

VECTOR PRODUCT

Graham S McDonald

A Tutorial Module for learning about the vector product of two vectors

Table of contentsBegin Tutorial

© 2004 g.s.mcdonald@salford.ac.uk

Table of contents

- 1. Theory
- 2. Exercises
- **3.** Answers
- 4. Tips on using solutions
- 5. Alternative notation Full worked solutions

Section 1: Theory

1. Theory

The purpose of this tutorial is to practice working out the vector product of two vectors.

It is called the 'vector product' because the result is a 'vector', i.e. a quantity with \underline{both} (i) **magnitude**, and (ii) **direction**.

(i) The **MAGNITUDE** of the vector product of \underline{a} and \underline{b} is

Section 1: Theory

(ii) The **DIRECTION** of the vector product of \underline{a} and \underline{b} is **perpendicular** to both \underline{a} and \underline{b} ,

such that if we look along $\underline{a} \times \underline{b}$

then \underline{a} rotates towards \underline{b}

in a clockwise manner.

It can be shown that the above definitions of magnitude and direction of a vector product allow us to calculate the x, y and z **components** of $\underline{a} \times \underline{b}$ from the individual components of the vectors \underline{a} and \underline{b}

The **components of the vector** $\underline{a} \times \underline{b}$ are given by the 'determinant' of a matrix with 3 rows.

The components of $\underline{a} = a_x \underline{i} + a_y \underline{j} + a_z \underline{k}$ and $\underline{b} = b_x \underline{i} + b_y \underline{j} + b_z \underline{k}$ appear in the 2nd and 3rd rows.

This 3-row determinant is evaluated by expansion into 2-row determinants, which are themselves then expanded. Matrix theory is itself very useful, and the scheme is shown below

$$\underline{a} \times \underline{b} = \begin{vmatrix} \underline{i} & \underline{j} & \underline{k} \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix}$$
$$= \underline{i} \begin{vmatrix} a_y & a_z \\ b_y & b_z \end{vmatrix} - \underline{j} \begin{vmatrix} a_x & a_z \\ b_x & b_z \end{vmatrix} + \underline{k} \begin{vmatrix} a_x & a_y \\ b_x & b_y \end{vmatrix}$$
$$= \underline{i} (a_y b_z - a_z b_y) - \underline{j} (a_x b_z - a_z b_x) + \underline{k} (a_x b_y - a_y b_x)$$
Toc A

2. Exercises

Click on **EXERCISE** links for full worked solutions (there are 14 exercises in total).

EXERCISE 1. Calculate $|\underline{a} \times \underline{b}|$ when $|\underline{a}| = 2$, $|\underline{b}| = 4$ and the angle between \underline{a} and \underline{b} is $\theta = 45^{\circ}$

EXERCISE 2. Calculate $|\underline{a} \times \underline{b}|$ when $|\underline{a}| = 3$, $|\underline{b}| = 5$ and the angle between \underline{a} and \underline{b} is $\theta = 60^{\circ}$

EXERCISE 3. Calculate $|\underline{a} \times \underline{b}|$ when $|\underline{a}| = 1$, $|\underline{b}| = 3$ and the angle between \underline{a} and \underline{b} is $\theta = 30^{\circ}$

EXERCISE 4. Calculate $|\underline{a} \times \underline{b}|$ when $|\underline{a}| = 2$, $|\underline{b}| = 5$ and the angle between \underline{a} and \underline{b} is $\theta = 35^{\circ}$

\bullet Theory \bullet Answers \bullet Tips \bullet Notation

EXERCISE 5. Calculate the magnitude of the torque $\underline{\tau} = \underline{s} \times \underline{F}$ when $|\underline{s}| = 2 \text{ m}, |\underline{F}| = 4 \text{ N}$ and $\theta = 30^{\circ}$ (θ is the angle between the position vector \underline{s} and the force \underline{F})

EXERCISE 6. Calculate the magnitude of the velocity $\underline{v} = \underline{\omega} \times \underline{s}$ when $|\underline{\omega}| = 3 \mathrm{s}^{-1}$, $|\underline{s}| = 2 \mathrm{m}$ and $\theta = 45^{\circ}$ (θ is the angle between the angular velocity $\underline{\omega}$ and the position vector \underline{s})

