## Vectors

# VECTOR PRODUCT 

Graham S McDonald

## A Tutorial Module for learning about the vector product of two vectors

- Table of contents
- Begin Tutorial
© 2004 g.s.mcdonald@salford.ac.uk


## Table of contents

1. Theory
2. Exercises
3. Answers
4. Tips on using solutions
5. Alternative notation Full worked solutions

Section 1: Theory

## 1. Theory

The purpose of this tutorial is to practice working out the vector product of two vectors.

It is called the 'vector product' because the result is a 'vector', i.e. a quantity with both (i) magnitude, and (ii) direction.
(i) The MAGNITUDE of the vector product of $\underline{a}$ and $\underline{b}$ is

$$
|\underline{a} \times \underline{b}|=|\underline{a}||\underline{b}| \sin \theta
$$

where $\theta$ is the angle
between $\underline{a}$ and $\underline{b}$.

(ii) The DIRECTION of the vector product of $\underline{a}$ and $\underline{b}$ is perpendicular to both $\underline{a}$ and $\underline{b}$,
such that if we look along $\underline{a} \times \underline{b}$ then $\underline{a}$ rotates towards $\underline{b}$
in a clockwise manner.


It can be shown that the above definitions of magnitude and direction of a vector product allow us to calculate the $x, y$ and $z$ components of $\underline{a} \times \underline{b}$ from the individual components of the vectors $\underline{a}$ and $\underline{b}$

The components of the vector $\underline{a} \times \underline{b}$ are given by the 'determinant' of a matrix with 3 rows.

The components of $\underline{a}=a_{x} \underline{i}+a_{y} \underline{j}+a_{z} \underline{k}$ and $\underline{b}=b_{x} \underline{i}+b_{y} \underline{j}+b_{z} \underline{k}$ appear in the 2 nd and 3rd rows.

This 3-row determinant is evaluated by expansion into 2-row determinants, which are themselves then expanded. Matrix theory is itself very useful, and the scheme is shown below

$$
\begin{aligned}
\underline{a} \times \underline{b} & =\left|\begin{array}{ccc}
\underline{i} & \underline{j} & \underline{k} \\
a_{x} & a_{y} & a_{z} \\
b_{x} & b_{y} & b_{z}
\end{array}\right| \\
& =\underline{i}\left|\begin{array}{cc}
a_{y} & a_{z} \\
b_{y} & b_{z}
\end{array}\right|-\underline{j}\left|\begin{array}{cc}
a_{x} & a_{z} \\
b_{x} & b_{z}
\end{array}\right|+\underline{k}\left|\begin{array}{cc}
a_{x} & a_{y} \\
b_{x} & b_{y}
\end{array}\right| \\
& =\underline{i}\left(a_{y} b_{z}-a_{z} b_{y}\right)-\underline{j}\left(a_{x} b_{z}-a_{z} b_{x}\right)+\underline{k}\left(a_{x} b_{y}-a_{y} b_{x}\right)
\end{aligned}
$$

Section 2: Exercises

## 2. Exercises

Click on Exercise links for full worked solutions (there are 14 exercises in total).

Exercise 1. Calculate $|\underline{a} \times \underline{b}|$ when $|\underline{a}|=2,|\underline{b}|=4$ and the angle between $\underline{a}$ and $\underline{b}$ is $\theta=45^{\circ}$

Exercise 2. Calculate $|\underline{a} \times \underline{b}|$ when $|\underline{a}|=3,|\underline{b}|=5$ and the angle between $\underline{a}$ and $\underline{b}$ is $\theta=60^{\circ}$

Exercise 3. Calculate $|\underline{a} \times \underline{b}|$ when $|\underline{a}|=1,|\underline{b}|=3$ and the angle between $\underline{a}$ and $\underline{b}$ is $\theta=30^{\circ}$

Exercise 4. Calculate $|\underline{a} \times \underline{b}|$ when $|\underline{a}|=2,|\underline{b}|=5$ and the angle between $\underline{a}$ and $\underline{b}$ is $\theta=35^{\circ}$

