z} b_{z}$, where

$$
\begin{aligned}
& \underline{a}=a_{x} \underline{i}+a_{y} \underline{j}+a_{z} \underline{k} \\
& \underline{b}=b_{x} \underline{i}+b_{y} \underline{j}+b_{z} \underline{k}
\end{aligned}
$$

$\underline{a}=4 \underline{i}-7 \underline{j}+2 \underline{k}, \quad \underline{b}=5 \underline{i}-\underline{j}-4 \underline{k} \quad$ gives

$$
\begin{aligned}
\underline{a} \cdot \underline{b} & =(4)(5)+(-7)(-1)+(2)(-4) \\
& =20+7-8 \\
& =19 .
\end{aligned}
$$

Return to Exercise 2

Solutions to exercises

Exercise 3.

$\underline{a} \cdot \underline{b}=a_{x} b_{x}+a_{y} b_{y}+a_{z} b_{z}$, where

$$
\begin{aligned}
\underline{a} & =a_{x} \underline{i}+a_{y} \underline{j}+a_{z} \underline{k} \\
\underline{b} & =b_{x} \underline{i}+b_{y} \underline{j}+b_{z} \underline{k}
\end{aligned}
$$

$\underline{a}=2 \underline{i}+3 \underline{j}+3 \underline{k}, \quad \underline{b}=3 \underline{i}-2 \underline{j}+5 \underline{k} \quad$ gives

$$
\begin{aligned}
\underline{a} \cdot \underline{b} & =(2)(3)+(3)(-2)+(3)(5) \\
& =6-6+15 \\
& =15 .
\end{aligned}
$$

Return to Exercise 3

Solutions to exercises
Exercise 4.
$\underline{a} \cdot \underline{b}=a_{x} b_{x}+a_{y} b_{y}+a_{z} b_{z}$, where

$$
\begin{aligned}
\underline{a} & =a_{x} \underline{i}+a_{y} \underline{j}+a_{z} \underline{k} \\
\underline{b} & =b_{x} \underline{i}+b_{y} \underline{j}+b_{z} \underline{k}
\end{aligned}
$$

$\underline{a}=3 \underline{i}+6 \underline{j}-\underline{k}, \quad \underline{b}=8 \underline{i}-3 \underline{j}-\underline{k} \quad$ gives

$$
\begin{aligned}
\underline{a} \cdot \underline{b} & =(3)(8)+(6)(-3)+(-1)(-1) \\
& =24-18+1 \\
& =7
\end{aligned}
$$

Return to Exercise 4

Solutions to exercises

Exercise 5.

$\underline{a} \cdot \underline{b}=|\underline{a}||\underline{b}| \cos \theta$, where θ is the angle between \underline{a} and \underline{b}
\underline{a} perpendicular to \underline{b} gives $\quad \theta=90^{\circ}$

$$
\begin{array}{ll}
\text { i.e. } & \cos \theta=0 \\
\text { i.e. } & \underline{a} \cdot \underline{b}=0
\end{array}
$$

To show that this is true, use $\underline{a} \cdot \underline{b}=a_{x} b_{x}+a_{y} b_{y}+a_{z} b_{z}$

$$
\text { i.e. } \quad \begin{aligned}
\underline{a} \cdot \underline{b} & =(1)(1)+(1)(-7)+(3)(2) \\
& =1-7+6 \\
& =0 .
\end{aligned}
$$

Return to Exercise 5

Solutions to exercises

Exercise 6.

$\underline{a} \cdot \underline{b}=|\underline{a}||\underline{b}| \cos \theta$, where θ is the angle between \underline{a} and \underline{b}
\underline{a} perpendicular to \underline{b} gives $\quad \theta=90^{\circ}$

$$
\begin{array}{ll}
\text { i.e. } & \cos \theta=0 \\
\text { i.e. } & \underline{a} \cdot \underline{b}=0
\end{array}
$$

To show that this is true, use $\underline{a} \cdot \underline{b}=a_{x} b_{x}+a_{y} b_{y}+a_{z} b_{z}$

$$
\text { i.e. } \quad \begin{aligned}
\underline{a} \cdot \underline{b} & =(1)(26)+(23)(1)+(7)(-7) \\
& =26+23-49 \\
& =0 .
\end{aligned}
$$

Return to Exercise 6

Solutions to exercises
Exercise 7.
$\underline{a} \cdot \underline{b}=|\underline{a}||\underline{b}| \cos \theta$, where θ is the angle between \underline{a} and \underline{b}
\underline{a} perpendicular to \underline{b} gives $\quad \theta=90^{\circ}$

$$
\begin{array}{ll}
\text { i.e. } & \cos \theta=0 \\
\text { i.e. } & \underline{a} \cdot \underline{b}=0
\end{array}
$$