EXERCISE 7. If $\underline{a} = 4\underline{i} + 2\underline{j} - \underline{k}$ and $\underline{b} = 2\underline{i} - 6\underline{i} - 3\underline{k}$ then calculate a vector that is perpendicular to both \underline{a} and \underline{b}

EXERCISE 8. Calculate the vector $\underline{a} \times \underline{b}$ when $\underline{a} = 2\underline{i} + \underline{j} - \underline{k}$ and $\underline{b} = 3\underline{i} - 6\underline{j} + 2\underline{k}$

• Theory • Answers • Tips • Notation

EXERCISE 9. Calculate the vector $\underline{a} \times \underline{b}$ when $\underline{a} = 3\underline{i} + 4\underline{j} - 3\underline{k}$ and $\underline{b} = \underline{i} + 3\underline{j} + 2\underline{k}$

EXERCISE 10. Calculate the vector $\underline{a} \times \underline{b}$ when $\underline{a} = \underline{i} + 2\underline{j} - \underline{k}$ and $\underline{b} = 3\underline{i} + 3\underline{j} + \underline{k}$

EXERCISE 11. Calculate the vector $\underline{a} \times \underline{b}$ when $\underline{a} = 2\underline{i} + 4\underline{j} + 2\underline{k}$ and $\underline{b} = \underline{i} + 5\underline{j} - 2\underline{k}$

EXERCISE 12. Calculate the vector $\underline{a} \times \underline{b}$ when $\underline{a} = 3\underline{i} - 4\underline{j} + \underline{k}$ and $\underline{b} = 2\underline{i} + 5\underline{j} - \underline{k}$

• Theory • Answers • Tips • Notation

EXERCISE 13. Calculate the vector $\underline{a} \times \underline{b}$ when $\underline{a} = 2\underline{i} - 3j + \underline{k}$ and $\underline{b} = 2\underline{i} + j + 4\underline{k}$

EXERCISE 14. Calculate the vector $\underline{a} \times \underline{b}$ when $\underline{a} = 2\underline{i} + 3\underline{k}$ and $\underline{b} = \underline{i} + 2j + 4\underline{k}$

Back

Section 3: Answers

3. Answers

1. $4\sqrt{2}$. 2. $\frac{15}{2}\sqrt{3}$, 3. $\frac{3}{2}$. 4. 5.766. 5. 4 J. 6. $3\sqrt{2} \text{ m s}^{-1}$. 7. $-12\underline{i} + 10j - 28\underline{k}$, 8. $-4\underline{i} - 7\underline{j} - 15\underline{k}$, 9. 17i - 9j + 5k, 10. 5i - 4j - 4k, 11. -18i + 6j + 6k, 12. $-\underline{i} + 5\underline{j} + 23\underline{k}$, 13. $-13\underline{i} - 6\underline{j} + 8\underline{k}$, 14. -6i - 5j + 4k.

4. Tips on using solutions

• When looking at the THEORY, ANSWERS, TIPS or NOTATION pages, use the Back button (at the bottom of the page) to return to the exercises

• Use the solutions intelligently. For example, they can help you get started on an exercise, or they can allow you to check whether your intermediate results are correct

• Try to make less use of the full solutions as you work your way through the Tutorial

5. Alternative notation

• Here, we use symbols like \underline{a} to denote a vector. In some texts, symbols for vectors are **in bold** (eg **a** instead of \underline{a})

• In this Tutorial, vectors are given in terms of the unit Cartesian vectors \underline{i} , \underline{j} and \underline{k} . A common alternative notation involves quoting the **Cartesian components** within brackets. For example, the vector $\underline{a} = 2\underline{i} + j + 5\underline{k}$ can be written as $\underline{a} = (2, 1, 5)$

• The scalar product $\underline{a} \cdot \underline{b}$ is also called a 'dot product' (reflecting the symbol used to denote this type of multiplication). Likewise, the vector product $\underline{a} \times \underline{b}$ is also called a '**cross product**'

 \bullet An alternative notation for the vector product is $\underline{a} \wedge \underline{b}$

Full worked solutions

Exercise 1.

Here, we have $|\underline{a}| = 2$, $|\underline{b}| = 4$ and $\theta = 45^{\circ}$.

$$\begin{aligned} |\underline{a} \times \underline{b}| &= |\underline{a}| |\underline{b}| \sin \theta \\ &= (2)(4) \sin 45^{\circ} \\ &= (2)(4) \frac{1}{\sqrt{2}} \\ &= \frac{8}{\sqrt{2}} \\ &= \frac{8}{\sqrt{2}} \frac{\sqrt{2}}{\sqrt{2}} \\ &= \frac{8\sqrt{2}}{2} \\ &= \frac{8\sqrt{2}}{2} \\ &= 4\sqrt{2}. \end{aligned}$$

Exercise 2.

