Matrix Multiplication

R Horan \& M Lavelle

The aim of this document is to provide a short, self assessment programme for students who wish to learn how to multiply matrices.

Copyright © 2005 Email: rhoran, mlavelle@plymouth.ac.uk Last Revision Date: November 2, 2005

Table of Contents

1. Introduction
2. Matrix Multiplication 1
3. Matrix Multiplication 2
4. The Identity Matrix
5. Quiz on Matrix Multiplication Solutions to Exercises Solutions to Quizzes

The full range of these packages and some instructions, should they be required, can be obtained from our web page Mathematics Support Materials.

1. Introduction

In the package Introduction to Matrices the basic rules of addition and subtraction of matrices, as well as scalar multiplication, were introduced. The rule for the multiplication of two matrices is the subject of this package. The first example is the simplest.

Recall that if M is a matrix then the transpose of M, written M^{T}, is the matrix obtained from M by writing the rows of M as the columns of M^{T}.
If $A=\left(a_{1} a_{2} \ldots a_{n}\right)$ is a $1 \times n$ (row) matrix and $B=\left(b_{1} b_{2} \ldots b_{n}\right)^{T}$ is a $n \times 1$ (column) matrix then the product $A B$ is defined as

$$
A B=\left(\begin{array}{lll}
a_{1} & a_{2} & \ldots
\end{array} a_{n}\right)\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right)=a_{1} b_{1}+a_{2} b_{2}+\cdots+a_{n} b_{n}
$$

This general rule is sometimes called the inner product. N.B. The row matrix is on the left and the column matrix is on the right.

Example 1 In each of the following cases, find the product $A B$.
(a) $A=\left(\begin{array}{ll}1 & 2\end{array}\right), \quad B=(43)^{T}$.
(b) $A=\left(\begin{array}{lll}1 & 1 & 1\end{array}\right), \quad B=\left(\begin{array}{lll}2 & 3 & 4\end{array}\right)^{T}$.
(c) $A=(1-123), \quad B=(11-32)^{T}$.

Solution
(a) $A B=\left(\begin{array}{ll}1 & 2\end{array}\right)\binom{4}{3}=1 \times 4+2 \times 3=4+6=10$.
(b) $A B=\left(\begin{array}{lll}1 & 1 & 1\end{array}\right)\left(\begin{array}{l}2 \\ 3 \\ 4\end{array}\right)=1 \times 2+1 \times 3+1 \times 4=2+3+4=9$.
(c) $A B=\left(\begin{array}{lll}1 & -1 & 2\end{array} 3\right)\left(\begin{array}{r}1 \\ 1 \\ -3 \\ 2\end{array}\right)=\begin{array}{ll} & 1 \times 1+1 \times(-1)+2 \times(-3)+3 \times 2 \\ & =1+(-1)+(-6)+6=0 .\end{array}$

Exercise 1. For each of the cases below, calculate $A B$. (Click on the green letters for solutions.)
(a) $A=(-24), \quad B=(32)^{T}$,
(b) $A=(53-2), \quad B=(3-42)^{T}$,
(c) $A=(44-2-3), \quad B=(5-432)^{T}$.

The following observations are worth noting.

- The row matrix is on the left, the column matrix is on the right.
- The row and column have the same number of elements.
- The inner product $A B$ is a 1×1 matrix, i.e. a number.
- Nothing has yet been said about a matrix product $B A$.

Quiz If $A=\left(\begin{array}{lll}x & x & 1\end{array}\right)$ and $B=\left(\begin{array}{lll}x & 6 & 9\end{array}\right)^{T}$, which of the following values of x will result in $A B=0$?
(a) $x=1$,
(b) $x=3$,
(c) $x=-3$,
(d) $x=-2$.