Section 2: Exercises
Exercise 5. Calculate the magnitude of the torque $\underline{\tau}=\underline{s} \times \underline{F}$ when $|\underline{s}|=2 \mathrm{~m},|\underline{F}|=4 \mathrm{~N}$ and $\theta=30^{\circ}(\theta$ is the angle between the position vector $\underline{s}$ and the force $\underline{F}$ )

Exercise 6. Calculate the magnitude of the velocity $\underline{v}=\underline{\omega} \times \underline{s}$ when $|\underline{\omega}|=3 \mathrm{~s}^{-1},|\underline{s}|=2 \mathrm{~m}$ and $\theta=45^{\circ}(\theta$ is the angle between the angular velocity $\underline{\omega}$ and the position vector $\underline{s}$ )

ExERCISE 7. If $\underline{a}=4 \underline{i}+2 \underline{j}-\underline{k}$ and $\underline{b}=2 \underline{i}-6 \underline{i}-3 \underline{k}$ then calculate a vector that is perpendicular to both $\underline{a}$ and $\underline{b}$

Exercise 8. Calculate the vector $\underline{a} \times \underline{b}$ when $\underline{a}=2 \underline{i}+\underline{j}-\underline{k}$ and $\underline{b}=3 \underline{i}-6 \underline{j}+2 \underline{k}$

Section 2: Exercises
Exercise 9. Calculate the vector $\underline{a} \times \underline{b}$ when $\underline{a}=3 \underline{i}+4 \underline{j}-3 \underline{k}$ and $\underline{b}=\underline{i}+3 \underline{j}+2 \underline{k}$

Exercise 10. Calculate the vector $\underline{a} \times \underline{b}$ when $\underline{a}=\underline{i}+2 \underline{j}-\underline{k}$ and $\underline{b}=3 \underline{i}+3 \underline{j}+\underline{k}$

Exercise 11. Calculate the vector $\underline{a} \times \underline{b}$ when $\underline{a}=2 \underline{i}+4 \underline{j}+2 \underline{k}$ and $\underline{b}=\underline{i}+5 \underline{j}-2 \underline{k}$

Exercise 12. Calculate the vector $\underline{a} \times \underline{b}$ when $\underline{a}=3 \underline{i}-4 \underline{j}+\underline{k}$ and $\underline{b}=2 \underline{i}+5 \underline{j}-\underline{k}$

Section 2: Exercises
Exercise 13. Calculate the vector $\underline{a} \times \underline{b}$ when $\underline{a}=2 \underline{i}-3 \underline{j}+\underline{k}$ and $\underline{b}=2 \underline{i}+\underline{j}+4 \underline{k}$

Exercise 14. Calculate the vector $\underline{a} \times \underline{b}$ when $\underline{a}=2 \underline{i}+3 \underline{k}$ and $\underline{b}=\underline{i}+2 \underline{j}+4 \underline{k}$

Section 3: Answers

## 3. Answers

1. $4 \sqrt{2}$,
2. $\frac{15}{2} \sqrt{3}$,
3. $\frac{3}{2}$,
4. 5.766,
5. 4 J ,
6. $3 \sqrt{2} \mathrm{~m} \mathrm{~s}^{-1}$,
7. $-12 \underline{i}+10 \underline{j}-28 \underline{k}$,
8. $-4 \underline{i}-7 \underline{j}-15 \underline{k}$,
9. $17 \underline{i}-9 \underline{j}+5 \underline{k}$,
10. $5 \underline{i}-4 \underline{j}-4 \underline{k}$,
11. $-18 \underline{i}+6 \underline{j}+6 \underline{k}$,
12. $-\underline{i}+5 \underline{j}+23 \underline{k}$,
13. $-13 \underline{i}-6 \underline{j}+8 \underline{k}$,
14. $-6 \underline{i}-5 \underline{j}+4 \underline{k}$.