Here, we have $|\underline{a}| = 3$, $|\underline{b}| = 5$ and $\theta = 60^{\circ}$.

$$\underline{a} \times \underline{b}| = |\underline{a}||\underline{b}| \sin \theta$$
$$= (3)(5) \sin 60^{\circ}$$
$$= (3)(5) \frac{\sqrt{3}}{2}$$
$$= \frac{15}{2} \sqrt{3}.$$

Exercise 3.

Here, we have $|\underline{a}| = 1$, $|\underline{b}| = 3$ and $\theta = 30^{\circ}$.

$$\begin{aligned} |\underline{a} \times \underline{b}| &= |\underline{a}| |\underline{b}| \sin \theta \\ &= (1)(3) \sin 30^{\circ} \\ &= (1)(3) \frac{1}{2} \\ &= \frac{3}{2}. \end{aligned}$$

Exercise 4.

Here, we have $|\underline{a}| = 2$, $|\underline{b}| = 5$ and $\theta = 35^{\circ}$.

$$\begin{aligned} \underline{a} \times \underline{b}| &= |\underline{a}| |\underline{b}| \sin \theta \\ &= (2)(5) \sin 35^{\circ} \\ &\simeq (2)(5)(0.5736) \\ &= 5.736. \end{aligned}$$

Toc

Exercise 5.

Here, we have $|\underline{s}| = 2 \text{ m}$, $|\underline{F}| = 4 \text{ N}$ and $\theta = 30^{\circ}$.

$$\begin{aligned} |\tau| &= |\underline{s} \times \underline{F}| \\ &= |\underline{s}||\underline{F}|\sin\theta \\ &= (2 \text{ m})(4 \text{ N})\sin 30^{\circ} \\ &= (2 \text{ m})(4 \text{ N})\frac{1}{2} \\ &= (8)(\text{N m})\frac{1}{2} \\ &= (8)(\text{J})\frac{1}{2} \\ &= 4 \text{ J}. \end{aligned}$$

Return to Exercise 5

Back

Exercise 6.

Here, we have $|\underline{\omega}| = 3 \mathrm{s}^{-1}$, $|\underline{s}| = 2 \mathrm{m}$ and $\theta = 45^{\circ}$.

$$\begin{aligned} |\tau| &= |\underline{\omega} \times \underline{s}| \\ &= |\underline{\omega}| |\underline{s}| \sin \theta \\ &= (3 \, \mathrm{s}^{-1}) (2 \, \mathrm{m}) \sin 45^{\circ} \\ &= (3 \, \mathrm{s}^{-1}) (2 \, \mathrm{m}) \frac{1}{\sqrt{2}} \\ &= (6) (\mathrm{m} \, \mathrm{s}^{-1}) \frac{1}{\sqrt{2}} \frac{\sqrt{2}}{\sqrt{2}} \\ &= (6) (\mathrm{m} \, \mathrm{s}^{-1}) \frac{\sqrt{2}}{2} \\ &= 3\sqrt{2} \, \mathrm{m} \, \mathrm{s}^{-1}. \end{aligned}$$

Exercise 7.

 $\underline{a} \times \underline{b}$ is a vector that is perpendicular to both \underline{a} and \underline{b} . Here, we have $\underline{a} = 4\underline{i} + 2\underline{j} - \underline{k}$ and $\underline{b} = 2\underline{i} - 6\underline{j} - 3\underline{k}$.

$$\underline{a} \times \underline{b} = \begin{vmatrix} \underline{i} & \underline{j} & \underline{k} \\ 4 & \underline{2} & -1 \\ 2 & -6 & -3 \end{vmatrix}$$
$$= \underline{i} \begin{vmatrix} 2 & -1 \\ -6 & -3 \end{vmatrix} - \underline{j} \begin{vmatrix} 4 & -1 \\ 2 & -3 \end{vmatrix} + \underline{k} \begin{vmatrix} 4 & 2 \\ 2 & -6 \end{vmatrix}$$
$$= \underline{i}[(2)(-3)-(-1)(-6)] - \underline{j}[(4)(-3)-(-1)(2)] + \underline{k}[(4)(-6)-(2)(2)]$$
$$\underline{a} \times \underline{b} = \underline{i}[-6-6] - \underline{j}[-12+2] + \underline{k}[-24-4]$$
$$= -12\underline{i} + 10\underline{j} - 28\underline{k}.$$

Exercise 8.