2. Matrix Multiplication 1

The previous section gave the rule for the multiplication of a row vector A with a column vector B, the inner product $A B$. This section will extend this idea to more general matrices.
Suppose that $A=\left(\begin{array}{cccc}a_{1} & a_{2} & \ldots & a_{n} \\ c_{1} & c_{2} & \ldots & c_{n}\end{array}\right)$ and $B=\left(\begin{array}{llll}b_{1} & b_{2} & \ldots & b_{n}\end{array}\right)^{T}$.
Then

$$
A B=\left(\begin{array}{cccc}
a_{1} & a_{2} & \ldots & a_{n} \\
c_{1} & c_{2} & \ldots & c_{n}
\end{array}\right)\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right)=\binom{a_{1} b_{1}+a_{2} b_{2}+\ldots+a_{n} b_{n}}{c_{1} b_{1}+c_{2} b_{2}+\ldots+c_{n} b_{n}}
$$

Example 2 Find $A B$ for each of the following cases.
(a) $A=\left(\begin{array}{rr}1 & 2 \\ 3 & -1\end{array}\right), \quad B=\left(\begin{array}{ll}4 & 3\end{array}\right)^{T}$.
(b) $A=\left(\begin{array}{rrr}1 & 1 & 1 \\ -2 & 1 & -3\end{array}\right), \quad B=\left(\begin{array}{lll}2 & 3 & 4\end{array}\right)^{T}$.

Section 2: Matrix Multiplication 1

Solution

(a) $A B=\left(\begin{array}{rr}1 & 2 \\ 3 & -1\end{array}\right)\binom{4}{3}=\binom{1 \times 4+2 \times 3}{3 \times 4+(-1) \times 3}=\binom{10}{9}$
(b) $A B=\left(\begin{array}{rrr}1 & 1 & 1 \\ -2 & 1 & -3\end{array}\right)\left(\begin{array}{l}2 \\ 3 \\ 4\end{array}\right)=\binom{1 \times 2+1 \times 3+1 \times 4}{(-2) \times 2+1 \times 3+(-3) \times 4}=\binom{9}{-13}$

The following observations on $A B$ are worth noting.

- The element in the first row of $A B$ is the inner product of the first row of A with the column matrix B.
- The element in the second row of $A B$ is the inner product of the second row of A with the column matrix B.
- The number of columns of A must be equal to the number of rows of B.
- If A is $2 \times n$ and B is $n \times 1$ then $A B$ is 2×1.

This rule for multiplication may be extended to matrices, A, which have more than two rows. For example, if A had 3 rows then the resulting matrix, $A B$, would have a third row; the value of this element would be the inner product of the third row of A with the column matrix B.

Exercise 2. For each of the cases below, calculate $A B$. (Click on the green letters for solutions.)
(a) $A=\left(\begin{array}{rr}-2 & 4 \\ 5 & 3\end{array}\right)$,
$B=(43)^{T}$.
(b) $A=\left(\begin{array}{rrr}5 & 3 & 2 \\ 4 & -1 & -1\end{array}\right)$,
$B=\left(\begin{array}{lll}2 & 3 & 4\end{array}\right)^{T}$.
(c) $A=\left(\begin{array}{rr}-2 & 4 \\ 5 & 3 \\ 4 & -1\end{array}\right)$,
$B=(43)^{T}$.
(d) $A=\left(\begin{array}{rrrr}4 & 4 & -2 & -3 \\ 3 & -1 & -1 & 2\end{array}\right), \quad B=\left(\begin{array}{llll}5 & -4 & 3 & 2\end{array}\right)^{T}$.

3. Matrix Multiplication 2

The extension of the concept of matrix multiplication to matrices, A, B, in which A has more than one row and B has more than one column is now possible. The product matrix $A B$ will have the same number of columns as B and each column is obtained by taking the product of A with each column of B, in turn, as shown below.
Let $A=\left(\begin{array}{rr}4 & 1 \\ 2 & 3 \\ 1 & 2\end{array}\right)$ and $B=\left(\begin{array}{rr}2 & -1 \\ 3 & 2\end{array}\right)$ and let b_{1}, b_{2} be the first and
second columns of B respectively. Then

$$
A b_{1}=\left(\begin{array}{rr}
4 & 1 \\
2 & 3 \\
-1 & 2
\end{array}\right)\binom{2}{3}=\left(\begin{array}{c}
11 \\
13 \\
4
\end{array}\right) \quad \text { and } \quad A b_{2}=\left(\begin{array}{rr}
4 & 1 \\
2 & 3 \\
-1 & 2
\end{array}\right)\binom{-1}{2}=\left(\begin{array}{r}
-2 \\
4 \\
5
\end{array}\right) .
$$