Section 4: Tips on using solutions

## 4. Tips on using solutions

- When looking at the THEORY, ANSWERS, TIPS or NOTATION pages, use the Back button (at the bottom of the page) to return to the exercises
- Use the solutions intelligently. For example, they can help you get started on an exercise, or they can allow you to check whether your intermediate results are correct
- Try to make less use of the full solutions as you work your way through the Tutorial


## 5. Alternative notation

- Here, we use symbols like $\underline{a}$ to denote a vector. In some texts, symbols for vectors are in bold (eg a instead of $\underline{a}$ )
- In this Tutorial, vectors are given in terms of the unit Cartesian vectors $\underline{i}, \underline{j}$ and $\underline{k}$. A common alternative notation involves quoting the Cartesian components within brackets. For example, the vector $\underline{a}=2 \underline{i}+\underline{j}+5 \underline{k}$ can be written as $\underline{a}=(2,1,5)$
- The scalar product $\underline{a} \cdot \underline{b}$ is also called a 'dot product' (reflecting the symbol used to denote this type of multiplication). Likewise, the vector product $\underline{a} \times \underline{b}$ is also called a 'cross product'
- An alternative notation for the vector product is $\underline{a} \wedge \underline{b}$

Solutions to exercises

## Full worked solutions

## Exercise 1.

Here, we have $|\underline{a}|=2,|\underline{b}|=4$ and $\theta=45^{\circ}$.

$$
\begin{aligned}
|\underline{a} \times \underline{b}| & =|\underline{a}||\underline{b}| \sin \theta \\
& =(2)(4) \sin 45^{\circ} \\
& =(2)(4) \frac{1}{\sqrt{2}} \\
& =\frac{8}{\sqrt{2}} \\
& =\frac{8}{\sqrt{2}} \frac{\sqrt{2}}{\sqrt{2}} \\
& =\frac{8 \sqrt{2}}{2} \\
& =4 \sqrt{2} .
\end{aligned}
$$

Return to Exercise 1

Solutions to exercises
Exercise 2.
Here, we have $|\underline{a}|=3,|\underline{b}|=5$ and $\theta=60^{\circ}$.

$$
\begin{aligned}
|\underline{a} \times \underline{b}| & =|\underline{a}||\underline{b}| \sin \theta \\
& =(3)(5) \sin 60^{\circ} \\
& =(3)(5) \frac{\sqrt{3}}{2} \\
& =\frac{15}{2} \sqrt{3} .
\end{aligned}
$$

Return to Exercise 2

Solutions to exercises

## Exercise 3.

Here, we have $|\underline{a}|=1,|\underline{b}|=3$ and $\theta=30^{\circ}$.

$$
\begin{aligned}
|\underline{a} \times \underline{b}| & =|\underline{a}||\underline{b}| \sin \theta \\
& =(1)(3) \sin 30^{\circ} \\
& =(1)(3) \frac{1}{2} \\
& =\frac{3}{2} .
\end{aligned}
$$

Return to Exercise 3

Solutions to exercises
Exercise 4.
Here, we have $|\underline{a}|=2,|\underline{b}|=5$ and $\theta=35^{\circ}$.

$$
\begin{aligned}
|\underline{a} \times \underline{b}| & =|\underline{a}||\underline{b}| \sin \theta \\
& =(2)(5) \sin 35^{\circ} \\
& \simeq(2)(5)(0.5736) \\
& =5.736 .
\end{aligned}
$$

Return to Exercise 4

Solutions to exercises

## Exercise 5.

Here, we have $|\underline{s}|=2 \mathrm{~m},|\underline{F}|=4 \mathrm{~N}$ and $\theta=30^{\circ}$.

$$
\begin{aligned}
|\tau| & =|\underline{s} \times \underline{F}| \\
& =|\underline{s}||\underline{F}| \sin \theta \\
& =(2 \mathrm{~m})(4 \mathrm{~N}) \sin 30^{\circ} \\
& =(2 \mathrm{~m})(4 \mathrm{~N}) \frac{1}{2} \\
& =(8)(\mathrm{N} \mathrm{~m}) \frac{1}{2} \\
& =(8)(\mathrm{J}) \frac{1}{2} \\
& =4 \mathrm{~J} .
\end{aligned}
$$