To show that this is true, use $\underline{a} \cdot \underline{b}=a_{x} b_{x}+a_{y} b_{y}+a_{z} b_{z}$

$$
\text { i.e. } \quad \begin{aligned}
\underline{a} \cdot \underline{b} & =(1)(2)+(1)(7)+(3)(-3) \\
& =2+7-9 \\
& =0 .
\end{aligned}
$$

Return to Exercise 7

Solutions to exercises
Exercise 8.
$\underline{a} \cdot \underline{b}=|\underline{\mid}||\underline{b}| \cos \theta$, where θ is the angle between \underline{a} and \underline{b}
\underline{a} perpendicular to \underline{b} gives $\quad \theta=90^{\circ}$

$$
\begin{array}{ll}
\text { i.e. } & \cos \theta=0 \\
\text { i.e. } & \underline{a} \cdot \underline{b}=0
\end{array}
$$

To show that this is true, use $\underline{a} \cdot \underline{b}=a_{x} b_{x}+a_{y} b_{y}+a_{z} b_{z}$

$$
\text { i.e. } \quad \begin{aligned}
\underline{a} \cdot \underline{b} & =(39)(1)+(2)(-23)+(1)(7) \\
& =39-46+7 \\
& =0
\end{aligned}
$$

Return to Exercise 8

Solutions to exercises
Exercise 9.
$\underline{F} \cdot \underline{s}=|\underline{F}||\underline{s}| \cos \theta$,

$$
\begin{gathered}
|\underline{F}|=7 \mathrm{~N} \\
|\underline{s}|=3 \mathrm{~m} \\
\theta=0^{\circ} \text { gives } \cos \theta=1
\end{gathered}
$$

$\therefore \underline{F} \cdot \underline{s}=|\underline{F}||\underline{s}| \cos \theta=(7 \mathrm{~N})(3 \mathrm{~m})(1)=21 \mathrm{~J}$.

Note: When the angle θ is zero then

$$
\underline{F} \cdot \underline{s}=|\underline{F}||\underline{s}|
$$

and one simply multiplies the magnitudes of \underline{F} and \underline{s}.

Return to Exercise 9

Solutions to exercises
Exercise 10.
$\underline{F} \cdot \underline{s}=|\underline{F}||\underline{s}| \cos \theta$,

$$
\begin{gathered}
|\underline{F}|=4 \mathrm{~N} \\
|\underline{s}|=2 \mathrm{~m} \\
\theta=27^{\circ} \text { gives } \cos \theta \simeq 0.8910
\end{gathered}
$$

$\therefore \underline{F} \cdot \underline{s} \simeq(4 \mathrm{~N})(2 \mathrm{~m})(0.8910) \simeq 7.128 \mathrm{~J}$.

$$
\begin{aligned}
\underline{F} \cdot \underline{s}= & |\underline{F}||\underline{s}| \cos \theta \\
& \text { and } \\
\underline{F} \cdot \underline{s}= & (|\underline{F}| \cos \theta)|\underline{s}|
\end{aligned}
$$

Note: $\underline{F} \cdot \underline{s}$ is the product of $|\underline{s}|$ and the projected component of force $|\underline{F}| \cos \theta$ along the direction of \underline{s}.

Return to Exercise 10

Solutions to exercises
Exercise 11.
$\underline{F} \cdot \underline{s}=|\underline{F}||\underline{s}| \cos \theta$,

$$
\begin{gathered}
|\underline{F}|=5 \mathrm{~N} \\
|\underline{s}|=4 \mathrm{~m} \\
\theta=48^{\circ} \text { gives } \cos \theta \simeq 0.6691
\end{gathered}
$$

$\therefore \underline{F} \cdot \underline{s} \simeq(5 \mathrm{~N})(4 \mathrm{~m})(0.6691) \simeq 13.38 \mathrm{~J}$.
Return to Exercise 11

Solutions to exercises
Exercise 12.
$\underline{F} \cdot \underline{s}=|\underline{F}||\underline{s}| \cos \theta$,

$$
\begin{gathered}
|\underline{F}|=2 \mathrm{~N} \\
|\underline{s}|=3 \mathrm{~m} \\
\theta=56^{\circ} \text { gives } \cos \theta \simeq 0.5592
\end{gathered}
$$

$\therefore \underline{F} \cdot \underline{s} \simeq(2 \mathrm{~N})(3 \mathrm{~m})(0.5592) \simeq 3.355 \mathrm{~J}$.
Return to Exercise 12

Solutions to exercises

Exercise 13.