Thus

$$
A B=\left(\begin{array}{rr}
4 & 1 \\
2 & 3 \\
-1 & 2
\end{array}\right)\left(\begin{array}{rr}
2 & -1 \\
3 & 2
\end{array}\right)=\left(\begin{array}{rr}
11 & -2 \\
13 & 4 \\
4 & 5
\end{array}\right) .
$$

Section 3: Matrix Multiplication 2

ExErcise 3. For each of the cases below, calculate $A B$. (Click on the green letters for solutions.)
(a) $A=\left(\begin{array}{rr}-2 & 4 \\ 5 & 3\end{array}\right)$,

$$
B=\left(\begin{array}{rr}
-2 & 4 \\
5 & 3
\end{array}\right) .
$$

(b) $A=\left(\begin{array}{ll}3 & 2 \\ 7 & 5\end{array}\right)$,

$$
B=\left(\begin{array}{rr}
5 & -2 \\
-7 & 3
\end{array}\right) \text {. }
$$

(c) $A=\left(\begin{array}{rr}-2 & 4 \\ 5 & 3 \\ 4 & -1\end{array}\right)$,

$$
B=\left(\begin{array}{rr}
-2 & 4 \\
5 & 3
\end{array}\right) .
$$

(d) $A=\left(\begin{array}{rrr}5 & 3 & 2 \\ 4 & -1 & -1\end{array}\right), \quad B=\left(\begin{array}{rr}-2 & 4 \\ 5 & 3 \\ 4 & -1\end{array}\right)$.

NB The rules for finding the product of two matrices are summarised on the next page.

- If A is $m \times n$ and B is $n \times r$ then the product $A B$ exists.
- The resulting matrix is $m \times r .((m \times \underbrace{n)(n} \times r)=m \times r)$
- The element in the i th row, j th column of the matrix $A B$ is the inner product of the i th row of A with the j th column of B.

Example 3 Find the element in the 2 nd row $3 r d$ column of $A B$ if

$$
A=\left(\begin{array}{rr}
1 & 2 \\
-1 & 3
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{rrr}
1 & 4 & -2 \\
3 & -1 & 2
\end{array}\right) .
$$

Solution Since A is 2×2 and B is 2×3, the product $A B$ exists and is a 2×3 matrix. The required element is the inner product of the second row of A with the third column of B, i.e.

$$
(-1) \times(-2)+3 \times 2=2+6=8 .
$$

Exercise 4. If

$$
A=\left(\begin{array}{rrrr}
1 & -2 & 4 & 5 \\
7 & -8 & -6 & 2 \\
2 & 3 & -1 & -2
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{rrr}
-2 & 1 & -3 \\
0 & -2 & -5 \\
4 & -3 & -7 \\
0 & 0 & 6
\end{array}\right)
$$

find the $i j$ element, i.e. the element in the i th row j th column, of $A B$ for the following cases. (Click on the green letters for solutions.)
(a) $i=3, j=2$,
(b) $i=2, j=3$,
(c) $i=1, j=2$,
(d) $i=2, j=1$,
(e) $i=3, j=1$,
(f) $i=1, j=3$,

Quiz Which of the following is the element in the 3 rd row, 3 rd column, of the matrix $A B$ in the above exercise?
(a) 26 ,
(b) -26 ,
(c) -12 ,
(d) 12 .

4. The Identity Matrix

If A and B are two matrices, the product $A B$ can be found if the number of columns of A equals the number of rows of B. If A is 2×3 and B is 3×5 then $A B$ can be calculated but $B A$ does not exist. The order in which matrices are multiplied together matters. Even when $A B$ and $B A$ both exist it is usually the case that $A B \neq B A$.