Return to Exercise 5

Solutions to exercises

## Exercise 6.

Here, we have $|\underline{\omega}|=3 \mathrm{~s}^{-1},|\underline{s}|=2 \mathrm{~m}$ and $\theta=45^{\circ}$.

$$
\begin{aligned}
|\tau| & =|\underline{\omega} \times \underline{s}| \\
& =|\underline{\omega}||\underline{s}| \sin \theta \\
& =\left(3 \mathrm{~s}^{-1}\right)(2 \mathrm{~m}) \sin 45^{\circ} \\
& =\left(3 \mathrm{~s}^{-1}\right)(2 \mathrm{~m}) \frac{1}{\sqrt{2}} \\
& =(6)\left(\mathrm{m} \mathrm{~s}^{-1}\right) \frac{1}{\sqrt{2}} \frac{\sqrt{2}}{\sqrt{2}} \\
& =(6)\left(\mathrm{m} \mathrm{~s}^{-1}\right) \frac{\sqrt{2}}{2} \\
& =3 \sqrt{2} \mathrm{~m} \mathrm{~s}^{-1} .
\end{aligned}
$$

Return to Exercise 6

Solutions to exercises

## Exercise 7.

$\underline{a} \times \underline{b}$ is a vector that is perpendicular to both $\underline{a}$ and $\underline{b}$. Here, we have $\underline{a}=4 \underline{i}+2 \underline{j}-\underline{k}$ and $\underline{b}=2 \underline{i}-6 \underline{j}-3 \underline{k}$.

$$
\begin{aligned}
\underline{a} \times \underline{b} & =\left|\begin{array}{rrr}
\underline{i} & \underline{j} & \underline{k} \\
4 & \frac{2}{2} & -1 \\
2 & -6 & -3
\end{array}\right| \\
& =\underline{i}\left|\begin{array}{rr}
2 & -1 \\
-6 & -3
\end{array}\right|-\underline{j}\left|\begin{array}{ll}
4 & -1 \\
2 & -3
\end{array}\right|+\underline{k}\left|\begin{array}{rr}
4 & 2 \\
2 & -6
\end{array}\right| \\
& =\underline{i}[(2)(-3)-(-1)(-6)]-\underline{j}[(4)(-3)-(-1)(2)]+\underline{k}[(4)(-6)-(2)(2)] \\
\underline{a} \times \underline{b} & =\underline{i}[-6-6]-\underline{j}[-12+2]+\underline{k}[-24-4] \\
& =-12 \underline{i}+10 \underline{j}-28 \underline{k} .
\end{aligned}
$$

Return to Exercise 7

Solutions to exercises

## Exercise 8.

Here, we have $\underline{a}=2 \underline{i}+\underline{j}-\underline{k}$ and $\underline{b}=3 \underline{i}-6 \underline{j}+2 \underline{k}$

$$
\begin{aligned}
\underline{a} \times \underline{b} & =\left|\begin{array}{rrr}
\underline{i} & \underline{j} & \underline{k} \\
2 & \frac{1}{1} & -1 \\
3 & -6 & 2
\end{array}\right| \\
& =\underline{i}\left|\begin{array}{rr}
1 & -1 \\
-6 & 2
\end{array}\right|-\underline{j}\left|\begin{array}{rr}
2 & -1 \\
3 & 2
\end{array}\right|+\underline{k}\left|\begin{array}{rr}
2 & 1 \\
3 & -6
\end{array}\right| \\
& =\underline{i}[(1)(2)-(-1)(-6)]-\underline{j}[(2)(2)-(-1)(3)]+\underline{k}[(2)(-6)-(1)(3)] \\
\underline{a} \times \underline{b} & =\underline{i}[2-6]-\underline{j}[4+3]+\underline{k}[-12-3] \\
& =-4 \underline{i}-7 \underline{j}-15 \underline{k} .
\end{aligned}
$$