$\underline{a} \cdot \underline{b}=|\underline{a}||\underline{b}| \cos \theta$, where θ is the angle between vectors \underline{a} and \underline{b}

$$
\begin{gathered}
\therefore \cos \theta=\frac{\underline{a} \cdot \underline{b} \mid}{|\underline{a}||\underline{b}|} \\
\text { If } \quad \underline{a}=a_{x} \underline{i}+a_{y} \underline{j}+a_{z} \underline{k} \\
\underline{b}=b_{x} \underline{i}+b_{y} \underline{j}+b_{z} \underline{k}
\end{gathered}
$$

then $\cos \theta=\frac{\underline{a} \cdot \underline{b}}{|\underline{a}||b|}$ where

$$
\begin{aligned}
\underline{a} \cdot \underline{b} & =a_{x} b_{x}+a_{y} b_{y}+a_{z} b_{z} \\
|\underline{a}| & =\sqrt{a_{x}^{2}+a_{y}^{2}+a_{z}^{2}} \\
|\underline{b}| & =\sqrt{b_{x}^{2}+b_{y}^{2}+b_{z}^{2}}
\end{aligned}
$$

Solutions to exercises

$$
\underline{a}=2 \underline{i}-\underline{j}+2 \underline{k}, \quad \underline{b}=\underline{i}+\underline{j}+\underline{k}
$$

i.e. $a_{x}=2, a_{y}=-1, a_{z}=2$ and $b_{x}=1, b_{y}=1, \quad b_{z}=1$
then

$$
\begin{aligned}
& \underline{a} \cdot \underline{b}=(2)(1)+(-1)(1)+(2)(1)=2-1+2=3 \\
& |\underline{a}|=\sqrt{2^{2}+(-1)^{2}+2^{2}}=\sqrt{4+1+4}=\sqrt{9}=3 \\
& |\underline{b}|=\sqrt{1^{2}+1^{2}+1^{2}}=\sqrt{3}
\end{aligned}
$$

$$
\therefore \quad \cos \theta=\frac{\underline{a} \cdot \underline{b}}{|\underline{a}||\underline{b}|}=\frac{3}{3 \sqrt{3}} \simeq 0.5774
$$

$$
\text { so } \quad \theta \simeq \cos ^{-1}(0.5774) \simeq 54.7^{\circ} .
$$

Solutions to exercises

Exercise 14.

$\underline{a} \cdot \underline{b}=|\underline{a}||\underline{b}| \cos \theta$, where θ is the angle between vectors \underline{a} and \underline{b}

$$
\begin{gathered}
\therefore \cos \theta=\frac{\underline{a} \cdot \underline{b} \mid}{|\underline{a}||\underline{b}|} \\
\text { If } \quad \underline{a}=a_{x} \underline{i}+a_{y} \underline{j}+a_{z} \underline{k} \\
\underline{b}=b_{x} \underline{i}+b_{y} \underline{j}+b_{z} \underline{k}
\end{gathered}
$$

then $\cos \theta=\frac{\underline{a} \cdot \underline{b}}{|\underline{a}||b|}$ where

$$
\begin{aligned}
\underline{a} \cdot \underline{b} & =a_{x} b_{x}+a_{y} b_{y}+a_{z} b_{z} \\
|\underline{a}| & =\sqrt{a_{x}^{2}+a_{y}^{2}+a_{z}^{2}} \\
|\underline{b}| & =\sqrt{b_{x}^{2}+b_{y}^{2}+b_{z}^{2}}
\end{aligned}
$$

Solutions to exercises

$$
\underline{a}=\underline{i}+\underline{j}+\underline{k}, \quad \underline{b}=2 \underline{i}-3 \underline{j}+\underline{k}
$$

i.e. $a_{x}=1, a_{y}=1, a_{z}=1$ and $b_{x}=2, b_{y}=-3, b_{z}=1$
then

$$
\begin{aligned}
& \underline{a} \cdot \underline{b}=(1)(2)+(1)(-3)+(1)(1)=2-3+1=0 \\
& |\underline{a}|=\sqrt{1^{2}+1^{2}+1^{2}}=\sqrt{3} \\
& |\underline{b}|=\sqrt{2^{2}+(-3)^{2}+1^{2}}=\sqrt{4+9+1}=\sqrt{14}
\end{aligned}
$$

$$
\therefore \quad \cos \theta=\frac{\underline{a} \cdot \underline{b}}{|\underline{a}| \underline{b} \mid}=\frac{0}{\sqrt{3} \sqrt{14}}=\frac{0}{\sqrt{42}}=0
$$

so

$$
\theta=\cos ^{-1}(0)=90^{\circ} .
$$

Return to Exercise 14

Solutions to exercises

Exercise 15.