There is one particular matrix, the identity matrix, which has very special multiplication properties. The $n \times n$ identity matrix is the $n \times n$ matrix with 1 s and 0 s as shown below.

Example 4 The $2 \times 2,3 \times 3$ and 4×4 identity matrices are

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \quad\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) .
$$

The most important property of the identity matrix is revealed in the following exercise.

Exercise 5. If the identity matrix is denoted by I and the matrix M is

$$
M=\left(\begin{array}{lll}
1 & 2 & 4 \\
7 & 8 & 6
\end{array}\right)
$$

use the appropriate identity matrix to calculate the following matrix products. (Click on the green letters for solutions.)
$\begin{array}{ll}\text { (a) } I M \text {, where } I \text { is the } 2 \times 2 & \text { (b) } M I \text {, where } I \text { is the } 3 \times 3\end{array}$ identity matrix, identity matrix.

In matrix multiplication the identity matrix, I, behaves exactly like the number 1 in ordinary multiplication. This was seen in the previous exercise. For part (a), the matrix I is the 2×2 identity matrix; in part (b), I was 3×3; they satisfy the equation $I M=M=M I$.

Example 5 The matrices A, B are

$$
A=\left(\begin{array}{lll}
4 & 3 & 2 \\
5 & 6 & 3 \\
3 & 5 & 2
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{rrr}
3 & -4 & 3 \\
1 & -2 & 2 \\
-7 & 11 & -9
\end{array}\right)
$$

Calculate $A B$ and $B A$.
Solution Using the rules of matrix multiplication,

$$
\begin{aligned}
& A B=\left(\begin{array}{rrr}
4 & 3 & 2 \\
5 & 6 & 3 \\
3 & 5 & 2
\end{array}\right)\left(\begin{array}{rrr}
3 & -4 & 3 \\
1 & -2 & 2 \\
-7 & 11 & -9
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)=I . \\
& B A=\left(\begin{array}{rrr}
3 & -4 & 3 \\
1 & -2 & 2 \\
-7 & 11 & -9
\end{array}\right)\left(\begin{array}{lll}
4 & 3 & 2 \\
5 & 6 & 3 \\
3 & 5 & 2
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)=I .
\end{aligned}
$$

The matrix B is the inverse of the matrix A, and this is usually written as A^{-1}. Equally, the matrix A is the inverse of the matrix B. The equation $A A^{-1}=A^{-1} A=I$ is always true.

5. Quiz on Matrix Multiplication

Let $A=\left(\begin{array}{lll}1 & 1 & 1 \\ 0 & 2 & 1 \\ 1 & 0 & 1\end{array}\right), B=\left(\begin{array}{rrr}2 & -1 & -1 \\ 1 & 0 & -1 \\ -2 & 1 & 2\end{array}\right), C=\left(\begin{array}{lll}3 & 1 & 4 \\ 2 & 1 & 3 \\ 2 & 2 & 1\end{array}\right)$.
Choose the correct option from the following.
Begin Quiz

1. The 2×3 element of $A B$ is
(a) -1 ,
(b) 1 ,
(c) 0 ,
(d) 2 .
2. The 3×1 element of $C B$ is
(a) 3 ,
(b) -1 ,
(c) 4,
(d) -6 .
3. The 2×2 element of $C A$ is
(a) 4 ,
(b) -3 ,
(c) 0 ,
(d) 2 .
4. (a) $B=C^{-1}$,
(b) $A=B^{-1}$,
(c) $C=A^{-1}$

End Quiz Score: \quad Correct

Solutions to Exercises

Exercise 1(a)
If the row matrix $A=(-24)$ and the column matrix

$$
B=\binom{3}{2}
$$

are multiplied, the resulting inner product is

$$
\left.\begin{array}{rlll}
A B= & = & -2 \times 3+4 \times 2 \\
-2 & 4
\end{array}\right)\binom{3}{2} \quad=\quad-6+8
$$