Return to Exercise 8

Solutions to exercises

## Exercise 9.

Here, we have $\underline{a}=3 \underline{i}+4 \underline{j}-3 \underline{k}$ and $\underline{b}=\underline{i}+3 \underline{j}+2 \underline{k}$

$$
\begin{aligned}
\underline{a} \times \underline{b} & =\left|\begin{array}{rrr}
\underline{i} & \underline{j} & \underline{k} \\
3 & \frac{4}{3} & -3 \\
1 & 3 & 2
\end{array}\right| \\
& =\underline{i}\left|\begin{array}{rr}
4 & -3 \\
3 & 2
\end{array}\right|-\underline{j}\left|\begin{array}{rr}
3 & -3 \\
1 & 2
\end{array}\right|+\underline{k}\left|\begin{array}{cc}
3 & 4 \\
1 & 3
\end{array}\right| \\
& =\underline{i}[(4)(2)-(-3)(3)]-\underline{j}[(3)(2)-(-3)(1)]+\underline{k}[(3)(3)-(4)(1)] \\
\underline{a} \times \underline{b} & =\underline{i}[8+9]-\underline{j}[6+3]+\underline{k}[9-4] \\
& =17 \underline{i}-9 \underline{j}+5 \underline{k} .
\end{aligned}
$$

Return to Exercise 9

Solutions to exercises

## Exercise 10.

Here, we have $\underline{a}=\underline{i}+2 \underline{j}-\underline{k}$ and $\underline{b}=3 \underline{i}+3 \underline{j}+\underline{k}$

$$
\begin{aligned}
\underline{a} \times \underline{b} & =\left|\begin{array}{rrr}
\underline{i} & \frac{j}{1} & \underline{k} \\
3 & 3 & -1 \\
\hline
\end{array}\right| \\
& =\underline{i}\left|\begin{array}{rr}
2 & -1 \\
3 & 1
\end{array}\right|-\underline{j}\left|\begin{array}{rr}
1 & -1 \\
3 & 1
\end{array}\right|+\underline{k}\left|\begin{array}{ll}
1 & 2 \\
3 & 3
\end{array}\right| \\
& =\underline{i}[(2)(1)-(-1)(3)]-\underline{j}[(1)(1)-(-1)(3)]+\underline{k}[(1)(3)-(2)(3)] \\
\text { i.e. } \underline{a} \times \underline{b} & =\underline{i}[2+3]-\underline{j}[1+3]+\underline{k}[3-6] \\
& =5 \underline{i}-4 \underline{j}-3 \underline{k} .
\end{aligned}
$$

Return to Exercise 10

Solutions to exercises

## Exercise 11.

Here, we have $\underline{a}=2 \underline{i}+4 \underline{j}+2 \underline{k}$ and $\underline{b}=\underline{i}+5 \underline{j}-2 \underline{k}$

$$
\begin{aligned}
\underline{a} \times \underline{b} & =\left|\begin{array}{rrr}
\underline{i} & \underline{j} & \underline{k} \\
1 & 5 & 2 \\
1 & 5
\end{array}\right| \\
& =\underline{i}\left|\begin{array}{rr}
4 & 2 \\
5 & -2
\end{array}\right|-\underline{j}\left|\begin{array}{rr}
2 & 2 \\
1 & -2
\end{array}\right|+\underline{k}\left|\begin{array}{rr}
2 & 4 \\
1 & 5
\end{array}\right| \\
& =\underline{i}[(4)(-2)-(2)(5)]-\underline{j}[(2)(-2)-(2)(1)]+\underline{k}[(2)(5)-(4)(1)] \\
\underline{a} \times \underline{b} & =\underline{i}[-8-10]-\underline{j}[-4-2]+\underline{k}[10-4] \\
& =-18 \underline{i}+6 \underline{j}+6 \underline{k} .
\end{aligned}
$$