Here, we have $\underline{a} = 2\underline{i} + \underline{j} - \underline{k}$ and $\underline{b} = 3\underline{i} - 6\underline{j} + 2\underline{k}$

$$\underline{a} \times \underline{b} = \begin{vmatrix} \underline{i} & \underline{j} & \underline{k} \\ 2 & 1 & -1 \\ 3 & -6 & 2 \end{vmatrix}$$
$$= \underline{i} \begin{vmatrix} 1 & -1 \\ -6 & 2 \end{vmatrix} - \underline{j} \begin{vmatrix} 2 & -1 \\ 3 & 2 \end{vmatrix} + \underline{k} \begin{vmatrix} 2 & 1 \\ 3 & -6 \end{vmatrix}$$
$$= \underline{i}[(1)(2) - (-1)(-6)] - \underline{j}[(2)(2) - (-1)(3)] + \underline{k}[(2)(-6) - (1)(3)]$$
$$\underline{a} \times \underline{b} = \underline{i}[2 - 6] - \underline{j}[4 + 3] + \underline{k}[-12 - 3]$$
$$= -4\underline{i} - 7\underline{j} - 15\underline{k}.$$

Exercise 9.

Here, we have $\underline{a} = 3\underline{i} + 4\underline{j} - 3\underline{k}$ and $\underline{b} = \underline{i} + 3j + 2\underline{k}$

$$\underline{a} \times \underline{b} = \begin{vmatrix} \underline{i} & \underline{j} & \underline{k} \\ 3 & 4 & -3 \\ 1 & 3 & 2 \end{vmatrix}$$
$$= \underline{i} \begin{vmatrix} 4 & -3 \\ 3 & 2 \end{vmatrix} - \underline{j} \begin{vmatrix} 3 & -3 \\ 1 & 2 \end{vmatrix} + \underline{k} \begin{vmatrix} 3 & 4 \\ 1 & 3 \end{vmatrix}$$
$$= \underline{i}[(4)(2) - (-3)(3)] - \underline{j}[(3)(2) - (-3)(1)] + \underline{k}[(3)(3) - (4)(1)]$$
$$\underline{a} \times \underline{b} = \underline{i}[8 + 9] - \underline{j}[6 + 3] + \underline{k}[9 - 4]$$
$$= 17\underline{i} - 9\underline{j} + 5\underline{k}.$$

Exercise 10.

Here, we have $\underline{a} = \underline{i} + 2\underline{j} - \underline{k}$ and $\underline{b} = 3\underline{i} + 3\underline{j} + \underline{k}$

$$\underline{a} \times \underline{b} = \begin{vmatrix} \underline{i} & \underline{j} & \underline{k} \\ 1 & 2 & -1 \\ 3 & 3 & 1 \end{vmatrix}$$
$$= \underline{i} \begin{vmatrix} 2 & -1 \\ 3 & 1 \end{vmatrix} - \underline{j} \begin{vmatrix} 1 & -1 \\ 3 & 1 \end{vmatrix} + \underline{k} \begin{vmatrix} 1 & 2 \\ 3 & 3 \end{vmatrix}$$
$$= \underline{i}[(2)(1) - (-1)(3)] - \underline{j}[(1)(1) - (-1)(3)] + \underline{k}[(1)(3) - (2)(3)]$$
i.e. $\underline{a} \times \underline{b} = \underline{i}[2 + 3] - \underline{j}[1 + 3] + \underline{k}[3 - 6]$
$$= 5\underline{i} - 4\underline{j} - 3\underline{k}.$$

Exercise 11.