Click on the green square to return

Exercise 1(b)
If the row matrix $A=\left(\begin{array}{lll}5 & 3 & -2\end{array}\right)$ and the column matrix

$$
B=\left(\begin{array}{r}
3 \\
-4 \\
2
\end{array}\right)
$$

are multiplied, the resulting inner product is

$$
\left.\begin{array}{rl}
A B=\left(\begin{array}{ll}
5 & 3
\end{array}-2\right.
\end{array}\right)\left(\begin{array}{r}
3 \\
-4 \\
2
\end{array}\right)=5 \times 3+3 \times(-4)+(-2) \times 2 .
$$

Click on the green square to return

Exercise 1(c)
If the row matrix $A=(44-2-3)$ and the column matrix

$$
B=\left(\begin{array}{r}
5 \\
-4 \\
3 \\
-2
\end{array}\right)
$$

are multiplied, their inner product $A B$ is

$$
\begin{aligned}
(44-2-3)\left(\begin{array}{r}
5 \\
-4 \\
3 \\
-2
\end{array}\right) & =4 \times 5+4 \times(-4)+(-2) \times 3+(-3) \times(-2) \\
& =20-16-6+6=4
\end{aligned}
$$

Click on the green square to return

Exercise 2(a)
For the 2×2 matrix

$$
A=\left(\begin{array}{rr}
-2 & 4 \\
5 & 3
\end{array}\right)
$$

and the column $B=(43)^{T}$, the product $A B$ is

$$
A B=\left(\begin{array}{rr}
-2 & 4 \\
5 & 3
\end{array}\right)\binom{4}{3}=\binom{(-2) \times 4+4 \times 3}{5 \times 4+3 \times 3}=\binom{4}{29}
$$

Click on the green square to return

Exercise 2(b)

If the 2×3 matrix

$$
A=\left(\begin{array}{rrr}
5 & 3 & 2 \\
4 & -1 & -1
\end{array}\right)
$$

and the column matrix $B=\left(\begin{array}{lll}2 & 3 & 4\end{array}\right)^{T}$ are multiplied together, then the resulting product $A B$ is

$$
\begin{aligned}
A B=\left(\begin{array}{rrr}
5 & 3 & 2 \\
4 & -1 & -1
\end{array}\right)\left(\begin{array}{l}
2 \\
3 \\
4
\end{array}\right) & =\binom{5 \times 2+3 \times 3+2 \times 4}{4 \times 2(-1) \times 3+(-1) \times 4} \\
& =\binom{27}{1} .
\end{aligned}
$$

Click on the green square to return

Exercise 2(c)
If the 3×2 matrix is

$$
A=\left(\begin{array}{rr}
-2 & 4 \\
5 & 3 \\
4 & -1
\end{array}\right)
$$

and the column matrix is $B=(43)^{T}$, then the product $A B$ is

$$
A B=\left(\begin{array}{rr}
-2 & 4 \\
5 & 3 \\
4 & -1
\end{array}\right)\binom{4}{3}=\left(\begin{array}{c}
(-2) \times 4+4 \times 3 \\
5 \times 4+3 \times 3 \\
4 \times 4+(-1) \times 3
\end{array}\right)=\left(\begin{array}{c}
4 \\
29 \\
13
\end{array}\right)
$$

Click on the green square to return

Exercise 2(d)

If the 2×4 matrix

$$
A=\left(\begin{array}{rrrr}
4 & 4 & -2 & -3 \\
3 & -1 & -1 & 2
\end{array}\right)
$$

is multiplied with the column matrix $B=\left(\begin{array}{lll}5-4 & 3 & 2\end{array}\right)^{T}$, the resulting product, $A B$, is

$$
A B=\left(\begin{array}{rrrr}
4 & 4 & -2 & -3 \\
3 & -1 & -1 & 2
\end{array}\right)\left(\begin{array}{c}
5 \\
-4 \\
3 \\
2
\end{array}\right)
$$

$$
=\binom{4 \times 5+4 \times(-4)+(-2) \times 3+(-3) \times 2}{3 \times 5+(-1) \times(-4)+(-1) \times 3+2 \times 2}=\binom{-8}{20} .
$$