Return to Exercise 11

Solutions to exercises

## Exercise 12.

Here, we have $\underline{a}=3 \underline{i}-4 \underline{j}+\underline{k}$ and $\underline{b}=2 \underline{i}+5 \underline{j}-\underline{k}$

$$
\begin{aligned}
\underline{a} \times \underline{b} & =\left|\begin{array}{rrr}
\underline{i} & \underline{j} & \underline{k} \\
3 & -4 & 1 \\
2 & 5 & -1
\end{array}\right| \\
& =\underline{i}\left|\begin{array}{rr}
-4 & 1 \\
5 & -1
\end{array}\right|-\underline{j}\left|\begin{array}{rr}
3 & 1 \\
2 & -1
\end{array}\right|+\underline{k}\left|\begin{array}{rr}
3 & -4 \\
2 & 5
\end{array}\right| \\
& =\underline{i}[(-4)(-1)-(1)(5)]-\underline{j}[(3)(-1)-(1)(2)]+\underline{k}[(3)(5)-(-4)(2)] \\
\underline{a} \times \underline{b} & =\underline{i}[4-5]-\underline{j}[-3-2]+\underline{k}[15+8] \\
& =-\underline{i}+5 \underline{j}+23 \underline{k} .
\end{aligned}
$$

Return to Exercise 12

Solutions to exercises

## Exercise 13.

Here, we have $\underline{a}=2 \underline{i}-3 \underline{j}+\underline{k}$ and $\underline{b}=2 \underline{i}+\underline{j}+4 \underline{k}$

$$
\begin{aligned}
\underline{a} \times \underline{b} & =\left|\begin{array}{rrr}
\underline{i} & \underline{j} & \underline{k} \\
2 & -3 & 1 \\
2 & 1 & 4
\end{array}\right| \\
& =\underline{i}\left|\begin{array}{rr}
-3 & 1 \\
1 & 4
\end{array}\right|-\underline{j}\left|\begin{array}{rr}
2 & 1 \\
2 & 4
\end{array}\right|+\underline{k}\left|\begin{array}{rr}
2 & -3 \\
2 & 1
\end{array}\right| \\
& =\underline{i}[(-3)(4)-(1)(1)]-\underline{j}[(2)(4)-(1)(2)]+\underline{k}[(2)(1)-(-3)(2)] \\
\underline{a} \times \underline{b} & =\underline{i}[-12-1]-\underline{j}[8-2]+\underline{k}[2+6] \\
& =-13 \underline{i}-6 \underline{j}+8 \underline{k} .
\end{aligned}
$$

Return to Exercise 13

Solutions to exercises

## Exercise 14.

Here, we have $\underline{a}=2 \underline{i}+3 \underline{k}=2 \underline{i}+0 \underline{j}+3 \underline{k}$ and $\underline{b}=\underline{i}+2 \underline{j}+4 \underline{k}$

$$
\begin{aligned}
\underline{a} \times \underline{b} & =\left|\begin{array}{ccc}
\underline{i} & \underline{j} & \underline{k} \\
0 & 0 & 3 \\
1 & 2 & 4
\end{array}\right| \\
& =\underline{i}\left|\begin{array}{cc}
0 & 3 \\
2 & 4
\end{array}\right|-\underline{j}\left|\begin{array}{ll}
2 & 3 \\
1 & 4
\end{array}\right|+\underline{k}\left|\begin{array}{cc}
2 & 0 \\
1 & 2
\end{array}\right| \\
& =\underline{i}[(0)(4)-(3)(2)]-\underline{j}[(2)(4)-(3)(1)]+\underline{k}[(2)(2)-(0)(1)] \\
\underline{a} \times \underline{b} & =\underline{i}[0-6]-\underline{j}[8-3]+\underline{k}[4-0] \\
& =-6 \underline{i}-5 \underline{j}+4 \underline{k} .
\end{aligned}
$$

Return to Exercise 14