Here, we have $\underline{a} = 2\underline{i} + 4j + 2\underline{k}$ and $\underline{b} = \underline{i} + 5j - 2\underline{k}$

$$\underline{a} \times \underline{b} = \begin{vmatrix} \underline{i} & \underline{j} & \underline{k} \\ 2 & \underline{4} & 2 \\ 1 & 5 & -2 \end{vmatrix}$$
$$= \underline{i} \begin{vmatrix} 4 & 2 \\ 5 & -2 \end{vmatrix} - \underline{j} \begin{vmatrix} 2 & 2 \\ 1 & -2 \end{vmatrix} + \underline{k} \begin{vmatrix} 2 & 4 \\ 1 & 5 \end{vmatrix}$$
$$= \underline{i}[(4)(-2)-(2)(5)] - \underline{j}[(2)(-2)-(2)(1)] + \underline{k}[(2)(5)-(4)(1)]$$
$$\underline{a} \times \underline{b} = \underline{i}[-8 - 10] - \underline{j}[-4 - 2] + \underline{k}[10 - 4]$$
$$= -18\underline{i} + 6\underline{j} + 6\underline{k}.$$

Exercise 12.

Here, we have $\underline{a} = 3\underline{i} - 4\underline{j} + \underline{k}$ and $\underline{b} = 2\underline{i} + 5\underline{j} - \underline{k}$

$$\underline{a} \times \underline{b} = \begin{vmatrix} \underline{i} & \underline{j} & \underline{k} \\ 3 & -\overline{4} & 1 \\ 2 & 5 & -1 \end{vmatrix}$$
$$= \underline{i} \begin{vmatrix} -4 & 1 \\ 5 & -1 \end{vmatrix} - \underline{j} \begin{vmatrix} 3 & 1 \\ 2 & -1 \end{vmatrix} + \underline{k} \begin{vmatrix} 3 & -4 \\ 2 & 5 \end{vmatrix}$$
$$= \underline{i}[(-4)(-1)-(1)(5)] - \underline{j}[(3)(-1)-(1)(2)] + \underline{k}[(3)(5)-(-4)(2)]$$
$$\underline{a} \times \underline{b} = \underline{i}[4-5] - \underline{j}[-3-2] + \underline{k}[15+8]$$
$$= -\underline{i} + 5\underline{j} + 23\underline{k}.$$

Exercise 13.

Here, we have $\underline{a} = 2\underline{i} - 3\underline{j} + \underline{k}$ and $\underline{b} = 2\underline{i} + \underline{j} + 4\underline{k}$

$$\underline{a} \times \underline{b} = \begin{vmatrix} \underline{i} & \underline{j} & \underline{k} \\ 2 & -3 & 1 \\ 2 & 1 & 4 \end{vmatrix}$$
$$= \underline{i} \begin{vmatrix} -3 & 1 \\ 1 & 4 \end{vmatrix} - \underline{j} \begin{vmatrix} 2 & 1 \\ 2 & 4 \end{vmatrix} + \underline{k} \begin{vmatrix} 2 & -3 \\ 2 & 1 \end{vmatrix}$$
$$= \underline{i}[(-3)(4) - (1)(1)] - \underline{j}[(2)(4) - (1)(2)] + \underline{k}[(2)(1) - (-3)(2)]$$
$$\underline{a} \times \underline{b} = \underline{i}[-12 - 1] - \underline{j}[8 - 2] + \underline{k}[2 + 6]$$
$$= -13\underline{i} - 6\underline{j} + 8\underline{k}.$$

Exercise 14.

Here, we have $\underline{a} = 2\underline{i} + 3\underline{k} = 2\underline{i} + 0j + 3\underline{k}$ and $\underline{b} = \underline{i} + 2j + 4\underline{k}$

$$\underline{a} \times \underline{b} = \begin{vmatrix} \underline{i} & \underline{j} & \underline{k} \\ 2 & 0 & 3 \\ 1 & 2 & 4 \end{vmatrix}$$
$$= \underline{i} \begin{vmatrix} 0 & 3 \\ 2 & 4 \end{vmatrix} - \underline{j} \begin{vmatrix} 2 & 3 \\ 1 & 4 \end{vmatrix} + \underline{k} \begin{vmatrix} 2 & 0 \\ 1 & 2 \end{vmatrix}$$
$$= \underline{i}[(0)(4) - (3)(2)] - \underline{j}[(2)(4) - (3)(1)] + \underline{k}[(2)(2) - (0)(1)]$$
$$\underline{a} \times \underline{b} = \underline{i}[0 - 6] - \underline{j}[8 - 3] + \underline{k}[4 - 0]$$
$$= -6\underline{i} - 5\underline{j} + 4\underline{k}.$$
Return to Exercise 14