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Abstract

Complexity draws on commonality of universal phe-
nomena and brings together research in fields that are tra-
ditionally quite disparate. A key thematic in the study
of complex systems is pattern emergence. Spatial pattern
formation can often be categorized as either:simple(pos-
sessing a single dominant scale); orfractal (possessing
proportional levels of detail across many scales).

Here, we present an overview of our research on the
fractal-generating properties of two distinct wave con-
texts: fractal eigenmodes of linear systems with inherent
magnification; and spontaneous spatial fractals in non-
linear systems. Our latest research focuses on: polygo-
nal (“kaleidoscope”) linear laser cavities; and nonlinear
cavity and bulk media optical systems. Results for lin-
ear systems include the first systematic study of fully-2D
transverse eigenmodes that possess significant levels of
fractality. New system geometries and media types are
considered for nonlinear fractal generation. We conclude
with proposal and exploration of some potential applica-
tions of fractal waves.

Spatial fractals in linear optical systems

Unstable cavity lasers

Cavities that are geometrically unstable exhibit a broad
range of phenomena that have captivated researchers for
the past forty years. In particular, the intrinsic tendency
of such simple systems to generate complex multi-scale
light patterns continues to attract wide and sustained in-
terest. Within earlier collaborations [1,2], we discov-
ered that the linear eigenmodes of one-dimensional (1D)
and two-dimensional (2D) unstable resonators are frac-
tals. Fractality was initially explained on the basis of ge-
ometrical optics and a careful reinterpretation of what the
cavity eigenvalue problem represents physically. It was
later shown that the origin of self-reproducing mode pro-
files is much more subtle, lying in the interplay between
round-trip magnification and periodic aperturing (diffrac-
tion at the edge of the feedback mirror) [3].

Kaleidoscope lasers are an intuitive generalization of
classic unstable resonators to fully-2D transverse geome-
tries, where the defining aperture has the shape of a reg-

ular polygon [3]. The non-orthogonal edges of this ele-
ment have a profound impact on the structure of the cavity
eigenmodes, which exhibit a striking level of complex-
ity and beauty. Most obviously,N-sided regular-polygon
boundary conditions imposeN-fold rotational symmetry
on the intensity pattern. Transverse aperture symmetry
also has a strong influence on the excess noise properties
of the cavity [4].

Virtual source theory
Here, we present the first detailed analysis of kaleido-

scope lasers through accommodation of arbitrary equiva-
lent Fresnel numberNeq (which quantifies the cavity as-
pect ratio) and round-trip magnificationM. All previous
analyses have been restricted to regimes where either:
Neq = O(1) (when conventional ABCD paraxial ma-
trix modelling, in combination with Fast Fourier Trans-
forms, FFT, can be deployed [5]); orNeq ≫ O(1) (in
which case asymptotic approximations may be used [6]).
Our approach is based on a fully-2D generalization of
Southwell’s Virtual Source method [7], and exploits ex-
act (Fresnel) mathematical descriptions of the constituent
edge-wave patterns [8].

One key advantage of our technique is that a single cal-
culation allows one to access entire families of modes (i.e.
lowest-loss and all higher-order modes); another is that
any particular mode may be computed to any desired ac-
curacy. We also quantify the convergence properties of
kaleidoscope laser modes (eigenvalue spectra and mode
patterns themselves) in the limit thatN → ∞, where the
feedback mirror becomes circular.

Virtual source theory unfolds an unstable cavity into
an equivalent sequence ofNS = log(250Neq)/log(M)
virtual apertures. Any eigenmode can then be con-
structed from a weighted superposition of the edge-waves
diffracted by each aperture, plus a plane-wave compo-
nent. In scaled units, the mode patternV (X) is given by

V (X) ∝
ENS+1 (XC)

αNS (α− 1)
+

NS
∑

m=1

α−mEm (X) , (1)

whereX denotes an appropriate set of transverse coordi-
nates,XC is any point on the boundary of the feedback



Figure 1: Computations of the lowest-loss modes of
kaleidoscope lasers for a range of feedback-mirror
symmetries with cavity parametersNeq = 30 and

M = 1.5. The lower row of panes shows a magnification
of the central region of the corresponding pattern.

mirror, andEm(X) is the composite edge-wave pattern
arising from themth virtual aperture [8]. The weighting
factorα plays the role of the mode eigenvalue; it is ob-
tained by finding the roots of an associated polynomial
equation. Our virtual source modelling also allows one to
calculate a small portion of any particular eigenmode, in
contrast to FFT-based approached (see Figure 1).

The circular limit

WhenN → ∞, the feedback mirror becomes circular
and the cavity essentially has only a single transverse di-
mension. This limit has been investigated by Berry under
the assumptionNeq ≫ O(1), and only for the lowest-loss
mode [9]. For cavities with arbitraryNeq andM , this
type of fully-2D convergence phenomenon does not lend
itself to asymptotic analysis; indeed, it can only be truly
addressed via numerical computation. We will present,
what is to the best of our knowledge, the first in-depth
treatment of the circular limit of families of kaleidoscope
laser modes (see Figure 2). It was found that this is a far
more subtle problem than might first be imagined.

Spatial fractals in nonlinear optical systems
Universal route to spontaneous fractality

Turing instability is the susceptibility of a uniform state
(one that is homogeneous in space and stationary in time)
to become spontaneously patterned [10,11]. Nonlinear-
ity couples the various components of a system in feed-
back loops that may be either very simple or enormously
complicated. When sufficiently stressed,winner takes
all dynamics can drive the emergence of universal large-
amplitude patterns that are essentially determined by the

Figure 2: Computations showing the transition of the
lowest-loss mode pattern for a kaleidoscope laser with

Neq = 30 andM = 1.5. For these parameters, a
reasonable degree of convergence to circular symmetry

does not begin until one reaches regimes around
N = 40.

details of the dominant feedback loop. Such patterns can
be characterized assimple if they are associated with a
singledominant length scale that corresponds to a single
minimum in the Turing instability threshold curve.