Click on the green square to return

Exercise 3(a)
Let A and B be the 2×2 matrices:

$$
A=\left(\begin{array}{rr}
-2 & 4 \\
5 & 3
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{rr}
-2 & 4 \\
5 & 3
\end{array}\right)
$$

The matrix $A B$ is

$$
\begin{aligned}
A B=\left(\begin{array}{rr}
-2 & 4 \\
5 & 3
\end{array}\right)\left(\begin{array}{rr}
-2 & 4 \\
5 & 3
\end{array}\right) & =\left(\begin{array}{rr}
-2 \times(-2)+4 \times 5 & -2 \times 4+4 \times 3 \\
5 \times(-2)+3 \times 5 & 5 \times 4+3 \times 3
\end{array}\right) \\
& =\left(\begin{array}{rr}
24 & 4 \\
5 & 29
\end{array}\right) .
\end{aligned}
$$

Click on the green square to return

Exercise 3(b)

If A and B are the 2×2 matrices:

$$
A=\left(\begin{array}{ll}
3 & 2 \\
7 & 5
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{rc}
5 & -2 \\
-7 & 3
\end{array}\right)
$$

then the matrix product $A B$ is

$$
\begin{aligned}
A B=\left(\begin{array}{ll}
3 & 2 \\
7 & 5
\end{array}\right)\left(\begin{array}{rc}
5 & -2 \\
-7 & 3
\end{array}\right) & =\left(\begin{array}{ll}
3 \times 5+2 \times(-7) & 3 \times(-2)+2 \times 3 \\
7 \times 5+5 \times(-7) & 7 \times(-2)+5 \times 3
\end{array}\right) \\
& =\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) .
\end{aligned}
$$

This is called the 2×2 identity matrix.
Click on the green square to return

Exercise 3(c)
If A and B are the matrices

$$
A=\left(\begin{array}{rr}
-2 & 4 \\
5 & 3 \\
4 & -1
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{rr}
-2 & 4 \\
5 & 3
\end{array}\right)
$$

then the matrix product $A B$ is

$$
\begin{aligned}
A B=\left(\begin{array}{rr}
-2 & 4 \\
5 & 3 \\
4 & -1
\end{array}\right)\left(\begin{array}{rr}
-2 & 4 \\
5 & 3
\end{array}\right) & =\left(\begin{array}{rr}
(-2) \times(-2)+4 \times 5 & (-2) \times 4+4 \times 3 \\
5 \times(-2)+3 \times 5 & 5 \times 4+3 \times 3 \\
4 \times(-2)+(-1) \times 5 & 4 \times 4+(-1) \times 3
\end{array}\right) \\
& =\left(\begin{array}{rr}
24 & 4 \\
5 & 29 \\
-13 & 13
\end{array}\right) .
\end{aligned}
$$

Click on the green square to return

Exercise 3(d)

If A is 2×3 and B be is 3×2 given by the following

$$
A=\left(\begin{array}{rrr}
5 & 3 & 2 \\
4 & -1 & -1
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{rr}
-2 & 4 \\
5 & 3 \\
4 & -1
\end{array}\right)
$$

then the matrix product $A B$ is

$$
\begin{gathered}
A B=\left(\begin{array}{rrr}
5 & 3 & 2 \\
4 & -1 & -1
\end{array}\right)\left(\begin{array}{rr}
-2 & 4 \\
5 & 3 \\
4 & -1
\end{array}\right) \\
=\left(\begin{array}{c}
5 \times(-2)+3 \times 5+2 \times 4 \\
4 \times(-2)+(-1) \times 5+(-1) \times 4 \\
4 \times 4+3 \times 3+2 \times(-1) \\
4
\end{array}\right) \\
=\left(\begin{array}{rr}
13 & 27 \\
-17 & 14
\end{array}\right) .
\end{gathered}
$$

Click on the green square to return

Exercise 4(a)