$\underline{a} \cdot \underline{b}=|\underline{a}||\underline{b}| \cos \theta$, where θ is the angle between vectors \underline{a} and \underline{b}

$$
\begin{gathered}
\therefore \cos \theta=\frac{\underline{a} \cdot \underline{b} \mid}{|\underline{a}||\underline{b}|} \\
\text { If } \quad \underline{a}=a_{x} \underline{i}+a_{y} \underline{j}+a_{z} \underline{k} \\
\underline{b}=b_{x} \underline{i}+b_{y} \underline{j}+b_{z} \underline{k}
\end{gathered}
$$

then $\cos \theta=\frac{a \cdot b}{|\underline{a} \cdot| \underline{b} \mid}$ where

$$
\begin{aligned}
\underline{a} \cdot \underline{b} & =a_{x} b_{x}+a_{y} b_{y}+a_{z} b_{z} \\
|\underline{a}| & =\sqrt{a_{x}^{2}+a_{y}^{2}+a_{z}^{2}} \\
|\underline{b}| & =\sqrt{b_{x}^{2}+b_{y}^{2}+b_{z}^{2}}
\end{aligned}
$$

Solutions to exercises

$$
\underline{a}=\underline{i}-2 \underline{j}+2 \underline{k}, \quad \underline{b}=2 \underline{i}+3 \underline{j}+\underline{k}
$$

i.e. $a_{x}=1, a_{y}=-2, a_{z}=2$ and $b_{x}=2, b_{y}=3, b_{z}=1$
then

$$
\begin{aligned}
& \underline{a} \cdot \underline{b}=(1)(2)+(-2)(3)+(2)(1)=2-6+2=-2 \\
& |\underline{a}|=\sqrt{1^{2}+(-2)^{2}+2^{2}}=\sqrt{1+4+4}=\sqrt{9}=3 \\
& |\underline{b}|=\sqrt{2^{2}+3^{2}+1^{2}}=\sqrt{4+9+1}=\sqrt{14}
\end{aligned}
$$

$$
\therefore \quad \cos \theta=\frac{a \cdot b}{|\underline{a}||\underline{b}|}=\frac{-2}{3 \sqrt{14}} \simeq-0.1782
$$

so

$$
\theta \simeq \cos ^{-1}(-0.1782) \simeq 100.3^{\circ},
$$

see also the Note on the next page ...

Solutions to exercises
Note:

When $\underline{a} \cdot \underline{b}$ is positive $\cos \theta$ is positive and θ is an acute angle

When $\underline{a} \cdot \underline{b}$ is negative $\cos \theta$ is negative
and θ is an obtuse angle

End of Note.

Solutions to exercises

Exercise 16.

$\underline{a} \cdot \underline{b}=|\underline{a}||\underline{b}| \cos \theta$, where θ is the angle between vectors \underline{a} and \underline{b}

$$
\begin{gathered}
\therefore \cos \theta=\frac{\underline{a} \cdot \underline{b} \mid}{|\underline{a}||\underline{b}|} \\
\text { If } \quad \underline{a}=a_{x} \underline{i}+a_{y} \underline{j}+a_{z} \underline{k} \\
\underline{b}=b_{x} \underline{i}+b_{y} \underline{j}+b_{z} \underline{k}
\end{gathered}
$$

then $\cos \theta=\frac{a \cdot b}{|\underline{a} \cdot| \underline{b} \mid}$ where

$$
\begin{aligned}
\underline{a} \cdot \underline{b} & =a_{x} b_{x}+a_{y} b_{y}+a_{z} b_{z} \\
|\underline{a}| & =\sqrt{a_{x}^{2}+a_{y}^{2}+a_{z}^{2}} \\
|\underline{b}| & =\sqrt{b_{x}^{2}+b_{y}^{2}+b_{z}^{2}}
\end{aligned}
$$

Solutions to exercises

$$
\underline{a}=5 \underline{i}+4 \underline{j}+3 \underline{k}, \quad \underline{b}=4 \underline{i}-5 \underline{j}+3 \underline{k}
$$

i.e. $a_{x}=5, a_{y}=4, a_{z}=3$ and $b_{x}=4, b_{y}=-5, b_{z}=3$
then

$$
\begin{aligned}
& \underline{a} \cdot \underline{b}=(5)(4)+(4)(-5)+(3)(3)=20-20+9=9 \\
& |\underline{a}|=\sqrt{5^{2}+4^{2}+3^{2}}=\sqrt{25+16+9}=\sqrt{50} \\
& |\underline{b}|=\sqrt{4^{2}+(-5)^{2}+3^{2}}=\sqrt{16+25+9}=\sqrt{50}
\end{aligned}
$$

$$
\therefore \quad \cos \theta=\frac{a \cdot b}{|\underline{a}||\underline{b}|}=\frac{9}{\sqrt{50} \sqrt{50}}=\frac{9}{50}=0.18
$$

so

$$
\theta=\cos ^{-1}(0.18) \simeq 79.6^{\circ}
$$