Investigations of spontaneous pattern formation tend to
concentrate on regimes close to the instability minimum.
However, a wide range of wave-based reaction-diffusion
systems exhibit a hierarchy of comparable local Turing
minima. By operating far above the first threshold, one
can excite further unstable spatial frequencies. One can
then, in principle, enter a profoundly new regime of pat-
tern formation where intrinsic nonlinear dynamics (har-
monic generation, four-wave mixing, etc.) tend to create
new spatial length scales. We proposed that this multi-
Turing mode hierarchy could be a signature for a system’s
innate capacity to develop spontaneous spatial fractals,
i.e., patterns with proportional levels of detail recurring
across decades of scale [12].

Complexity in a simple optical ring cavity
Over the last two decades, spontaneous spatial pattern

formation has blossomed into a huge field of research in
nonlinear photonics. However, the majority of theoretical
investigations have been rooted in the mean field approxi-
mation [13], where light propagation effects are averaged
out and the spatiotemporal complexity is consequently re-
duced. Such models tend to possess, at most, only a single
Turing minimum and hence are unlikely to predict multi-
scale spatial structures.

Here, we present the first evidence of spontaneous spa-
tial fractals in ring cavities,beyond mean field dynam-
ics, and for a range of nonlinear materials [14]. A clas-



Figure 3: Spontaneous self-reorganization of a uniform
stationary state perturbed with a small level of noise.

The simple universal patterns that result here are; stripes
in the purely-dispersive cavity (top row); and, hexagons

in the purely-absorptive cavity (bottom row).

sic 2-level saturable absorber system is modelled in the
thin-slice regime (where the medium has near-negligible
thickness). The scalar electric fieldE and population in-
versionw are then governed by

∂E

∂z
=

(α0

2

) Ew

1 + i∆
, (2a)

T1

∂w

∂t
− l2D∇

2
⊥w + (1 +w) = −

T1T2

1 + ∆2
|E|2w. (2b)

Here, (t, z) are time and the longitudinal coordinate
(along the cavity axis), respectively, and∇2

⊥ is the trans-
verse Laplacian. The relaxation times forw and the po-
larization areT1 andT2 ≪ T1, respectively, andlD is the
diffusion length of medium excitation. Optical absorp-
tion is set byα0, while the pump detuning parameter∆
determines the level of dispersion [the system is purely
absorptive when∆ = 0, and purely dispersive (Kerr-like)
when|∆| ≫ O(1)]. Periodic pumping and losses at the
outcoupling mirror are implemented in Fourier space via
a conventional ring-cavity boundary condition. A spatial
filter is also introduced into the free-space path to allow
control of pattern formation.

Simple and fractal patterns
Linear stability analysis has uncovered multi-Turing

threshold minima that are precisely those proposed as
necessary for spontaneous fractal generation [12]. We
begin by demonstrating simple pattern formation through
numerical computations.

A small level of background noise is added to a
stationary-homogeneous solution of model (2), and the
spatial filter is set so that only those spectral components
within the first instability band may propagate freely

Figure 4: Transition from simple (single-scale) patterns
to scale-dependent fractal (multi-scale) patterns in
purely-dispersive (top row) and purely-absorptive

(bottom row) cavities. The transformation begins once
the spatial filter is removed.

around the cavity (waves outside this band are attenu-
ated). When the intensity of the stationary state exceeds
threshold, spontaneous self-organization (the feedback
between diffraction, diffusion, and nonlinearity) drives
the system toward a simple static pattern (see Figure 3).

Once the new stationary state is established, we re-
move the spatial filter and allow all spectral components
to propagate freely. One finds that the simple patterns
evolve into scale-dependent fractals (see Figure 4) whose
characteristics depend upon system parameters (e.g., dif-
fusion length, pump intensity, and mirror reflectivity).

New contexts and applications
We will also present a summary of further optical ge-

ometries with multi-Turing threshold that may be able
to support spatial fractals. One candidatethin-slicesys-
tem is the nonlinear Fabry-Perot cavity, which combines
counterpropagation effects with time-delayed feedback.
We have also been looking at the interaction of two
counterpropagating fields in a slab of instantaneous non-
diffusive Kerr material [15,16]. It will be shown, for the
first time, that this fundamental configuration can also
give rise to spontaneous fractal patterns (though some
constraints apply). While we focus here on optical con-
texts, the implications of our findings extend to wave in-
teractions in other (e.g., fluid and plasma) systems that
are governed by the same pair of universal coupled equa-
tions. Combining bulk-medium and fractal-pattern con-
siderations into a single model requires one to go be-
yond the ubiquitous slowly-varying envelope approxima-
tion when dealing with light-matter interactions [17-19].
To this end, we have also been pursuing nonparaxial anal-
yses of Maxwell’s equations as a means of describing the



optical wavelength-scale spatial structure.
Both linear and nonlinear fractal generators hold enor-

mous potential for inspiring novel laser designs and a
wide range of applications (e.g., more efficient probing,
scanning and ablation experiments). Moreover, the huge
spatial bandwidths associated with fractal sources may
have potential exploitation within distinct novel informa-
tion contexts. The generic characters of fractal linear
eigenmodes and multi-Turing instabilities in wave sys-
tems may even lead to analogous applications in non-
optical systems. We conclude with a brief account of
prospective new application technologies.
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