If $\quad A=\left(\begin{array}{rrrr}1 & -2 & 4 & 5 \\ 7 & -8 & -6 & 2 \\ 2 & 3 & -1 & -2\end{array}\right) \quad$ and $\quad B=\left(\begin{array}{rrr}-2 & 1 & -3 \\ 0 & -2 & -5 \\ 4 & -3 & -7 \\ 0 & 0 & 6\end{array}\right)$,
the (32) element in the matrix $A B,(A B)_{32}$, is the inner product of the third row of A with the second column of B, i.e.

$$
\begin{aligned}
(A B)_{32} & =2 \times 1+3 \times(-2)+(-1) \times(-3)+(-2) \times 0 \\
& =2-6+3+0=-1
\end{aligned}
$$

Click on the green square to return

Exercise 4(b)

If $\quad A=\left(\begin{array}{rrrr}1 & -2 & 4 & 5 \\ 7 & -8 & -6 & 2 \\ 2 & 3 & -1 & -2\end{array}\right) \quad$ and $B=\left(\begin{array}{rrr}-2 & 1 & -3 \\ 0 & -2 & -5 \\ 4 & -3 & -7 \\ 0 & 0 & 6\end{array}\right)$,
the (23) element of $A B,(A B)_{23}$, is the inner product of the second row of A with the third column of B, i.e.

$$
\begin{aligned}
(A B)_{23} & =7 \times(-3)+(-8) \times(-5)+(-6) \times(-7)+2 \times 6 \\
& =-21+40+42+12=73 .
\end{aligned}
$$

Click on the green square to return

Exercise 4(c)

If $\quad A=\left(\begin{array}{rrrr}1 & -2 & 4 & 5 \\ 7 & -8 & -6 & 2 \\ 2 & 3 & -1 & -2\end{array}\right) \quad$ and $B=\left(\begin{array}{rrr}-2 & 1 & -3 \\ 0 & -2 & -5 \\ 4 & -3 & -7 \\ 0 & 0 & 6\end{array}\right)$,
the (12) element in the matrix $A B,(A B)_{12}$, is the inner product of the first row of A with the second column of B, i.e.

$$
\begin{aligned}
(A B)_{12} & =1 \times 1+(-2) \times(-2)+4 \times(-3)+5 \times 0 \\
& =1+4-12+0 \\
& =-7
\end{aligned}
$$

Click on the green square to return

Exercise 4(d)

If $\quad A=\left(\begin{array}{rrrr}1 & -2 & 4 & 5 \\ 7 & -8 & -6 & 2 \\ 2 & 3 & -1 & -2\end{array}\right) \quad$ and $\quad B=\left(\begin{array}{rrr}-2 & 1 & -3 \\ 0 & -2 & -5 \\ 4 & -3 & -7 \\ 0 & 0 & 6\end{array}\right)$,
the (21) element in the matrix $A B,(A B)_{21}$, is the inner product of the second row of A with the first column of B, i.e.

$$
\begin{aligned}
(A B)_{21} & =7 \times(-2)+(-8) \times 0+(-6) \times 4+2 \times 0 \\
& =-14+0-24+0=-38
\end{aligned}
$$

Click on the green square to return

Exercise 4(e)

If $\quad A=\left(\begin{array}{rrrr}1 & -2 & 4 & 5 \\ 7 & -8 & -6 & 2 \\ 2 & 3 & -1 & -2\end{array}\right) \quad$ and $B=\left(\begin{array}{rrr}-2 & 1 & -3 \\ 0 & -2 & -5 \\ 4 & -3 & -7 \\ 0 & 0 & 6\end{array}\right)$,
the (31) element in the matrix $A B,(A B)_{31}$, is the inner product of the third row of A with the first column of B, i.e.

$$
\begin{aligned}
(A B)_{31} & =2 \times(-2)+3 \times 0+(-1) \times 4+(-2) \times 0 \\
& =-4+0-4+0=-8
\end{aligned}
$$

Click on the green square to return

Exercise 4(f)

If $\quad A=\left(\begin{array}{rrrr}1 & -2 & 4 & 5 \\ 7 & -8 & -6 & 2 \\ 2 & 3 & -1 & -2\end{array}\right) \quad$ and $\quad B=\left(\begin{array}{rrr}-2 & 1 & -3 \\ 0 & -2 & -5 \\ 4 & -3 & -7 \\ 0 & 0 & 6\end{array}\right)$,
the (13) element in the matrix $A B,(A B)_{13}$, is the inner product of the first row of A with the third column of B, i.e.

$$
\begin{aligned}
(A B)_{13} & =1 \times(-3)+(-2) \times(-5)+4 \times(-7)+5 \times 6 \\
& =-3+10-28+30=9 .
\end{aligned}
$$

Click on the green square to return

Solutions to Exercises

Exercise 5(a)

For the 2×3 matrix $\quad M=\left(\begin{array}{ccc}1 & 2 & 4 \\ 7 & 8 & 6\end{array}\right)$,
the left identity matrix (multiplying M on the left to obtain $I M$) is the 2×2 matrix I :

$$
I=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) .
$$

The product $I M$ is then

$$
\begin{gathered}
I M=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 2 & 4 \\
7 & 8 & 6
\end{array}\right) \\
=\left(\begin{array}{ccc}
1 \times 1+0 \times 7 & 1 \times 2+0 \times 8 & 1 \times 4+0 \times 6 \\
0 \times 1+1 \times 7 & 0 \times 2+1 \times 8 & 0 \times 4+1 \times 6
\end{array}\right) \\
=\left(\begin{array}{lll}
1 & 2 & 4 \\
7 & 8 & 6
\end{array}\right)=M .
\end{gathered}
$$

Click on the green square to return

Exercise 5(b)

For the 2×3 matrix $M=\left(\begin{array}{lll}1 & 2 & 4 \\ 7 & 8 & 6\end{array}\right)$, the right identity matrix (mul-
tiplying M on the right to obtain $M I$) is the 3×3 matrix I :

$$
I=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

The product $M I$ is thus

$$
\begin{gathered}
M I=\left(\begin{array}{lll}
1 & 2 & 4 \\
7 & 8 & 6
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
=\left(\begin{array}{lll}
1 \times 1+2 \times 0+4 \times 0 & 1 \times 0+2 \times 1+4 \times 0 & 1 \times 0+2 \times 0+4 \times 1 \\
7 \times 1+8 \times 0+6 \times 0 & 7 \times 0+8 \times 1+6 \times 0 & 7 \times 0+8 \times 0+6 \times 1
\end{array}\right) \\
=\left(\begin{array}{lll}
1 & 2 & 4 \\
7 & 8 & 6
\end{array}\right)=M .
\end{gathered}
$$

Click on the green square to return \square

Solutions to Quizzes

Solution to Quiz:
Multiplying the row matrix $A=\left(\begin{array}{ll}x & x\end{array}\right)$ with the column matrix

$$
B=\left(\begin{array}{l}
x \\
6 \\
9
\end{array}\right)
$$

from the left we have

$$
\begin{aligned}
A B=\left(\begin{array}{lll}
x & x & 1
\end{array}\right)\left(\begin{array}{l}
x \\
6 \\
9
\end{array}\right) & =x \times x+x \times 6+1 \times 9 \\
& =x^{2}+6 x+9=(x+3)^{2}
\end{aligned}
$$

Therefore the inner product $A B=0$, if $x=-3$.

Solution to Quiz:

The matrices A and B from Exercise 4 are

$$
A=\left(\begin{array}{rrrr}
1 & -2 & 4 & 5 \\
7 & -8 & -6 & 2 \\
2 & 3 & -1 & -2
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{rrr}
-2 & 1 & -3 \\
0 & -2 & -5 \\
4 & -3 & -7 \\
0 & 0 & 6
\end{array}\right) .
$$

The (33) element in the matrix of $A B,(A B)_{33}$, is the inner product of the third row of A with the third column of B, i.e.

$$
\begin{aligned}
(A B)_{33} & =2 \times(-3)+3 \times(-5)+(-1) \times(-7)+(-2) \times 6 \\
& =-6-15+7-12=-26
\end{aligned}
$$

End Quiz

